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Abstract: Due to their unique properties—coherent radiation, diffraction limited focusing, low
spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live
cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total
internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal
methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often
depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams
are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser
applications in live cell biology are outlined. They include fluorescence diagnosis, in particular
in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well
as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more
generally—in biomedicine.

Keywords: confocal microscopy; light sheet microscopy; TIRFM; super-resolution; spectral imaging;
FLIM; FRET; optical tweezers; laser micromanipulation; photodynamic therapy

1. Introduction

Since their development by Theodore Maiman in 1960, lasers represent a class of
light sources in the visible, near-ultraviolet or near/middle infrared spectral range, which
are based on the stimulated emission of radiation. Due to this principle, lasers possess
specific and unique properties regarding coherence, tunability, focusing and creation of
short light pulses, which often makes them indispensable tools in biomedical optics. Laser
materials include gases, liquids (dyes) and various kinds of solids, e.g., solid matrices
doped with rare earth materials, semiconductors or optical fibers. A summary of the most
convenient continuous wave (cw) and pulsed lasers are given in Table 1. Most of these
lasers are operated at one or several discrete wavelengths either in their basic mode or at
multiple frequencies (e.g., frequency doubling or tripling), resulting in shorter wavelengths.
Tunable lasers within a broader spectral range include dye lasers, titanium: sapphire lasers
or super-continuum fiber lasers.

In comparison with conventional light sources, lasers offer numerous advantages in
live cell research, e.g., light microscopy. Laser light is coherent in general, i.e., the light
wave has a well-defined phase, which can be used for quantitative phase imaging [1]
and interference studies. Optical coherence tomography (OCT) is a well-known method
for tissue diagnostics, which is based on the interference of two laser beams within well-
defined layers, which can be shifted in a three-dimensional specimen for tomographic
imaging. Meanwhile, this method has been extended from living tissue to single cells [2–4].
Further methods of phase imaging including holography [5–7] and ptychography [8,9]
have been applied in the label-free microscopy of living cells, and phase contrast, as well
as interference contrast microscopy, are used to make the phase visible in transmission
microscopy. In the two latter cases, however, low coherence in the micrometer range, as pro-
vided by conventional light sources is usually sufficient, and lasers are not necessary. Light
interference is also used in Structured Illumination Microscopy (SIM) [10,11], a method of
super-resolution microscopy permitting a two-fold better resolution in comparison with
the so-called Abbe criterion. A main advantage of SIM compared to other super-resolution
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methods is that light exposure is rather low, and only very little phototoxic damage to
living specimens is expected to occur.

Table 1. Most convenient cw and pulsed lasers used for biomedical optics with data on wavelength,
typical average power, pulse energy and pulse duration. Emission of laser pulses is either inher-
ent or occurs after electro-optical (“Q-switch”) or acousto-optical modulation (“mode locking”).
Femtosecond lasers (with pulse compression) are omitted.

Mode Type λ (nm) P (W) WImp (J) tImp (s)

Cw laser (gas) Ar+, Kr+ 351–676 ≤20

HeNe 543–633 ≤0.1

CO2 10.6 µm ≤105

Cw laser (solid state) Nd:YAG 532, 1064 ≤300

Diode ≥370 ≤1

Pulse laser Excimer 157–308 ≤100 ≤0.5 10−8

Solid state (Nd+, Er+, Ho+) 532–2940 ≤100 ≤1 10−4

Super-continuum fiber laser 400–2000 ≤5 ≤10−7 ≤10−11

Q-Switch laser Solid state (Nd:YAG) 256–1064 ≤100 ≤1 10−8

Modelocked laser Ar+, dye, Nd:YAG 400–1000 ≤10 ≤10−6 10−10–10−11

Ti: sapphire 325–1000 ≤10 ≤10−6 ≤10−11

A further advantage of lasers is their low spectral bandwidth. This does not only
permit excitation of relevant fluorophores in the maximum of their absorption bands but
also measurement of inelastic light scattering, e.g., Raman scattering [12–14], at wavelengths
that are rather close to the excitation wavelength. Monochromatic laser light can also be
modulated electro- or acoustically in order to generate ultra-short pulses, which are used
for fluorescence lifetime imaging microscopy or measurement of Förster Resonance Energy
Transfer (FRET) [15–17] between adjacent molecules.

