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Abstract: For probing small distances in living cells, methods of super-resolution microscopy
and molecular sensing are reported. A main requirement is low light exposure to maintain cell
viability and to avoid photobleaching of relevant fluorophores. From this point of view, Struc-
tured Illumination Microscopy (SIM), Axial Tomography, Total Internal Reflection Fluorescence
Microscopy (TIRFM) and often a combination of these methods are used. To show the high
potential of these techniques, measurements on cell-substrate topology as well as on intracellular
translocation of the glucose transporter GLUT4 are described. In addition, molecular parameters
can be deduced from spectral data, fluorescence lifetimes or non-radiative energy transfer (FRET)
between a donor and an acceptor molecule. As an example, FRET between the epidermal growth
factor receptor (EGFR) and the growth factor receptor-bound protein 2 (Grb2) is described. Since
this interaction, as well as further processes of cellular signaling (e.g., translocation of GLUT4)
are sensitive to stimulation by pharmaceutical agents, methods (e.g., TIRFM) are transferred
from a fluorescence microscope to a multi-well reader system for simultaneous detection of large
cell populations.

Keywords: super-resolution microscopy; TIRF; SIM; axial tomography; FRET

1. Introduction

Probing small distances is a continuous challenge in life cell imaging. Optical
microscopy plays a predominant role in this field as it provides several non-destructive
techniques for imaging and sensing applications. Methods of transmission, scattering or
fluorescence microscopy have been reported for many years, however, their resolution
is generally limited to about 200 nm. Only in the last 30 years, this so-called Abbe limit
has been overcome by super-resolution techniques, where resolutions below 100 nm
have been attained. This offers new insights into many compartments or organelles of a
cell, e.g., nuclei, mitochondria, lysosomes and further vesicles, as outlined in Table 1.
Specific techniques, e.g., Total Internal Reflection Fluorescence Microscopy (TIRFM)
even allow for selective imaging of cell membranes whose thickness is only about
5 nm [1,2]. Imaging options in the range of only a few nanometers are limited, however,
information about the micro-environment of specific molecules, e.g., proteins, can be
obtained from sensing additional parameters, e.g., fluorescence spectra or lifetimes. In
this context measurement of Förster Resonance Energy Transfer (FRET) [3] from a so-
called donor to an acceptor molecule plays a predominant role not only for fluorescence
staining, but also for measuring intra-molecular or intermolecular distances in the
nanometer range (for an overview see [4–6]). This manuscript gives an overview on
high resolution microscopy as well as on nanometer sensing.

Photonics 2021, 8, 176. https://doi.org/10.3390/photonics8060176 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0003-4512-7964
https://orcid.org/0000-0001-6312-4666
https://orcid.org/0000-0001-5129-8474
https://www.mdpi.com/article/10.3390/photonics8060176?type=check_update&version=1
https://doi.org/10.3390/photonics8060176
https://doi.org/10.3390/photonics8060176
https://doi.org/10.3390/photonics8060176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8060176
https://www.mdpi.com/journal/photonics


Photonics 2021, 8, 176 2 of 10

Table 1. Typical size of cell organelles and related super-resolution techniques.

Organelle Diameter (typ.) Technique

nucleus 6–12 µm SIM 1

mitochondrium 0.5–1.5 µm
lysosome 0.1–1.2 µm

microtubule ~25 nm STED/MINFLUX/SMLM 1

Actin filament ~7 nm
membrane 4–5 nm TIRFM

protein 3–6 nm
1 Techniques are further described in Section 2.

2. Microscopy

The lateral resolution ∆x of a common (wide-field) microscope is defined either by the
Abbe criterion (for coherent illumination)

∆x ≥ λ/2AN (1)

or by the Rayleigh criterion (for a luminescent object or incoherent illumination)

∆x = 0.61 λ/AN (2)

with the wavelength λ and the numerical aperture AN of the microscope objective lens.
In both cases values around 200 nm are achieved for numerical apertures AN ≥ 1.30 at
λ = 500 nm. Often the axial resolution is related to the depth of focus

∆z = n λ/AN
2 (3)

resulting in ∆z ≈ 400 nm for the refractive index n = 1.50, λ = 500 nm and AN = 1.40. In
comparison with wide-field microscopy, (confocal or multiphoton) laser scanning microscopy
offers numerous advantages concerning contrast and optical sectioning. However, for
an increase of resolution in confocal microscopy a pinhole is required that selects only
a small part of the diffraction pattern (“Airy disk”) of individual points, thus reducing
the detection sensitivity considerably. Alternatively, an array of several pinholes with
individual detectors (Airy Scan Microscopy), an ultrasensitive camera chip (image scan
microscopy) or a pinhole with a scanning device (Re-Scan Confocal Microscopy [7]) may
replace the original pinhole (for an overview see e.g., [8]). These alternatives, however,
make the whole setup rather complex and expensive. Therefore, to increase resolution and
limit the complexity of the optical system, several super-resolution or super-localization
methods have been developed.

