Veröffentlichungen

20183D-printed optical active components

S. Suresh Nair, J. Nuding, A. Heinrich

Proc. SPIE 10529, Organic Photonic Materials and Devices XX; doi: 10.1117/12.2287427

Additive Manufacturing (AM) has the potential to become a powerful tool in the realization of complex optical components. The primary advantage that meets the eye, is that fabrication of geometrically complicated optical structures is made easier in AM as compared to the conventional fabrication methods (using molds for instance). But this is not the only degree of freedom that AM has to offer. With the multitude of materials suitable for AM in the market, it is possible to introduce functionality into the components one step before fabrication: by altering the raw material. A passive example would be to use materials with varying properties together, in a single manufacturing step, constructing samples with localized refractive indices for instance. An active approach is to blend in materials with distinct properties into the photopolymer resin and manufacturing with this composite material. Our research is currently focused in this direction, with the desired optical property to be introduced being Photoluminescence. Formation of nanocomposite mixtures to produce samples is the current approach. With this endeavor, new sensor systems can be realized, which may be used to measure the absorption spectra of biological samples. Thereby the sample compartment, the optics and the spectral light source (different quantum dots) are 3D-printed in one run. This component can be individually adapted to the biological sample with respect to wavelength, optical and mechanical properties. 

Here we would like to present our work on the additive manufacturing of an active optical component. Based on the stereolithography method, a monolithic optical component was 3D-printed, showing light emission at different defined wavelengths due to UV excited quantum dots inside the 3D-printed optics.

Link
20183D Printing of Optics

M. Rank and A. Heinrich

ISBN: 9781510619982, SPIE Press

Additive manufacturing - the layered deposition of material - has opened up new design possibilities, approaches, and solutions for optical systems. This Spotlight explores the 3D printing of optical components, including the construction of a printing system, the materials involved, and the printing process, as well as the necessary rework and characteristics of the produced optics. It serves as an introduction to newcomers to the field as well as a resource for experienced users.

Link
2018Additive Fertigung einer Linse mit Gradient im Brechungsindex

M. Rank und A. Heinrich

Proceedings 119. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2018-A006-0

3D-Druck-Optiken mit gekrümmten Oberflächen weisen durch die Lagenstruktur eine raue Oberfläche auf. Ziel ist die Nutzung von Brechungsindexvariationen im Volumen um Brechkräfte bei planen Proben zu erreichen. Diese Arbeit stellt erste Untersuchungen, bspw. Messungen zum Brechungsindexprofil dar. Mit der Herstellung synthetischer Proben mit partieller Aushärtung wird gezeigt, dass gemäß von der belichteten Struktur sich optische Effekte ergeben.

Link
2018Additive Manufacturing of Functional (Photoluminescent) Optical Components

S. Suresh-Nair, A. Heinrich, M. Klein, J. Nuding

Proceedings 119. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2018-A005-6

Additive Manufacturing could be a reliable process for mass production of optical components, due to its versatility in printing structures of varying complexities. In this paper, we would like to present our prototype results obtained from multiple material printing of quantum dot nanocomposites in two fashions: using different materials in subsequent layers, and using different material within a layer

Link
2018Additive manufacturing of reflective and transmissive optics - potential and new solutions for optical systems

A. Heinrich, R. Börret, M. Merkel, H. Riegel

Proc. 10523, Laser 3D Manufacturing V; doi: 10.1117/12.2293130

Additive manufacturing enables the realization of complex shaped parts. This also provides a high potential for optical components. Thus elements with virtually any geometry can be realized, which is often difficult with conventional fabrication methods. Depending on the material and thus the manufacturing method used, either transparent optics or reflective optics can be developed with the aid of additive manufacturing. Ultimately, the application or the specification decides on the approach. For example, transmissive 3D printed parts exhibit the disadvantage of a significant reduced transmission. Conversely, reflective 3d printed optics often requires a greater amount of rework in order to achieve a sufficient optical quality of the surface. Here, we discuss 3D printed metal optics (manufactured using a selective laser melting machine) and 3D printed polymer optics (realized either by stereolithography or by multijet modling). In addition to the basic properties, the post-processing of the 3D printed optics is regarded. This includes, for example, cleaning and polishing of the surface using lasers, a robot based fluidjet process for metallic and polymer optics. In the case of the polymer optics a dip-coating process was developed in order to improve the surface quality, which is presented as well. Our aim is to integrate the additive manufactured optics into optical systems. Therefore we present different examples in order to point out new possibilities and new solutions enabled by 3D printing of the parts. In this context, the development of 3D printed reflective and transmissive adaptive optics will be discussed as well.