In contrast to conventional light sources, lasers can be focused to a diffraction limited
spot whose diameter is often in the sub-micrometer range or, if a cylindrical instead of a
spherical lens is used, to a light sheet, as frequently applied in Light Sheet Fluorescence
Microscopy (LSFM) [18,19] to selectively illuminate single planes of a 3D specimen. LSFM
is an alternative method to Confocal Laser Scanning Microscopy (CLSM) with low light
exposure since each plane of a complex sample has to be illuminated only once in order to
get 3D information. Therefore, this method is most attractive in order to maintain viability
in repetitive experiments of 3D cell biology or developmental biology. Focusing on laser
light is also essential in Total Internal Reflection Fluorescence Microscopy (TIRFM) [20]
of cell surfaces, in particular, if the angle of light incidence and therefore, the penetration
depth of the evanescent electromagnetic field has to be varied (VA-TIRFM).

Lasers are often used for diagnostic purposes, e.g., OCT, fluorescence or Raman imag-
ing. In this case, interactions with cells or tissue are supposed to be “reversible”, i.e.,
phototoxicity or any kind of damage is not expected to occur. This also holds to some
degree for certain experiments of laser micro-manipulation using e.g., optical tweezers [21].
With increasing laser power further interactions occur, e.g., bio-stimulation, photochemical
interactions (used e.g., in photodynamic therapy, PDT), as well as photo-thermal or op-
tomechanical interactions (ablations). Here, not only the continuous wave (cw) laser power
but also the duration of individual laser pulses play a predominant role.

The present paper focuses on various topics of laser-assisted techniques including 3D
imaging, super-resolution imaging, spectral and fluorescence lifetime imaging as well
as laser micromanipulation. Furthermore, some applications, e.g., fluorescence diag-
nosis, PDT (on a cellular level) and laser-assisted optoporation are emphasized. The
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manuscript describes these topics in a narrative way rather than giving a systematic and
complete overview.

2. Laser-Assisted Methods
2.1. 3D Imaging

Imaging of two-dimensional specimens, e.g., cell monolayers or biopsies of less than
about 10 µm diameter, does not necessarily require a laser. However, cells are often culti-
vated in a three-dimensional environment, which in view of cell metabolism and physiology
is closer to natural conditions. Conventional microscopy of 3D specimens often gives rather
poor images with little information, as shown in Figure 1a for a Chinese Hamster Ovary
(CHO) transfected with a membrane-associated Green Fluorescent Protein (GFP). Here,
an image from the focal plane is superposed by out-of-focus fluorescence, and the total
fluorescence is almost evenly distributed with very little structural information. Lasers
can help to select images from individual cell layers, which are further combined in a well-
resolved 3D image. One possibility is Confocal Laser Scanning Microscopy (CLSM) [22,23],
where a laser beam is focused onto a diffraction limited spot within the sample, which
is further imaged into a pinhole in front of the light (fluorescence) detector. Scanning of
the laser beam over the sample gives a 2D image of a well-defined plane, and by moving
the specimen in small steps in a vertical direction, numerous cell layers can be recorded,
whose information is combined in a 3D image by appropriate software. Various CLSM
methods with different recording velocities have been described, so far, including point
scan and line scan microscopy as well as simultaneous illumination of various parts of a
sample by Spinning-Disk Confocal Microscopy [24]. Lateral resolution is given in principle
by the radius r = 0.61 λ/AN (≥200 nm) of the diffraction limited spot (Airy disk) with λ

corresponding to the laser wavelength and AN to the numerical aperture of the microscope
objective lens. If the pinhole, however, selects only part of the Airy disk (Airy scan [25]
image scan [26], or re-scan microscopy [27]), this resolution can be improved by up to a
factor of two. Laser Scanning Microscopy also includes Multiphoton Microscopy when
ultra-short laser pulses are focused onto a small spot in the sample, thus exciting fluores-
cence by two or more photons and creating high contrast images without the need for any
pinhole [28,29].
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Figure 1. Spheroids of CHO-pAcGFP1-Mem cells recorded by conventional fluorescence micros-
copy (a), CLSM (b) and LSFM (c). Single planes are selected in (b) and (c) at a depth of 60 µm from 
the top of the spheroid; the arrow indicates the direction of light incidence in LSFM (excitation 
wavelength: 488 nm; fluorescence detected at λ ≥ 505 nm). Light intensity is reduced in the central 
part of the spheroid (b), and scattering increases along the light path (c). Reproduced from [30] with 
modifications. 

