publications

2023H. Schneckenburger: „Laser Applications in Life Sciences“, Int. J. Mol. Sci. 24, 8526 (2023), https://doi.org/10.3390/ijms24108526.

Datei
2022A. Krecsir, V. Richter, M.Wagner, H. Schneckenburger: “Impact of doxorubicin on cell‐substrate topology”, Int. J. Mol. Sci. 23, 6277 (2022), https://doi.org/10.3390/ijms23116277.

Datei
2022H. Schneckenburger: “Cell Viability in Optical Tweezers: a Mini-Review,” J. of Biomed. Photonics & Eng. 8(4), 040510 (2022), doi: 10.18287/JBPE22.08.040510.

Optical tweezers are based on a transfer of momentum from laser photons to a transparent particle and are often applied to hold, move or manipulate single living cells. This paper discusses up to which light dose irradiance can be regarded as non-phototoxic, summarizes some possible applications, and describes experimental setups, which might fulfil these requirements.

Datei
2021H. Schneckenburger, V. Richter: “Laser Scanning versusWide‐Field  Choosing the Appropriate Microscope in Life Sciences,” Appl. Sci.11(2), 733 (2021), https://doi.org/10.3390/app11020733.

Methods and applications of light microscopy in the life sciences are compared with respect to 3D imaging, resolution, light exposure, sensitivity and recording time. While conventional wide-field or laser scanning microscopy appear appropriate for smaller samples of only a few micrometers size with a limited number of light exposures, light sheet microscopy appears to be an optimal method for larger 3D cell cultures, biopsies or small organisms, if multiple exposures or long measuring periods are desired. Super-resolution techniques should be considered in the context of high light exposure possibly causing photobleaching and photo-toxicity to living specimens.

Datei
2020H. Schneckenburger, V. Richter, M. Gelleri, S. Ritz, R. Vaz Pandolfo, F. Schock, J. v. Hase, U. Birk, C. Cremer: „High resolution deep view microscopy of cells and tissues“, Quantum Electronics 50 (1) (2020) 2-8, https://doi.org/10.1070/QEL0000

Datei
2020V. Richter, P. Lanzerstorfer, J. Weghuber, H. Schneckenburger: "Super-resolution live cell microscopy of membrane-proximal fluorophores”, Int. J. Mol. Sci. 21(19) (2020), 7099, doi:10.3390/ijms21197099

Here we present a simple and robust experimental setup for super-resolution live cell microscopy of membrane-proximal fluorophores, which is comparably easy to perform and to implement. The method is based on Structured Illumination Microscopy (SIM) with a switchable spatial light modulator (SLM) and exchangeable objective lenses for epi-illumination and total internal reflection fluorescence (TIRF) microscopy. To show the applicability of this approach, both methods are used to measure translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane upon stimulation by insulin or insulin-mimetic compounds with a lateral resolution around 100 nm and an axial resolution around 200 nm.

Datei
2020V. Stadlbauer, P. Lanzerstorfer, C. Neuhauser, F. Weber, F. Stübl, P. Weber, M. Wagner, B. Plochberger, S. Wieser, H. Schneckenburger, J. Weghuber: „Fluorescence microscopy-based quantitation of GLUT4 translocation: high-throughput or high-content?”, Int. J. Mol. Sci. 21 (2020) 7964 (16 pages), doi:10.3390/ijms21217964.

Datei
2019H. Schneckenburger: “Förster resonance energy transfer – what can we learn and how can we use it?" Methods Appl. Fluoresc. 8(1) (2019) 013001, 11 pages, https://doi.org/10.1088/2050-6120/ab56e1

The present manuscript gives a short overview on Förster Resonance Energy Transfer (FRET) of molecular interactions in the nanometre range. First, its principle is described and a short historical overview is given. Subsequently some principal methods and applications of FRET sensing and imaging are described (with some emphasis on fluorescence lifetime imaging, FLIM), and finally two innovative FRET techniques are presented in more detail. Applications are focused on measurements of living cells.

2019H. Schneckenburger: “Laser-assisted optoporation of cells and tissues – a mini-review,” Biomed. Optics Express 10(6) (2019) 2833-2888.

Laser microbeam techniques are presented, which permit the introduction of molecules or small particles into living cells. Possible mechanisms - including photochemical, photothermal and opto-mechanical interactions (ablations) - are induced by continuous wave (cw) or pulsed lasers of different wavelength, power and mode of operation. Laser-assisted optoporation permits the uptake of fluorescent dyes as well as DNA plasmids for cell transfection, and, in addition to its broad application to cultivated cells, may have some clinical potential.