Structured Illumination Microscopy (SIM) [9–11] with a periodically modulated illumi-
nation pattern leads to a resolution enhancement around a factor of 2 in the lateral direction
compared to the value given by the Abbe criterion. Here, the sample is illuminated by
2 interfering laser beams creating a sinusoidal pattern (Figure 1) that may be rotated to
obtain isotropic resolution enhancement in the lateral plane. Images are recorded for at
least 3 rotation angles and 3 phases (0, 2π/3, 4π/3) of the interference pattern, and a
super-resolution image is calculated from a minimum of 9 individual images. While 2 in-
terfering beams are sufficient for enhanced resolution in the lateral dimension, 3 interfering
beams are needed for increasing resolution in all 3 dimensions. It should be mentioned
that resolution can be enhanced even by more than a factor 2, if the emission rate of the
sample responds non-linearly to the illumination intensity, using e.g., saturation effects or
photo-switching of a fluorescent protein [12].

In some cases, especially for larger specimens, Lattice Light Sheet Microscopy, a com-
bination of Light Sheet Microscopy and SIM, is a useful tool for observing subcellular
processes in three dimensions. This technique achieves high resolution (∆x = 150 nm,
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∆z = 280 nm) and contrast at high image acquisition speed, thus minimizing damage of
cells due to phototoxicity [13,14].
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Figure 1. SIM (schematic) with spatial light modulator SLM (illuminated by an argon ion laser), telescope lenses L1, L2, 
tube lens TL and objective lens OL. Further components (λ/4 plate, pinhole plate, polarizer, dichroic mirror and camera 
are omitted). If the two interfering laser beams are incident close to the edges of a high aperture OL, SIM may be combined 
with Total Internal Reflection Microscopy (TIRFM), as reported below. Reproduced from [15] with modifications. 
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of refractive index n2 < n1 (e.g., cell membrane or cytoplasm), total internal reflection 
occurs at all angles of incidence Θ, which are greater than a critical angle Θc = arcsin 
(n2/n1). Thereby, an evanescent electromagnetic field is generated that penetrates about 
100 nm into the sample and permits selective excitation of membrane proximal 
fluorophores. “Prism-type TIRF”, based on light incidence via a glass or quartz prism 
whose refractive index exceeds that of the specimen, has been used for live cell 
measurements for almost 40 years [1,2]. By variation of the angle of incidence (“VA-
TIRFM”), an axial resolution of only a few nanometers becomes possible, which permits 
studies of cell-substrate topology, e.g., upon application of cytotoxic or phototoxic agents 
or in studies of diseases. An illumination device (microscope condenser) for variable-
angle TIRFM is depicted in Figure 2a, an application to Chinese Hamster Ovary (CHO) 
cells expressing a membrane-associated Green Fluorescence Protein (GFP) in Figure 2b,c. 
While the penetration depth d (Θ) of the evanescent electromagnetic wave depends on 
the angle of incidence Θ, the fluorescence intensity of the TIRFM signal for a 
homogenously fluorescent layer of thickness t can be calculated as 
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with a constant A, a transmission factor T(Θ) through the cell-substrate interface, a 
penetration depth d(Θ) of the evanescent wave and a distance Δ between a cell and its 
substrate [16]. Variation of the angle Θ permits imaging of this distance Δ for the whole 
specimen (cell-substrate topology), and arbitrary objective lenses can be used for image 
detection. 
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membrane-associated green Fluorescent Protein (GFP) recorded at Θ = 66° (b); cell-substrate distances in the range of 0–

Figure 1. SIM (schematic) with spatial light modulator SLM (illuminated by an argon ion laser), telescope lenses L1, L2,
tube lens TL and objective lens OL. Further components (λ/4 plate, pinhole plate, polarizer, dichroic mirror and camera are
omitted). If the two interfering laser beams are incident close to the edges of a high aperture OL, SIM may be combined
with Total Internal Reflection Microscopy (TIRFM), as reported below. Reproduced from [15] with modifications.