Light Sheet Fluorescence Microscopy (LSFM) [18,19] is another method of 3D micros-
copy, which uses wide-field techniques, but requires a laser beam, which is focused either 
into a light sheet (using a cylindrical lens) or into a diffraction limited spot, which is 
scanned along a line. In this case, optical excitation of the samples is perpendicular to the 

Figure 1. Spheroids of CHO-pAcGFP1-Mem cells recorded by conventional fluorescence mi-
croscopy (a), CLSM (b) and LSFM (c). Single planes are selected in (b,c) at a depth of 60 µm
from the top of the spheroid; the arrow indicates the direction of light incidence in LSFM (excitation
wavelength: 488 nm; fluorescence detected at λ ≥ 505 nm). Light intensity is reduced in the central
part of the spheroid (b), and scattering increases along the light path (c). Reproduced from [30]
with modifications.

Light Sheet Fluorescence Microscopy (LSFM) [18,19] is another method of 3D microscopy,
which uses wide-field techniques, but requires a laser beam, which is focused either into
a light sheet (using a cylindrical lens) or into a diffraction limited spot, which is scanned
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along a line. In this case, optical excitation of the samples is perpendicular to the detection
path, and special sample holders, e.g., micro-capillaries filled with liquid cultivation media
or gels [31], are required. For 3D imaging, the light sheet and the microscope objective
lens used for detection can be shifted simultaneously in an axial direction, so that the
illuminated part of the sample is always in the focus of the objective lens. Both shifts may
be different due to the refractive index of the immersion fluid, but this can be corrected
either mechanically [32] or by software. Alternatively, the sample can be moved in an axial
direction through a static light sheet. Similar to CLSM, z-stacks can be recorded with low
fluorescence background and high contrast. Often the light sheet is generated by a low
aperture lens (AN ≈ 0.1), so that a large depth of focus L = nλ/AN

2 ≤ 100 µm and a beam
waist d = λ/AN ≈ 5 µm are attained. This beam waist is sufficient for imaging single-cell
layers of a multi-cellular specimen, while the detection lens provides the same lateral
resolution as in conventional wide-field microscopy. Figure 1b,c shows fluorescence images
of a single cell layer in a multi-cellular spheroid at a depth of 60 µm from its top recorded
by CLSM or LSFM. While the lateral resolution is similar, the LSFM image shows strong
attenuation in the central part of the sample due to light absorption and scattering. This
attenuation is weaker for LSFM, but upon (mainly forward) scattering much contrast is lost,
and some stripes are generated in the direction of light propagation. The main advantage
of Light Sheet Microscopy (LSFM) over Confocal Microscopy is that only those planes
are illuminated, which are recorded simultaneously so that light exposure is considerably
lower than for those methods, where the recording of each image requires illumination
of the whole specimen. Commercial light-sheet microscopes (e.g., Carl Zeiss, Olympus,
Nikon), as well as open-source solutions or add-ons for existing microscopes, are presently
available [32,33].

In contrast to CLSM and LSFM, Total Internal Reflection Microscopy (TIRFM) [20] rep-
resents a method that is designed for studies of cell surfaces, in particular their plasma
membranes. The method is based on the total internal reflection of a laser beam on a
cell-substrate surface, thus generating an evanescent electromagnetic field that penetrates
about 100 nm into the sample and permits selective excitation of membrane-proximal fluo-
rophores. Two illumination concepts for TIRFM are reported in the literature: prism-type
TIRFM, where light is incident on a cell layer via a glass prism, as shown in Figure 2a, and
objective-type TIRFM, where laser light is focused close to the edge of the aperture of a
high-aperture microscope objective lens. In both cases, the condition for the angle of light
incidence Θ ≥ arcsin (n2/n1) has to be fulfilled with n1 corresponding to the refractive
index of the glass substrate and n2 to that of the cell, namely the cytoplasm. As previously
shown [34,35], variation of the angle of incidence (VA-TIRFM) permits the calculation of
3D cell-substrate topology with nanometer precision, e.g., upon application of cytotoxic or
phototoxic agents. Furthermore, tumor cells and less malignant cells could be distinguished
on the basis of prism-based VA-TIRFM [35]. Figure 2 shows a TIRFM image of Chinese
Hamster Ovary (CHO) cells transfected with membrane-associated Green Fluorescent
protein (GFP-Mem) incubated for 2 h with the cytostatic drug doxorubicin (2 µM, b) as
well as cell-substrate topology calculated from a series of TIRFM images at 66◦ ≤ Θ ≤ 75◦