Datei
2019H. Schneckenburger, P. Weber, M. Wagner, S. Enderle, B. Kalthof, L. Schneider, C. Herzog, J. Weghuber, P. Lanzerstorfer: „Combining TIR and FRET in molecular test systems,“ Int. J. Mol. Sci. 20 (2019) 648, doi: 10.3390/ijms20030648.

Datei
2019H. Schneckenburger, P. Weber, M. Wagner, S. Enderle, J. Weghuber, Peter Lanzerstorfer: “Combining TIR and FRET: from fluorescence microscopy to a multi-well reader system”, Advances in Microscopic Imaging, Proc. of SPIE-OSA, Vol. 11076, 110761C, 2019; doi: 10.1117/12.2526416.

Datei
2019V. Richter, M. Piper, M. Wagner, H. Schneckenburger: „Increasing Resolution in Live Cell Microscopy by Structured Illumination (SIM)”, Appl. Sci. 9 (6) (2019) 1188, doi: 10.3390/app9061188.

In the context of various approaches for super-resolution microscopy Structured Illumination Microscopy (SIM) offers several advantages: it needs rather low light doses (with a low risk of phototoxicity or photobleaching), is comparably fast and flexible concerning the use of microscopes, objective lenses and cameras, and has a potential for 3D imaging. This paper describes an experimental setup for SIM with first diffraction orders of a spectral light modulator (SLM) creating an interference pattern in two dimensions. We kept this system rather compact with a comparably large illuminated object field, validated it with nano-beads and applied it further to living cells for imaging the cytoskeleton, mitochondria or cell nuclei with a resolution slightly above 100 nm. Its advantages, challenges and limitations – concerning cameras, acquisition time, depth of imaging, light exposure, and combination with further super-resolving methods - are discussed.

Datei
2018H. Schneckenburger, S. Bruns, V. Richter, M. Wagner, T. Bruns: “Light sheet module for 3d imaging – a miniaturized device permits 3d resolution in microscopy,” G.I.T. Imaging & Microscopy 3 (2018) 26-28.

Datei
2018H. Schneckenburger, V. Richter, M. Wagner: “Live-cell optical microscopy with limited light doses”, SPIE Spotlight Series, Vol. SL 42, 2018, 38 pages, ISBN: 9781510622593.

2018V. Richter, M. Piper, M. Wagner, H. Schneckenburger: “Structured Illumination for Live Cell Microscopy,” Proc. SPIE, Vol. 10686, 2018, 10685-93

An experimental setup for super-resolutionmicroscopy by structured illumination is presented, preliminary experiments of nano-beadsand living cells with a resolution around 100 nm are described, andfurther requirements for live cell microscopy are discussed.

Datei
2018V. Richter, P. Weber, M. Wagner, H. Schneckenburger: "3D visualization of cellular location and cytotoxic reactions of doxorubicin, a chemotherapeutic agent", Medical Research Archives 6(4) 2018, 9 pages, ISSN 2375-1924

Previously we reported on the uptake and interaction of cytotoxic doxorubicin in MCF-7 breast cancer cells grown as standard 2-dimensional cell cultures. Now improved experimental techniques – including axial tomography and Light Sheet Fluorescence Microscopy (LSFM) – permit observation of single cells from any side as well as detection of individual layers in multi-cellular spheroids. Therefore, uptake of doxorubicin in the cell nucleus as well re-localization in the cytoplasm at longer incubation times is well documented. Based on a calcein-AM test we could prove high cytotoxicity in 3D cell cultures at 48-96h after incubation. Simultaneously disintegration of cell spheroids and formation of a degradation product became obvious. Fluorescence lifetime imaging microscopy (FLIM) is presently used to distinguish the fluorescence of doxorubicin and its degradation product, and Structured Illumination Microscopy (SIM) is suggested to improve resolution down to about 100 nm.

Datei
2017H. Schneckenburger, V. Richter, M. Piper, M. Wagner: "Laser Illumination in Live Cell Microscopy: Scattering and Structured Illumination", Journal of Biomedical Photonics & Engineering 3(1) (2017) 010304

Two types of laser illumination in live cell microscopy with a focus on the sample or in the aperture plane of the microscope objective lens are distinguished. For the second case two examples are described, namely light scattering microscopy with angular resolution and Structured Illumination Microscopy (SIM) with two interfering laser beams. Appropriate applications include morphological studies of cells undergoing apoptosis and mitochondrial imaging with increased resolution.