Total Internal Reflection Fluorescence Microscopy (TIRFM) is a wide-field technique
that permits selective detection of surfaces, e.g., plasma membranes. When a light beam
propagating through a medium of refractive index n1 (e.g., glass) meets a second medium of
refractive index n2 < n1 (e.g., cell membrane or cytoplasm), total internal reflection occurs at
all angles of incidence Θ, which are greater than a critical angle Θc = arcsin (n2/n1). Thereby,
an evanescent electromagnetic field is generated that penetrates about 100 nm into the
sample and permits selective excitation of membrane proximal fluorophores. “Prism-type
TIRF”, based on light incidence via a glass or quartz prism whose refractive index exceeds
that of the specimen, has been used for live cell measurements for almost 40 years [1,2].
By variation of the angle of incidence (“VA-TIRFM”), an axial resolution of only a few
nanometers becomes possible, which permits studies of cell-substrate topology, e.g., upon
application of cytotoxic or phototoxic agents or in studies of diseases. An illumination
device (microscope condenser) for variable-angle TIRFM is depicted in Figure 2a, an
application to Chinese Hamster Ovary (CHO) cells expressing a membrane-associated
Green Fluorescence Protein (GFP) in Figure 2b,c. While the penetration depth d (Θ) of the
evanescent electromagnetic wave depends on the angle of incidence Θ, the fluorescence
intensity of the TIRFM signal for a homogenously fluorescent layer of thickness t can be
calculated as

IF (Θ) = A T(Θ) t e−∆/d(Θ) (4)

with a constant A, a transmission factor T(Θ) through the cell-substrate interface, a penetra-
tion depth d(Θ) of the evanescent wave and a distance ∆ between a cell and its substrate [16].
Variation of the angle Θ permits imaging of this distance ∆ for the whole specimen (cell-
substrate topology), and arbitrary objective lenses can be used for image detection.

In “Objective-type TIRF”, which became available 20 years later than prism-type
TIRFM, the illumination beam is focused close to the edge of the aperture of a microscope
objective lens with very high numerical aperture, so that illumination occurs under total
internal reflection [17]. Alternatively, the focused spot may be scanned in a circular orbit for
homogeneous illumination of the sample under various directions during short exposure
times (HILO technique [18]). Objective-type TIRF can be combined with structured illumi-
nation microscopy (SIM) using up to 6 interfering laser beams to achieve super-resolution
in three dimensions (see Figure 1) [18–21]. A comparison of SIM and TIRF-SIM is shown in
Figure 3 for a Chinese Hamster Ovary (CHO) cell transfected with GFP-tagged glucose
transporter 4 (GLUT4). Insulin as well as insulin-mimetic compounds, e.g., tannic acid or
an extract of Bellis perennis (common daisy) [22], are presently used as stimulating agents to
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trigger translocation of GLUT4 from intracellular compartments to the plasma membrane,
as further described in line 209 ff.. As depicted Figure 3 (left), we observed fluorescence
arising primarily from small vesicles by SIM. When we measured the plasma membrane
almost exclusively by TIRF-SIM (Figure 3, right), we observed a more even distribution of
fluorescence intensity over the whole cell surface.

Photonics 2021, 8, 176 3 of 10 
 

 

 
Figure 1. SIM (schematic) with spatial light modulator SLM (illuminated by an argon ion laser), telescope lenses L1, L2, 
tube lens TL and objective lens OL. Further components (λ/4 plate, pinhole plate, polarizer, dichroic mirror and camera 
are omitted). If the two interfering laser beams are incident close to the edges of a high aperture OL, SIM may be combined 
with Total Internal Reflection Microscopy (TIRFM), as reported below. Reproduced from [15] with modifications. 