(c). More detailed experiments revealed that cell-substrate distances increased with the
incubation time of doxorubicin. This may possibly be regarded as an early response to the
application of this cytotoxic drug.
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Figure 2. Microscope condenser for prism-based VA-TIRFM (schematic, (a)), TIRFM image of
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2.2. Super-Resolution Imaging

Resolution in microscopy is generally given by the Abbe criterion ∆x ≥ λ /2AN
(for coherent light) or by the Rayleigh criterion ∆x = 0.61 λ/AN (for incoherent light,
e.g., fluorescence). In both cases, the lateral resolution is restricted to about 200 nm.
Only in the last 30 years have methods been developed, which permit to overcome this
restriction, and which are summarized under the term “Super-resolution microscopy”.
This term includes Single Molecule Localization Microscopy (SMLM) within a thin illuminated
layer of a sample [36–39]. If a single molecule is detected n times, its localization can be
determined with a precision of ∆x = ∆x0/

√
n with ∆x0 corresponding to the Rayleigh

criterion. Therefore, a precision of localization ∆x = 20 nm results from n = 100 and
∆x = 10 nm from n = 400. Illumination of thin layers most generally requires TIRFM or
confocal techniques, but also light sheet illumination for tracking single molecules in living
tissue has been reported [40]. Generally, SMLM techniques need an irradiance, which
is about 100 times larger than the irradiance in conventional microscopy, as well as a
prolonged exposure time of a few seconds up to minutes, so that the risk of phototoxic cell
damage is very high.

Another super-resolution technique based on laser scanning microscopy is Stimulated
Emission Depletion (STED) Microscopy. Here, the enhancement of resolution is due to
suppression of fluorescence in the outer regions of a diffraction limited illumination spot
by stimulated emission using a (second) donut-shaped laser beam. While a resolution of
30–70 nm can be achieved [41], the irradiance exceeds that of a conventional fluorescence
microscope by a factor of 104–105 and may cause severe damage to living specimens.
This problem was minimized with the introduction of MINFLUX nanoscopy, a technique
based on the localization and tracking of single molecules in the intensity minimum of a
donut-shaped laser beam. MINFLUX achieves nanometer resolution (isotropic: ≥2 nm) at
moderate light exposure, which is comparable to a confocal laser scanning microscope [42].

A laser-based method with comparably low light exposure and an enhancement of
resolution around a factor of two in comparison with the Abbe criterion is Structured
Illumination Microscopy (SIM) [10,11]. Here, the sample is illuminated by two interfering
laser beams creating a sinusoidal pattern that may be rotated to obtain isotropic resolution
in a lateral plane. Images are recorded for at least three rotation angles and three phases
(0, 2π/3, 4π/3) of the interference pattern, and a super-resolution image is calculated from
a minimum of nine individual images. While two interfering laser beams are sufficient
for enhanced resolution in the lateral dimension, three interfering beams are needed for
increasing resolution in all three dimensions. It should be mentioned that resolution can be
enhanced even by more than a factor of two, if the emission rate of the sample responds
non-linearly to the illumination intensity, using e.g., saturation effects or photo-switching
of fluorescent proteins [43].
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In some cases, especially for larger specimens, Lattice Light Sheet Microscopy, a com-
bination of Light Sheet Microscopy and SIM, is a useful tool for observing subcellular
processes in three dimensions. This technique achieves a resolution around ∆x = 150 nm
and ∆z = 280 nm at a high image acquisition speed, thus minimizing damage to cells due
to phototoxicity [44].