Link
2018Additiv gefertigte monolithische Lichtscheibenbeleuchtungseinheit zur Beleuchtung aus mehreren Richtungen

M. Rank, M. Wagner, H. Schneckenburger, A. Heinrich

Proceedings 119. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2018-P052-2

Streifenbildung in Lichtscheibenmikroskopie lässt sich auf Vorwärtsstreuung durch einseitige Beleuchtung zurückführen. In dieser Arbeit wird ein Ansatz zur Beleuchtung aus verschiedenen Richtungen, hergestellt per 3D-Druck, evaluiert. Durch den Lagenprozess kommt es zu rauen Oberflächen und Volumenstreuung, die Nachbearbeitung erfordern. Messungen zeigen, dass das erzeugte Lichtblatt dicker als der Stand der Technik ist.

Link
2018Ein Source-Target-Mapping Ansatz durch inverses Raytracing zur Berechnung von reflektiven Freiformoptiken

A. Sigel und A. Heinrich

Proceedings 119. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2018-P015-8

In the field of nonimaging optics the problem arises to determine a certain reflector geometry which generates a specific intensity distribution for a given light source. Starting with an intensity distribution defined on a three-dimensional target a numerical algorithm is proposed to calculate a suitable reflector element. The designed reflector is validated by Monte Carlo ray tracing.


Link
2018Optimierung der Oberflächengüte additiv gefertigter transmittierender Optiken mittels Dip-Coating

Y. Bauckhage and A. Heinrich

Proceedings 119. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2018-P053-6

Manufacturing optical components with additive technologies is still a challenging process regarding the surface quality. Due to the layer-based printing process, the roughness of the optical surfaces is not sufficient. A dip coating process is evaluated to coat the printed object with an index matching material. The process is evaluated for simple test geometries and analyzed.

Link
2018Potential und Grenzen additiv gefertigter Optik

A. Heinrich

Jahrbuch Optik und Feinmechanik 2017, vol. 63, St. 79-93, ISBN 978-3-00-58978-2, Optik Verlag Görlitz

2017Additive Fertigung und Analyse der Eigenschaften von Elastomeroptiken

T. Tischler, A. Varnay, A. Heinrich; Proceedings 118. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2017-P034-8; 2017

In optischen Systemen ist heutzutage eine Flexibilität bzgl. der optischen Eigenschaften des Systems relevant. So wird z.B. die Änderung der optischen Eigenschaften des Systems durch mechanische Verschiebung der Optiken oder durch gezielte Manipulation der Materialparameter realisiert. In dieser Arbeit möchten wir den Einsatz von elastischen Materialien für optische Komponenten diskutieren. Durch die mechanische Manipulation der Form der Optik soll es zu geänderten optischen Eigenschaften (z.B. der Brennweite) kommen. Als Fertigungsmethode kommt ein 3D-Druck Verfahren (Stereolithgraphie) zur Herstellung relfektierender und transmittierenden Optiken zum Einsatz. Nach dem Druckprozess werden die Optiken geschliffen, poliert und ggf. beschichtet um eine bessere Transmittivität zu erreichen. Die mechanische Manipulation der Optikgeometrie wird mit elektrischen Motoren umgesetzt, wobei die daraus resultierenden optischen Eigenschaften mit einem Shack-Hartmann-Sensor ausgewertet werden.Im Vortrag werden die einzelnen Herausforderungen bei der Realisierung solcher elastisch anpassbarer Optiken, die ersten Fertigungs- und Messergebnisse der optischen Eigenschaften diskutiert.

Link
2017Additive Fertigung und Analyse von Flüssiglinsen

T. Novak, K. Schlichting, A. Heinrich, Proceedings 118. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2017-B007-5; 2017

Eine Verschiebung der Fokuslage bzw. eine Brechkraftänderung ist heutzutage in vielen optischen Systemen eine Standardaufgabe. Dabei kommen herkömmliche Methoden wie bspw. die mechanische Verschiebung einzelner Optiken zum Einsatz. Eine variable Fokuslage kann auch mit Hilfe von Flüssiglinsen realisiert werden. Das wesentliche Element der Flüssiglinse ist dabei eine Membran, die z.B. durch eine Änderung des Druckes innerhalb der Linse ihre Krümmung ändert und damit eine Verschiebung der Fokuslage bedingt.In dieser Arbeit wollen wir die Realisierung von Flüssiglinsen mit Hilfe von additiver Fertigung (3D Druck, MJM-Verfahren) diskutieren. Die additive Fertigung bietet dabei den Vorteil von komplett neuen Designansätzen, die so kaum oder nur unter erheblichen Aufwand mit Standardflüssiglinsen umgesetzt werden können. So werden Strukturen und Gradienten in die verformbare Membran eingebracht um zusätzliche optische Effekte zu erzeugen. Das Ziel des Projektes ist es drei unterschiedliche Strukturen und verschiedene Gradienten zu analysieren und die Ergebnisse zu bewerten.Im Vortrag werden erste Ergebnisse der Analysen sowie Verfahren zur Fertigung der Linsen vorgestellt.

