Institur für Materialforschung
Hauptbetreuer: Prof. Dr. rer. nat. Gerhard Schneider, Zweitbetreuer: Prof. Dr. Markus Merkel


Zielsetzung und Ihre Aufgaben:

Additive Verfahren wie das selektive Laser-sintern und Laserschmelzen revolutionieren die Fertigungstechnik. Die hohe Gestaltungs-freiheit ermöglicht neue Möglichkeiten in der Werkzeug- und Bauteilgestaltung.

Sie unterstützen mit Ihrer Arbeit Experimente zur Ermittlung des Einflusses von Parameter-variationen beim SLS-Prozess auf die Gefüge- und Eigenschaftsausbildung. Mittels materialographischer und physikalischer Verfahren erarbeiten Sie die Wirkzusammen-hänge.

Institut für Materialforschung
Hauptbetreuer: Prof. Dr. rer. nat. Gerhard Schneider, Zweitbetreuer: Dr. Timo Bernthaler


Zielsetzung und Ihre Aufgaben:

Herstellungsinduzierte Eigenspannungen stellen für Bauteile und Komponenten ein nicht zu vernachlässigendes Problem dar. Vor allem komplett oder randschichtgehärtete Stahlbauteile können von Eigenspannungen negativ beeinflusst werden.

Mittels elektrolytischer Präparationstechnik führen Sie sequentielle Abtragungen und XRD-Eigenspannungsmessungen in Bauteilen durch, um so Eigenspannungstiefenprofile in Bauteilen ermitteln zu können.

Hauptbetreuer: Dr. Wolfgang Rimkus

Schlagworte: FEM CFK Faserverbund


Bei modernen Leichtbaustrukturen kommen immer mehr Faserverbundstrukturen zum Einsatz. Bei diesen Bauteilen spielen Matrix, Art der Faser, Faserverteilung, Faserrichtung und viele andere Parameter eine Rolle. Auch der Herstellprozess muss mit betrachtet werden. In der Arbeit soll untersucht, werden inwieweit es möglich ist diese (Faser-) Verbundwerkstoffen mit von ANSYS und LS-DYNA (Möglichkeiten, Grenzen, Vor- / Nachteile) zu berechnen. Die Arbeit findet in Kooperation mit dem Institut für Materialforschung (IFMAA) statt.

Hauptbetreuer: Prof. Martin Pietzsch

Bearbeitungszeit ab 10.07.2018

Hauptbetreuer: Dr. Wolfgang Rimkus

bei TE Connectivity Germany GmbH


Die zunehmende Miniaturisierung bei Steckkontakten geht stark an die Grenzen der Verformbarkeit der eingesetzten Materialien. Lange vor Produktionsbeginn wird durch Simulation das Design und der Fertigungsprozess mitsamt Werkzeug und seinen Fertigungsabfolgen berechnet. Die genaue Kenntnis der Materialeigenschaften und -kennwerte ist dafür eine essentielle Voraussetzung. Die spannende Frage die sich hierbei immer stellt ist: lässt sich das später spezifizierte Material im Werkzeug rissfrei und formgetreu verarbeiten? Genau hier setzt Ihre Masterarbeit an: Ermittlung der Kennwerte im Zugversuch und Bewertung der Bedeutung der Kennwerte über die Simulation am Kontaktdesign.


Ziele der Masterarbeit:

Bewertung aller im Zugversuch erfassbaren Werkstoffkennwerte von Kupferlegierungen im Hinblick auf die Verformungsprozesse, welche bei der Fertigung von miniaturisierten Steckkontakten auftreten

Vergleich Simulation – Versuch

Abgleich verschiedener Zugversuchsvarianten

Differenzierung der Erkenntnisse unter metallkundlichen Kriterien für verschiedene Kupfer-Legierungsfamilien

Vorschlag für neue Materialspezifikationen


Anforderungen:

Studium der Materialwissenschaften oder eines ingenieurwissenschaftlichen oder naturwissenschaftlichen Studiums mit Schwerpunkt Werkstoffkunde

Sehr gutes technisches Verständnis

Praktische Kenntnisse in der Durchführung von Versuchen und ihrer Dokumentation

Spaß an naturwissenschaftlichen Analysen und Interpretationen

Eigeninitiative sowie selbstständige und strukturierte Arbeitsweise

Basiswissen in FEA, idealerweise simufact forming

Gute Kenntnisse in Deutsch und Englisch

Hauptbetreuer: Prof. Martin Pietzsch

bei Festool GmbH


Exakte Aufgabenstellung bitte bei Prof. Pietzsch erfragen.

Hauptbetreuer: Dr. Wolfgang Rimkus

bei Brose Fahrzeugteile GmbH & Co. KG

Bearbeitungszeit ab 01.01.2021


Brose stellt mechatronische Komponenten und Systeme für Automobile her. Brose liefert jährlich über 200 Millionen Elektromotoren sowie Antriebe.

Für die eingesetzten Elektromotoren werden Kupferdrahtspulen benötigt. 

In der Abschlussarbeit soll der komplexe Wickelvorgang von Kupferdrahtspulen simulieren werden (siehe auch https://de.wikipedia.org/wiki/Spulenwickeltechnik). 

Vergleich der Ergebnisse mit Versuchen.

Kenntnisse in LS-DYNA vorteilhaft.

Die Erkenntnisse und Erfahrungen aus vorangegangenen Arbeiten können verwendet werden.

Mehr anzeigen

Suche