The principle of SIM is depicted in Figure 3a; further details of a setup using a spatial
light modulator (SLM) are described in [45,46]. Images of fluorescent polystyrene beads of
200 nm size recorded with wide-field microscopy and SIM are shown in Figure 3b,c. While
the resolution of conventional wide-field microscopy is the same as the size of the beads,
the SIM resolution is clearly better (about a factor of two) and allows individual beads to
get well separated.
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2.3. Spectral Imaging and Fluorescence Lifetime Imaging

Besides spatial resolution, spectral or temporal data are often required in microscopy,
e.g., to obtain information about the microenvironment or interactions of specific molecules
inside a cell. Therefore, spectral imaging combines microscopy with an appropriate spec-
trometer or interferometer (for a review see [47,48]). Lasers are only required in special
cases, e.g., Raman microscopy, when inelastic light scattering is measured at a wavelength
λ, which is close to the excitation wavelength λ0 and permits the energy of a molecular
vibration to be determined as ∆W = h c (1/λ0 − 1/λ), with h = 6.626× 10−34 J s correspond-
ing to Planck’s constant and c = 3.00 × 108 m/s to the velocity of light. Since the intensity
of inelastic light scattering is several orders of magnitude (typical factor: 106–108) lower
than elastic light scattering, the latter is most commonly suppressed by a so-called Notch
filter. Then, either spectral analysis or Raman imaging in a limited spectral range can be
performed. In Figure 4c laser excitation occurs at λ0 = 514.5 nm, and after a Notch filter for
this wavelength, Raman images are recorded at 535–550 nm.

Fluorescence Lifetime Imaging Microscopy (FLIM) [49,50] upon excitation with short
laser pulses is another technique that provides additional information about molecular
conformations or interactions with adjacent molecules. The lifetime τ of an excited molecu-
lar state, also termed “fluorescence lifetime”, corresponds to the reciprocal of its rates of
deactivation k = kF + kNR + kET, with kF representing radiative (fluorescent) transitions, kNR
non-radiative transitions and kET energy transfer to adjacent molecules. Therefore, changes
in the lifetime τ may reflect changes in molecular conformation or of the micro-environment
of a molecule, singlet-triplet intersystem crossing (all via changes of kNR) or non-radiative
energy transfer in the nanometer range. Figure 4 shows conventional autofluorescence
images (a), fluorescence lifetime images (b) and Raman images (c) of U251-MG glioblastoma
cells (controls and cells after application of the tumor differentiating agent PTEN, which
is known to reduce the malignancy of the cells). Fluorescence images are dominated by
the coenzyme nicotinamide adenine dinucleotide (NADH) [51] and are independent of the
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application of PTEN. In contrast, fluorescence lifetimes (again from NADH) appear slightly
prolonged after the application of tumor differentiating agents, while Raman spectra are
again quite similar. This suggests that fluorescence lifetimes (in addition to fluorescence
spectra, not shown) may be an indicator of cell malignancy.

Figure 4. Autofluorescence images (a,d), fluorescence lifetime images including scale in picoseconds
(b,e) and Raman (with superimposing phase contrast) images (c,f) of U251-MG glioblastoma cells
(controls and after application of the tumor differentiating agent PTEN). Excitation wavelength:
375 nm (a,b,d,e), 514.5 nm (c,f); detection range: ≥420 nm (a,b,d,e), 535–550 nm (c,f). Excitation
occurred by a quasi-continuous series of picosecond laser pulses (a,b,d,e) or by a continuous wave
(cw) argon ion laser (c,f). Reproduced in parts from [51].