Link
2017Additive Fertigung von optischen Komponenten

A. Heinrich, Proceedings 14th  Rapid.Tech conference, pp. 160-167; 2017

Die Entwicklung additiver Fertigungsmethoden ist in den letzten Jahren rasant vorangeschritten. Meist werden hierbei mechanische Bauteile betrachtet. Aber die additive Fertigungstechnologie biete auch hohes Potential im Bereich der Optik, da mit ihr neue Designfreiheitsgrade und damit komplett neue Lösungsansätze möglich sind.

In diesem Beitrag werden kurz die wichtigsten Methoden für die additive Fertigung von Kunststoff Optiken vorgestellt und verglichen. Anschließend wird auf die für additive gefertigte Optiken charakteristischen Eigenschaften eingegangen. Von entscheidender Bedeutung ist dabei die Oberflächenqualität. Um diese zu verbessern sind entsprechende Nachbearbeitungsschritte (z.B. Roboter basierte Politur oder Beschichtung) notwendig, welche diskutiert werden. Ein weiterer Teil des Beitrages befasst sich mit verschiedenen additiv gefertigten optischen Komponenten und ihre Integration in Opto-elektronische Systeme, z.B. für die optische Formvermessung oder für Beleuchtungsaufgaben. Dadurch soll das Potential und die Grenzen der mittels additiver Fertigung hergestellten optischen Komponenten aufgezeigt werden. 

2017Additive manufacturing: a new approach to realize complex and unconventional optical components

A. Heinrich, M. Rank, S. Suresh Nair, Y. Bauckhage, P. Maillard, Proc. SPIE  10101, Organic Photonic Materials and Devices XIX, 1010118;   doi: 10.1117/12.2250367; 2017

In recent years, additive manufacturing methods became more and more prominent. Thereby, these techniques are mainly used in order to realize mechanical components. But the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. We report on the realization of complex freeform optics using standard 3D printers. We briefly point out the characteristics of 3D printing and its influence on the optical properties. Additionally we address the needed rework of 3D printed optical components. Therefore we apply two different methods - a robot-based fluid jet polishing and a coating method. The advantage of a 3D printed optic lies in its shape complexity. Thus different complex shaped optical elements are discussed. They are used for either metrology tasks or illumination tasks.

Link
2017Additive manufacturing of tunable lenses

K. Schlichting, T. Novak, A. Heinrich; Proc. SPIE 10101, Photonics West 2017: Organic Photonic Materials and Devices XIX, 1010116, doi: 10.1117/12.2252353; 2017

Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. We´ll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

Link
2017A THz Tomography System for Arbitrarily Shaped Samples

E. Stübling, Y. Bauckhage, E. Jelli, B. Globisch, M. Schell, A. Heinrich, J. C. Balzer, and M. Koch; Journal of Infrared, Millimeter, and Terahertz Waves, vol. 38, pp. 1179–1182; 2017

We combine a THz time-domain spectroscopy system with a robotic arm. With this scheme, the THz emitter and receiver can be positioned perpendicular and at defined distance to the sample surface. Our system allows the acquisition of reflection THz tomographic images of samples with an arbitrarily shaped surface.

2017Diffractive Effects of 3D printed optical elements

M. Rank, S. Pekrul, A. Horsak, Y. Bauckhage, A. Heinrich; Proceedings 118. DGaO Tagung, ISSN: 1614-8436, urn:nbn:de 0287-2017-B008-9; 2017

The purpose of this contirbution is to discuss diffractive effects generated by additive manufactured optical elements. Most 3D printing or additive manufacturing technologies have a layered structure of the part in common. Depending on the printing technology and the direction of the light passing the 3D printed element, optical effects like diffraction can be examined. The diffraction pattern occurs also on polished samples making a material analysis necessary. For example the refractive index of the cured resin is higher than of the viscous resin. For samples of a printer using DMD pixels, the pixel structure can be examined on the surface with a white light interferometer offering a good explanation as a phase grating. Using image processing in MATLAB the diffraction effects are quantized and the behavior for tilt or translation of the sample is analyzed. Additionally the diffraction effects are simulated and crosschecked with the measurement results. While interfering imaging optics the optical effects can be used for creating point patterns or lines which again can be used for optical metrology purposes.