Total Internal Reflection Fluorescence Microscopy (TIRFM) is a wide-field technique that 
permits selective detection of surfaces, e.g., plasma membranes. When a light beam 
propagating through a medium of refractive index n1 (e.g., glass) meets a second medium 
of refractive index n2 < n1 (e.g., cell membrane or cytoplasm), total internal reflection 
occurs at all angles of incidence Θ, which are greater than a critical angle Θc = arcsin 
(n2/n1). Thereby, an evanescent electromagnetic field is generated that penetrates about 
100 nm into the sample and permits selective excitation of membrane proximal 
fluorophores. “Prism-type TIRF”, based on light incidence via a glass or quartz prism 
whose refractive index exceeds that of the specimen, has been used for live cell 
measurements for almost 40 years [1,2]. By variation of the angle of incidence (“VA-
TIRFM”), an axial resolution of only a few nanometers becomes possible, which permits 
studies of cell-substrate topology, e.g., upon application of cytotoxic or phototoxic agents 
or in studies of diseases. An illumination device (microscope condenser) for variable-
angle TIRFM is depicted in Figure 2a, an application to Chinese Hamster Ovary (CHO) 
cells expressing a membrane-associated Green Fluorescence Protein (GFP) in Figure 2b,c. 
While the penetration depth d (Θ) of the evanescent electromagnetic wave depends on 
the angle of incidence Θ, the fluorescence intensity of the TIRFM signal for a 
homogenously fluorescent layer of thickness t can be calculated as 

IF (Θ) = A T(Θ) t e−Δ/d(Θ) (4)

with a constant A, a transmission factor T(Θ) through the cell-substrate interface, a 
penetration depth d(Θ) of the evanescent wave and a distance Δ between a cell and its 
substrate [16]. Variation of the angle Θ permits imaging of this distance Δ for the whole 
specimen (cell-substrate topology), and arbitrary objective lenses can be used for image 
detection. 

 
Figure 2. Condenser for TIR illumination under variable angle (schematic, (a)); TIRFM image of CHO cells expressing a 
membrane-associated green Fluorescent Protein (GFP) recorded at Θ = 66° (b); cell-substrate distances in the range of 0–

Figure 2. Condenser for TIR illumination under variable angle (schematic, (a)); TIRFM image of CHO cells expressing
a membrane-associated green Fluorescent Protein (GFP) recorded at Θ = 66◦ (b); cell-substrate distances in the range of
0–400 nm calculated from VA-TIRFM according to Equation (1) and shown by color code (c) (excitation wavelength: 476 nm,
detection range: λ ≥ 490 nm; scale bar: 20 µm).
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Figure 3. Comparison of SIM (left) and SIM-TIRFM (right): CHO-K1-hIR-myc-GLUT4-GFP cell,
excitation wavelength: λex = 488 nm; detection range: λD ≥ 515 nm; Plan Neofluar 40×/1.30 oil
immersion lens (left) or Plan Apochromat 63×/1.46 oil immersion objective lens (right). GFP fluo-
rescence arising from intracellular vesicles (left) or the whole plasma membrane (right). Reproduced
from [15] with modifications.

An alternative method to TIRFM deserves mentioning. It is called “Supercritical angle
fluorescence microscopy” (SAF) and is based on full-field excitation of the sample and
selective detection of fluorescence above the critical angle Θc [23,24]. A main advantage of
this method is that membrane associated fluorescence (above Θc) and whole cell fluores-
cence (below Θc) can be observed simultaneously, but a disadvantage is that the total light
exposure is higher than for TIRFM experiments. Also variation of the angle Θ is difficult
to realize.

Stimulated Emission Depletion (STED) microscopy is a laser scanning technique that
overcomes the diffraction limited resolution of confocal and multiphoton microscopes. The
enhancement of resolution is due to suppression of fluorescence of the dye molecules in
the outer regions of a diffraction limited illumination spot by stimulated emission using a
(second) donut shaped laser beam. While a resolution of 30–70 nm can thus be achieved [25],
the irradiance exceeds that of a conventional fluorescence microscope by a factor 104–105

and may cause severe damages to living specimens. This problem was minimized with
the introduction of MINFLUX nanoscopy, a technique based on localization and tracking
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of single molecules in the intensity minimum of a donut-shaped laser beam. MINFLUX
achieves nanometer resolution (isotropic: ≥ 2 nm) at moderate light exposure, which is
comparable to confocal laser scanning microscopy [26].

Super-resolution may further result from single molecule localization microscopy
(SMLM) within a thin illuminated layer of a sample [27–30]. If a single molecule is detected
n times, its localization can be determined with a precision ∆x = ∆x0/

√
n with ∆x0 ~200 nm

according to the Rayleigh criterion. Therefore, a precision of localization ∆x = 20 nm
results from n = 100 and ∆x = 10 nm from n = 400. Methods based on super-localization
microscopy include Stochastic Optical Reconstruction Microscopy (STORM), Photoactivation
Localization Microscopy (PALM) and related techniques. Generally, SMLM techniques need
an irradiance, which is about 100 times larger than for conventional microscopy and a
prolonged exposure time of at least a few seconds, so that the risk of cell damage is again
very high.