2.4. Laser Micromanipulation

So far, laser applications for microscopic imaging have been reported, where the
wavelength λ of radiation or the photon energy W = h c/λ served as key parameters
(with Planck’s constant h = 6.626 × 10−34 Js and the velocity of light c = 3.00 × 108 m/s).
However, photons also possess a momentum p = h/λ, which is rather small, but if a
large number of photons is focused on a sub-micrometer laser spot, repulsive forces in the
range of pico-Newtons to nano-Newtons are generated, which create a local pressure up to
about 103 N/m2 that is sufficient for moving particles such as cells or organelles. This is
demonstrated in Figure 5 for the case that a large number of photons a (from the center
of a laser beam) and a smaller number of photons b (from a peripheral part of the laser
beam) are deflected by a transparent particle, e.g., a cell. This principle of optical trapping
has been referred to as “optical tweezers” [21] with numerous applications dating back
more than 30 years. Pilot applications include measurements of motility forces of cells [52],
macromolecules [53] or organelles [21], micro-manipulation of cells or chromosomes [54],
laser-assisted cell fusion [55], or sperm insertion into oocytes through a previously drilled
hole [56]. Figure 5 shows an application of laser tweezers for cell sorting [57] using a specific
channel structure on a glass chip. Cells are flowing in a main stream, but upon activation
of an optical tweezer system by an appropriate trigger, they are deflected to a side channel,
where they can be recovered and further analyzed. Cell survival in a laser trap—dependent
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on the laser wavelength and radiant exposure—is an important issue. Detailed studies are
reported in the literature [58], but generally, for the far red or near-infrared spectral range,
light exposures up to some hundred MJ/cm2 appear possible [59]. Since only very small
areas of a cell are irradiated, these light doses are considerably higher than upon irradiation
of whole cells.
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3. Applications
3.1. Fluorescence Diagnosis/FRET

Fluorescence diagnosis is well established in experimental and clinical studies of cells,
biopsies and living tissue. While intrinsic fluorescence has already found broad clinical ap-
plication, fluorescence staining or transfection with fluorescent proteins is usually limited to
studies of cell cultures with some diagnostic or pharmacological perspectives. Of particular
interest is the method of Förster Resonance Energy Transfer (FRET) [15–17] between two
molecules (intermolecular FRET) or between different chromophoric groups of a larger
molecule, e.g., a protein (intramolecular FRET). This method is based on optical excitation
of a so-called donor and interaction of optical transition dipoles with an acceptor, which is
able to fluoresce, thus permitting to prove either molecular interactions or conformational
changes of a molecule in the nanometer range. Due to the impact of chemical or pharmaceu-
tical agents, the FRET technique is applied increasingly in biosensors and drug discovery
systems [60–63]. FRET has been combined with TIRFM to detect selectively interactions
within or close to the plasma membrane [60,64–66] as well as with light sheet microscopy
(LSFM) to measure interactions within single layers of a 3D specimen [67,68].

An example is given in Figure 6 showing the principle as well as an application of
FRET from the Epidermal Growth Factor Receptor (EGFR) fused with Cyan Fluorescent
Protein (CFP) to the growth factor receptor-bound protein 2 (Grb2) fused with Yellow
Fluorescent Protein (YFP). If the fluorescent proteins are closer to each other than about
10 nm, non-radiative energy transfer occurs from the donor EGFR-CFP to the acceptor
Grb2-YFP, and upon optical excitation of the donor, both donor and acceptor fluoresce. This
is shown in Figure 6 for Total Internal Reflection Microscopy (TIRFM) and conventional
wide-field microscopy (insets). Obviously, TIRFM enhances the signal/background ratio
for this membrane-specific interaction. For quantitative evaluation, fluorescence spectra
(ratio of acceptor/donor emission) as well as the fluorescence lifetime of the donor, which
is shortened by FRET, can be used, as further described in [66]. FRET was probably
stimulated in focal adhesions by the Epidermal Growth Factor (EGF) and possibly reduced
by EGFR phosphorylation inhibitors. This opens the possibility to use this FRET sensor for
a pharmacological test system, e.g., by replacing the fluorescence microscope with a multi-
well reader system for simultaneous detection of a larger number of samples. In [66], a Total
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Internal Reflection (TIR) is described for a 96-well microtiter plate with a super-continuum
picosecond fibre laser used for simultaneous excitation of all samples.
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Figure 6. Principle of FRET from a donor to an acceptor molecule with the energy transfer rate kET.
TIRFM images of HeLa cells transfected with EGFR-CFP and Grb2-YFP encoding vectors in the
emission ranges of the donor CFP (450–490 nm) and the acceptor YFP (λ ≥ 510 nm) upon FRET and
possibly some additional direct excitation of the acceptor; excitation wavelength: 420–440 nm; image
size: 60 µm × 60 µm. Insets: fluorescence images of the same object field after epi-illumination of
whole cells (reproduced from [66] with modifications).