Datei
2017V. Richter, S. Bruns, T. Bruns, P. Weber, M. Wagner, H. Schneckenburger: "Axial tomography in live cell laser microscopy", J. Biomed. Opt. 22(9), 091505 (2017)

Datei
2016T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, H. Schneckenburger: "Miniaturized modules for light sheet microscopy with low chromatic aberration", J. Microsc. 264(3) (2016) 261-267

Datei
2015T. Bruns, S. Schickinger, H. Schneckenburger: “Sample holder for axial rotation of specimens in 3D Microscopy”, J. Microsc. 260(1) (2015) 30-36

Datei
2013S. Schickinger, T. Bruns, R. Wittig, P. Weber, M. Wagner, H. Schneckenburger: Nanosecond ratio imaging of redox states in tumor cell spheroids using light sheet based fluorescence microscopy, J. Biomed. Opt. 18(12) (2013) 126007.

Datei
2021V. Richter, P. Lanzerstorfer, J. Weghuber, H. Schneckenburger: “Probing small distances in live cell imaging," Photonics 8(6), 176 (2021),

Datei
2020V. Richter, H, Schneckenburger: “Side Views in 3D Live Cell Microscopy – Innovative Concepts of Illumination for Novel Applications”, Medical Research Archives 8(1), 13 pages (2020), http://journals.ke-i.org/index.php/mra.

Datei
2016T. Bruns, S. Bruns, H. Schneckenburger: “Observing the 3rd dimension – A simple way to upgrade common microscopes for sample rotation”, G.I.T. Imaging & Microscopy 2 (2016) 28-30.

Datei
2015P. Weber, S. Schickinger, M. Wagner, B. Angres, T. Bruns, H. Schneckenburger: “Monitoring of apoptosis in 3d cell cultures by FRET and light sheet fluorescence microscopy”, Int. J. Mol. Sci. 16(3) (2015) 5375-5385

Datei
2013H. Schneckenburger: Commentary: Assessing FRET using spectral techniques, Cytometry 83A (2013) 896-897.

Datei
2022V. Richter, M. Rank, A. Heinrich, H. Schneckenburger: “Novel Approaches in 3D Live Cell Microscopy," Quantum Electronics 52(1), 17-21 (2022)

Datei
2021H. Schneckenburger, V. Richter: “Challenges in 3D live cell imaging," Photonics 8, 275 (2021)

Datei
2013P. Weber, M. Wagner, H. Schneckenburger: Cholesterol dependent uptake and interaction of doxorubicin in MCF-7 breast cancer cells, Int. J. Mol. Sci. 14 (2013) 8358-8366.

Datei
2013R. Wittig, V. Richter, S. Wittig-Blaich, P. Weber, W.S.L. Strauss, T. Bruns, T.P. Dick, H. Schneckenburger, Biosensor-expressing spheroid cultures for imaging of drug-induced effects in three dimensions, J. Biomol. Screen. 18 (2013) 736-743.

2012B. von Einem, P. Weber, M. Wagner, M. Malnar, M. Kosicek, S. Hecimovic, C.A.F. von Arnim, H. Schneckenburger: Cholesterol-dependent energy transfer between fluorescent proteins; insights into protein proximity of APP and BACE1 in different membranes in Niemann-Pick Type C disease cells”, Int. J. Mol. Sci. 13 (2012) 15801-15812

Datei
2012T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger: “Preparation strategy and illumination of 3D cell cultures in light sheet based fluorescence microscopy”, J. Biomed. Opt. 17(10) (2012) 101518.

Datei
2012M. Wagner, P. Weber, H. Baumann, and H.Schneckenburger: ”Nanotomography of cell adhesion upon total internal reflection fluorescence microscopy (VA-TIRFM)”, J. Vis. Exp. 68 (2012) e4133.

Datei
2012P. Weber, M. Wagner, P. Kioschis, W. Kessler, and H. Schneckenburger: “Tumor cell differentiation by label-free fluorescence microscopy”, J. Biomed. Opt. 17 (10) (2012) 101508.

Datei
2014T. Bruns, S. Schickinger, H. Schneckenburger: "Mikroskopadapter zur Rotation 3-dimensionaler Proben", BioPhotonik 1 (2014) 40-41

Datei
2012H. Schneckenburger, P. Weber, M. Wagner, S. Schickinger, V. Richter, T. Bruns, W.S.L. Strauss, and R. Wittig: “Light exposure and cell viability in fluorescence microscopy”, J. Microsc. 245 (2012) 311-318.

Datei
2014T. Bruns, S. Schickinger, H. Schneckenburger: "Single plane illumination module and micro-capillary approach for a wide-field microscope", J. Vis. Exp. 15 (90) (2014) e51993

Datei
2012H. Schneckenburger, P. Weber, M. Wagner, T. Bruns, V. Richter, S. Schickinger, and R. Wittig: “Multidimensional fluorescence microscopy in live cell imaging - a mini-review”, Photon. Lasers Med. 1 (2012) 35-40.