Most microscopy techniques can also be combined with Axial Tomography to overcome
the anisotropy of optical resolution. As shown by the point spread function in Figure 4a
the lateral resolution is generally higher than the axial resolution. However, after rotation
always the optimal (lateral) resolution can be used as depicted in Figure 4b. A combination
with super-resolution microscopy gives an extremely high isotropic resolution, e.g., about
100 nm in the case of SIM (Figure 4c). Rotation of samples needs specific sample holders
and preparation techniques, e.g., cells embedded in a gel within a rotatable capillary, whose
refractive index can be adapted to that of water or oil when using an immersion lens of
high magnification [31]. A sample holder with fine tuning of rotation angles over 360◦ has
been reported previously [32]. It can be easily adapted to a great variety of common light
microscopes and is suitable for various applications in life science.
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In every optical system, light emitted from each point in the object is convolved
with the point spread function (PSF) of the system to produce the final image. This
convolution causes points in the object plane to become blurred regions in the image plane,
thus degrading imaging quality. Deconvolution is a post-acquisition image processing
technique used to reverse this process to partially restore lost resolution and improve
contrast. However, as with all analytical tools, it must be applied with care to maximize
reliability and avoid artifacts [33,34].

3. Sensing

Depending on the method of microscopy, resolution is limited to 10–100 nm, i.e.,
smaller structures cannot be resolved in an image. However, it is well known that flu-
orescence spectra as well as fluorescence lifetimes depend on the microenvironment of
a relevant fluorophore, including pH, viscosity, and polarity [35,36]. In particular, after
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excitation of a molecular species by a short light pulse its fluorescence often shows an
exponential decay with the time constant

τ = (kF + knr)−1 (5)

where kF represents the rate of radiative (fluorescent) transitions and knr that of non-
radiative transitions from an excited molecular state. knr depends on various parameters,
e.g., molecular conformation, intersystem crossing between excited singlet and triplet states
or the molecule’s microenvironment. Coming back to the stimulus-dependent translo-
cation of GLUT4 from intracellular storage compartments to the plasma membrane (see
Figure 3), we measured the fluorescence lifetime of GLUT4-GFP prior to and subsequent
to stimulation with insulin or the insulin-mimetic substances tannic acid or Bellis perennis
extract. Here, we illuminated either whole cells or their plasma membranes at an angle of
62◦ (epi-illumination) or 66◦ (TIRF), as depicted in Figure 5.
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According to Figure 5, fluorescence lifetimes were around 2.2 ns upon TIRF illumi-
nation and remained almost constant after stimulation. These values reflect membrane
associated GLUT4-GFP fluorescence with increasing intensity, but almost constant life-
time after stimulation. In contrast, fluorescence lifetimes of 2.5–2.8 ns within whole cells
decreased upon stimulation to 2.3–2.4 ns, thus approaching the values measured within
the plasma membrane. This decrease was significant for stimulation by insulin and Bel-
lis perennis extract and indicated a trend for tannic acid. Therefore, fluorescence lifetime
may represent a quantitative molecular parameter for fluorescence re-distribution from
intracellular vesicles to the plasma membrane as observed in the SIM/TIRF-SIM images.
In this context it should be mentioned that some shortening of GFP lifetime in close vicinity
to a cell-glass interface has been reported in the literature [37].

In the case of non-radiative energy transfer from an excited donor molecule to an
acceptor molecule (FRET [3]) the energy transfer rate kET contributes to the rate knr and
may cause a pronounced decrease of the fluorescence lifetime τ of the donor molecule.
This effect has been used frequently to measure changes of molecular conformations (“in-
tramolecular FRET”) as well as intermolecular interactions of the optical transition dipoles
of specific chromophores. Examples of intramolecular FRET are calcium signaling [38]
or cyclic AMP signaling using a so-called EPAC sensor ([39] and references therein). Ex-
amples for intermolecular FRET are manifold. They include intrinsic fluorophores as
well as fluorescent membrane probes (for a review see [6]), but since the introduction of
GFP [40] and its variants for the blue, yellow and red spectral range, cellular proteins fused
with one of these GFP variants are often used as energy donors or acceptors. Relevant
topics include interactions of cellular growth factor proteins [41,42] as well caspase driven
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molecular interactions upon apoptosis [43,44]. Furthermore, FRET experiments are used
increasingly for studies of pathogenesis of various diseases, e.g., tumors [45] or Alzheimer’s
disease [46]. Altogether, FRET can be evaluated on the basis of spectral data (e.g., ratio
measurements of donor and acceptor fluorescence), fluorescence lifetimes and polarization
measurements, which are of particular interest, if donors and acceptors represent the same
type of molecules (homo-FRET [47]). A major restriction of ratio measurements may be the
spectral overlap of donor and acceptor emission (which requires some deconvolution and
background subtraction) and the often unknown fluorescence quantum yields, while the
main problem of fluorescence lifetime measurements may be the appropriate reference of a
sample without acceptor or with a photo-bleached acceptor (for further details see [4–6].