3.2. Photodynamic Therapy (PDT)

Owing to their tumor-localizing and photosensitizing properties, porphyrins such as
hematoporphyrin and its derivatives (Hpd) as well as other chromophores (e.g., chlorines)
have gained considerable interest in fluorescence detection and photodynamic therapy
(PDT) of cancer [69]. While fluorescence results from a radiative transition from the excited
singlet state S1 to the ground state S0 of photosensitizer molecules, PDT is due to intersystem
crossing from S1 to the excited triplet state T1, from which the cytotoxic species singlet
oxygen or superoxide radicals are generated. These species react with various biomolecules
(e.g., proteins) and cause cell damage, preferentially after the application of red light. The
principle of PDT is shown in Figure 7. After local or systemic application, a photosensitizer
(e.g., Hpd) is first distributed all over the tissue but often accumulates within a tumor
after a period of 6–24 h. This accumulation, which is a prerequisite for PDT, may be due
to a tumor-specific micro-vasculature, pH effects or specific binding sites. Alternatively,
5-aminolevulinic acid (5-ALA), an intermediate in porphyrin biosynthesis, or related
substances lead to an accumulation of protoporphyrin IX (PP IX) within tumor cells [70,71],
possibly due to the reduced activity of the enzyme ferrochelatase, which converts PP IX
to heme [72]. Meanwhile, PDT has been applied clinically in many disciplines including
neurology [73], otolaryngology (ENT) [74,75], gastro-enterology [76,77], gynecology [78],
urology [79] or dermatology [80], and tumors, as well as ocular or skin diseases (e.g.,
psoriasis [81]), were treated successfully using appropriate laser systems. In addition, laser
irradiation proved to be efficient for fluorescence diagnosis or fluorescence-guided tumor
resection, e.g., in neurosurgery [82].
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Figure 7. Photodynamic therapy (PDT): Principle of accumulation of a photosensitizer (here: Hpd) in
a tumor and light-induced tumor destruction (left); membrane-associated 5-ALA-induced Protopor-
phyrin IX fluorescence in U373-MG glioblastoma cells assessed by TIRFM (upper right); cell-substrate
topology prior and subsequent to illumination with red light (630 nm, 4 J/cm2), as evaluated from
VA-TIRFM images at λ ≥ 590 nm. Median values ± median absolute deviations (MADs) were
obtained from 10 independent experiments of cell-substrate topology each (lower right). Reproduced
from [83] with modifications.

Laser-assisted microscopy has been applied to cultivated cells in view of intracel-
lular localization of photosensitizers or studies of their light-induced reactions such as
photobleaching. Laser scanning microscopy is used for precision measurements, while
time-resolved (sub-nano) detection methods in combination with picosecond laser excita-
tion are used to distinguish different species, e.g., monomers, aggregates or ionic species,
on the basis of their fluorescence lifetimes. Figure 7 proves the accumulation of 5-ALA-
induced protoporphyrin IX by TIRFM in the plasma membrane of U373-MG glioblastoma
cells, where it was revealed to be very sensitive to PDT [84]. This Figure also shows
histograms of cell-substrate distances of PP IX in U373 MG glioblastoma cells prior to
and subsequent to laser illumination (633 nm; 4 J/cm2), as evaluated from VA-TIRFM
images at λ ≥ 590 nm [83]. A remarkable result is that upon application of this low, but for
cellular PDT relevant light dose, cell-substrate distances decrease, indicating some increase
in cellular adhesion and possibly some reduction of the metastatic potential, as further
reported in [85].