Datei
2015V. Richter, F. Voit, A. Kienle, H. Schneckenburger: "Light scattering microscopy with angular resolution and its possible application to apoptosis", J.Microsc. 257 (1) (2015) 1-7

Datei
2011H. Schneckenburger, M. Wagner, P. Weber, T. Bruns, V. Richter, W.S.L. Strauss, and R. Wittig: “Multi-Dimensional Fluorescence Microscopy of Living Cells”, J. Biophotonics, 3 (2011) 143-149.

Datei
2010M. Wagner, P. Weber, T. Bruns, W.S.L. Strauss, R. Wittig, and H. Schneckenburger: “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection”, Int. J. Mol. Sci. 11 (2010) 956-966.

2010P. Weber, M. Wagner, and H. Schneckenburger: “Fluorescence Imaging of Membrane Dynamics in Living Cells”, J. Biomed. Opt. 15 (2010) 046017.

2010B. von Einem, F. Rehn, D. Schwanzar, P. Weber, M. Wagner, H. Schneckenburger, and C. A.F. von Arnim: “The role of low density receptor-related protein (LRP) as a competitive substrate of APP for BACE1”, Exp. Neurol. 225 (2010) 85-93.

2010H. Schneckenburger, M. Wagner, P. Weber, T. Bruns, and R. Wittig: “Tiefenauflösende Mikroskopie an lebenden Zellen – neue Einblicke mit wenig Licht“, GIT-Bioforum 33/2 (2010) 16-18.

2010T, Bruns und H. Schneckenburger: „Mikrotiterplatte mit Heizeinrichtung“ Patentschrift 10 2009 015 869.3-52, Deutsches Patentamt München (2009); erteilt am 04.10.2010.

2009T. Bruns, B. Angres, H. Steuer, P. Weber, M. Wagner, and H. Schneckenburger: “A FRET-based total internal reflection (TIR) fluorescence reader for apoptosis”, J. Biomed. Opt. 14 (2009) 021003.

2009H. Schneckenburger, R. Börret, C. Braxmaier, R. Kessler, P.Kioschis, D. Kühlke, U. Mescheder, W. Schröder und C. Nachtigall: „Dem Energiestoffwechsel von Tumorzellen und Bioreagenzien auf der Spur“, BioPhotonik 2 (2009) 26-28.

2009B. Angres, H. Steuer, P. Weber, M. Wagner, and H. Schneckenburger: “A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy”, Cytometry 75A (2009) 420-427.

2008M. Wagner, P. Weber, W.S.L. Strauss, H.-P. Lassalle, and H. Schneckenburger: “Nanotomography of cell surfaces with evanescent fields“, Advances in Optical Technologies, Vol. 2008, Article ID 254317 (2008) 7 pages. Doi:10.1155/2008/254317.

2008C.A.F. von Arnim, B. von Einem, P. Weber, M. Wagner, D. Schwanzar, R. Spoelgen, W.S.L. Strauss, and H. Schneckenburger: “Impact of cholesterol level upon APP and BACE proximity and APP cleavage“, Biochem. Biophys. Res. Commun. 370 (2008) 207-212.

2008H.-P- Lassalle, M. Wagner; L. Bezdetnaya; F. Guillemin, and H. Schneckenburger “Fluorescence imaging of Foscan® and Foslip® in the plasma membrane and in whole cells”, J. Photochem. Photobiol. B:Biol. (2008) 92 (2008) 47-53.

2008T. Bruns, W.S.L. Strauss, and H. Schneckenburger: “Total internal reflection fluorescence lifetime and anisotropy screening of cell membrane dynamics”, J. Biomed. Opt. 13 (2008) 041317.

2007H.-P. Lassalle, H. Baumann, W.S.L. Strauss, and H. Schneckenburger: „Cell-substrate topology upon ALA-PDT using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM)”, J. Environ. Pathol. Toxicol Oncol. 26 (2007) 83- 88.

2007R. Sailer, W.S.L. Strauss, M. Wagner, H. Emmert, and H. Schneckenburger: “Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro", Photochem. Photobiol. Sci. 6 (2007) 145 -151

2022A. Krecsir, V. Richter, M. Wagner, H. Schneckenburger: "Impact of Doxorubicin on Cell-Substrate Topology," Int. J. Mol. Sci. 23, 6277 (2022) (data set)

Datei
2022H. Schneckenburger: "Lasers in Live Cell Microscopy", Int. J. Mol. Sci. 23 (9). 5015 (2022), https://doi.org/10.3390/ijms23095015

Datei
2020V. Richter, M. Wagner, H. Schneckenburger: „Total Internal Reflection Fluorescence Microscopy (TIRFM) – novel techniques and applications“, Medical Research Archives 8(11), 11 pages (2020), https://doi.org/10.18103/mra.v8i11.2287.

Datei

Prof. Dr. Herbert Schneckenburger

+49 7361 576-3401
G1 2.11