When FRET is combined with TIR-illumination, cell membranes and protein-protein
interactions close to the plasma membrane can be examined selectively. A recent application
of TIR-FRET is depicted in Figure 6 showing the interaction between the epidermal growth
factor receptor (EGFR), fused with Cyan Fluorescent Protein (CFP), and the growth factor
receptor-bound protein 2 (Grb2), fused with Yellow Fluorescent Protein (YFP). The EGFR
regulates important pathways such as growth, survival, proliferation and differentiation
in mammalian cells, and has become a major drug target, as EGFR signaling is critical
for the development of many types of cancer [48]. In Figure 6, membrane specific donor
and acceptor fluorescence is depicted (top), and fluorescence lifetime images of the donor
EGFR-CFP are shown in absence and in presence of the acceptor Grb2-YFP (bottom).
Pronounced shortening of the fluorescence lifetime is observed in the second case due to
FRET. Furthermore, the efficiency of energy transfer from EGFR-CFP to Grb2-YFP increased
after stimulation of the cells with the epidermal growth factor (EGF) [49].
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Figure 6. TIR fluorescence images of HeLa cells transfected with EGFR-CFP and Grb2-YFP in
the spectral ranges of donor (450–490 nm) and acceptor (λ ≥ 510 nm) emission (top); fluorescence
lifetimes of the donor EGFR-CFP in absence (bottom, left) and presence (bottom, right) of the acceptor;
excitation wavelength: 420–440 nm; image size: 60 µm × 60 µm (top), 100 µm × 100 µm (bottom).
Reproduced from [39] with modifications.

As a valuable contribution to the growing field of high throughput screening, the
TIR-FRET technique was transferred from a fluorescence microscope to a multi-well reader
system for simultaneous detection of large cell populations grown in adapted microtiter
plates. A 96-well plate reported earlier [50] was modified for this purpose, and in addition
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to TIR-FRET experiments this fluorescence reader was used to quantify GLUT 4 translo-
cation from intracellular storage compartments to the plasma membrane. Stimulation by
insulin could thus be measured quantitatively in a large concentration range between 10–12
and 10–6 mol/L [51], and insulin mimetic compounds are further evaluated in view of
their efficacy for treatment of type 2 diabetes mellitus.

4. Discussion

Methods for probing small distances in life cell imaging—including super-resolution
microscopy and molecular sensing—are reported. Super-resolution techniques, however,
should be applied with care in order to avoid photochemical damages of the cells as well as
photobleaching of fluorescent specimens. Presently, SIM with a lateral resolution around
100 nm seems to fulfill the requirement of low or moderate light exposure. MINFLUX
technology with a resolution of only a few nanometers may be a promising alternative
in the near future. For cell membrane studies with high axial resolution, TIRFM appears
to be the method of choice, since by variation of the angle of incidence (VA-TIRFM) cell-
substrate distances can be determined with a precision of a few nanometers. Prism-type
TIRFM may be advantageous for selection of a wide angular range in comparison to
objective-type TIRFM. In addition, prism-type TIRFM has the advantage that any kind
of objective lens (with arbitrary aperture and magnification) can be used. Prism-type
TIRF technology can also be applied in new fields, e.g., fluorescence screening of larger
cell collectives in microtiter plates, which has a high potential in pharmaceutical sciences.
In addition, various combinations of methods, e.g., TIRF-SIM with a high lateral and
axial resolution, as well a combination of axial tomography with further super-resolution
methods, appear promising. Whenever small dimensions within a sample cannot be
visualized in a microscope, fluorescent molecules can be localized and molecular distances
can be estimated on the basis of spectral data, fluorescence lifetimes or FRET between
a donor and an acceptor molecule. FRET data (spectra, fluorescence lifetimes or FRET
efficiencies) can also be displayed as high resolution images.
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