3.3. Laser-Assisted Optoporation of Living Cells

In addition to laser trapping, e.g., in an optical tweezers system, laser microbeam
techniques [86,87] can be used for microdissection, hole drilling or optoporation in order to
make cell membranes penetrable for the uptake of small molecules or particles, e.g., fluo-
rescent dyes or DNA plasmids used for cell transfection. Possible mechanisms—including
photochemical, photothermal and optomechanical interactions (ablations)—are induced
by continuous wave (cw) or pulsed lasers of different wavelengths, power and mode of
operation. Photochemical reactions, used e.g., for PDT, generally need the lowest light
doses, but only in individual cases can they be used for optoporation without risk of lethal
damage [88,89], e.g., in the case of gene transfection or gene therapy. Often laser-assisted
optoporation is associated with photothermal interactions, which is a certain range of light
dosage proven to be reversible. This is demonstrated in Figure 8, where small spots of
1.0 µm diameter were irradiated by a cw argon ion laser at 488 nm and a light dose of
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2.5 MJ/cm2 (applied during 2.5 s). After irradiation, tiny black spots—often surrounded
by interference rings—could be seen, however, these disappeared within about five min-
utes [90,91]. At higher light exposure (≥5 MJ/cm2), permanent changes in morphology
were observed, and this was concomitant with lethal damages, as evidenced by a colony
formation assay [91]. The efficiency of laser-assisted transfection with a GFP encoding
plasmid is demonstrated by the fluorescence image in Figure 8c. Transient changes, as
observed in Figure 8 were related to an increase in temperature by a few degrees with a
concomitant phase transition of membrane lipids from a rather rigid gel phase to a more
fluid liquid crystalline phase [91], which may favor the uptake of certain molecules, e.g.,
fluorescence markers or DNA plasmids. Thus, the transfection rate of Chinese Hamster
Ovary (CHO) cells was increased from about 5% to 15–30% due to laser-assisted opto-
poration using 40 µM phenol red (in cultivation medium) to enhance light absorption
and rise of temperature. In further investigations, composite nanoshells [92] or magnetic
carbon nanoparticles [93] were used as absorbers to create an appropriate heat profile
for optoporation.
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transfection with a GFP encoding plasmid. Image size: 100 µm × 100 µm (a,b), 60 µm × 80 µm (c).
Reproduced from [91] with modifications.

While cw lasers induced mainly thermal interactions, short-pulse (picosecond or
femtosecond) lasers induced local ablation and transient opening of cell membranes so
that exogenous material and even macromolecules could be introduced into living cells
without photo-destructive effects. High repetition pulses from a mode-locked laser [94] as
well as single near-infrared laser pulses were applied for this purpose [95]. An important
step towards automation was the introduction of a continuous flow system, offering the
prospect of high-throughput optoporation [96]. The use of femtosecond (instead of nano-
or picosecond) lasers increased the optoporation rate due to multiphoton effects [97], and
combination with plasmonic gold nanoparticles further enhanced the efficiency of optopo-
ration due to an amplified localized electromagnetic field. Thus, a very high perforation
rate of 70%, a transfection efficiency three times higher than for conventional lipofection
and very low toxicity (<1%) were obtained [98].

The first step towards clinical application is represented by the delivery of imperme-
able substances into retinal explants after ultrafast laser microbeam-assisted injection [99].
In vivo optoporation of retinal ganglion cells (RGCs) targeted with functionalized gold
nanoparticles was used to label these cells specifically with fluorescent conjugates. This
provides a novel approach to selectively targeting retinal cells in diseased regions while
sparing neighboring healthy areas [100]. Furthermore, local ablation and injury to individ-
ual cells by a laser microbeam were used to study the calcium metabolism around epithelial
wounds [101].

It should be mentioned that laser-assisted optoporation has often been used in com-
bination with a laser tweezer system, where cells or particles can be trapped and moved
into the focus of a (second) laser beam for optoporation or further microbeam applica-
tions [102,103]. A laser microdissection and pressure catapulting technique (LMPC) has
been developed for the characterization of single cells and their diverse biomolecules [104].
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With LMPC, the force of focused laser light is utilized to excise selected cells or tissue areas
from object slides, and after defocusing of the laser beam the sample is directly catapulted
into an appropriate recipient vial. LMPC has been successfully applied to isolate and
catapult cells from histological tissue sections, forensic material, as well as plant matter.

4. Conclusions

The unique properties of lasers—coherence, diffraction limited focusing, well-defined
spectral properties and the possibility to create short light pulses—make them a valuable
tool for imaging microscopy as well as for micro-manipulation. This improves the possibil-
ities of 3D imaging, super-resolution imaging, spectral or fluorescence lifetime imaging
and laser microbeam applications. While many relevant techniques are summarized, the
applications described in this paper may be regarded as examples to demonstrate the po-
tential of lasers in cell biology and—more generally—in several fields of biomedicine, e.g.,
ophthalmology, neurology and dermatology. Present and future development regarding,
e.g., femtosecond lasers, super-continuum lasers or miniaturized laser diodes will further
increase this potential.
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