Link
2017Individualisierte optische Messtechnik basierend auf additiv gefertigten optischen Komponenten

A. Sigel, P. Maillard, M. Rank, A. Heinrich, tm – technisches Messen, vol. 84 (7-8), pp. 512-524; 2017

Additive Fertigungstechnologien wurden in den vergangenen Jahren bzgl. Verfahren und Druckmaterialien weiterentwickelt, sodass heute Freiformoptiken in optischer Güte durch 3D-Drucker gedruckt werden können. Durch die schnelle Fertigung vonFreiformoptiken entstehen neue Möglichkeiten für die optische Messtechnik, da durch Variation der Form und Größe vonOptikelementen mit geringem Aufwand spezifisch an Applikationen angepasste Sensorsysteme gefertigt werden können. Indiesem Beitrag werden nun exemplarisch zwei Sensorapplikationen aus dem Bereich der industriellen In-Line-Messtechnikdargestellt, die jeweils ein additiv gefertigtes Optikelement enthalten. Zunächst wird ein auf Lasertriangulationbasierendes Sensorsystem zur Vermessung von Turbinenschaufeln dargestellt. Dieses System beinhaltet eine additivgefertigte transparente Freiformoptik im Beleuchtungsstrahlengang, die zur lückenlosen Generierung einer Laserlinieauf einer komplexen 3D-Oberfläche genutzt wird. Im zweiten Applikationsbeispiel wird ein miniaturisierter Sensorbeschrieben, der die dreidimensionale Erfassung des Innenraums von kleinen Kavitäten ermöglicht. Dieses auf demLichtschnittprinzip basierende System beinhaltet ein gedrucktes Spiegelelement, durch das ein spezifisches Abtastsignalinnerhalb einer Kavität erzeugt wird.


Link
2017Methoden der optischen Messtechnik

A. Heinrich; Buchartikel in “Optik für Ingenieure und Naturwissenschaftler - Grundlagen und Anwendungen”; Herausgeber: E. Hering, ISBN: 978-3-446-44281-8, Hansa Fachbuch

Ein Streifzug durch die optische Formmesstechnik

2017Miniaturization of an optical 3D sensor by additive manufacture of metallic mirrors

A. Sigel, M. Merkel, A. Heinrich, Proc. SPIE 10329, Optical Measurement Systems for Industrial Inspection X, 103290Q; doi:10.1117/12.2269801; 2017

Based on progress in the field of additive manufacturing optical components can now be printed with rapid prototypingtechnologies. In this contribution the possibilities of rapid prototyping for optical metrology are exemplified by thefabrication of miniaturized reflectors and the construction of a miniaturized metrology system designed for an industrialmetrology application.

Focusing on the manufacturing and post processing steps the process chain to fabricate the miniaturized mirror isdescribed. This includes an evaluation of the mirror based on roughness measurements. The reflectors are later utilized ina miniaturized sensor system to scan the interior of small pipes. The additively manufactured mirror is used in themetrology system to create a defined sampling signal within the cavity. Thereby the sensor system generates a pointcloud of the internal surfaces using a 3D acquisition algorithm based on the laser triangulation principle. Part of thiscontribution will be the setup, the 3D acquisition and calibration principle as well as an evaluation of the metrologysystem. To optimize the point cloud acquisition three different hardware setups were designed using different camerasand calibration algorithms. These three approaches are evaluated and compared.

Link
2017Simple scattering analysis and simulation of optical components created by additive manufacturing

M. Rank, A. Horsak, A. Heinrich

Proc. SPIE 10448, Optifab, 104480N; doi: 10.1117/12.2279781

Additive manufacturing of optical elements is known but still new to the field of optical fabrication. In 3D printers, the parts are deposited layer-by-layer approximating the shape defined in optics design enabling new shapes, which cannot be manufactured using conventional methods. However, the layered structure also causes surface roughness and subsurface scattering, which decrease the quality of optical elements. Illuminating a flat sample with a laser beam, different light distributions are generated on a screen depending on the printing orientation of the sample. Whereas the laser beam is mainly diffused by the samples, a line shaped light distribution can be achieved for a special case in which the laser light goes parallel to the layer structure. These optical effects of 3D printed parts are analyzed using a goniometric setup and fed back into the optics simulation with the goal to improve the design considering the characteristics of the real sample. For a detailed look on the effect, the total scattering is split up into surface contributions and subsurface scattering using index matching techniques to isolate the effects from each other. For an index matched sample with negligible surface effects the line shaped distribution turns into a diffraction pattern which corresponds to the layer thickness of the printer. Finally, an optic simulation with the scattering data is set up for a simple curved sample. The light distribution measured with a robot-based goniophotometer differs from the simulation, because the curvature is approximated by the layer structure. This makes additional analysis necessary.

Link
2016Additive manufacturing of optical components

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff and S. Pekrul; 

Advanced Optical Technologies vol. 5(4), pp. 293-301; 2016

The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby the work mainly focuses on the realization of mechanical components. But the additive manufacturing technology offers a high potential in the field of optics as well. Due to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally it points out the characteristics of additive manufactured polymer optics. Thereby surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

Link
20163D printed light pipes for advanced illumination

A. Heinrich, A. Bauckhage, DGAO Tagung, 2016, Hannover

Additive manufacturing is a promising fabrication method for optical components used for illumination tasks . Here we present different design approaches for 3D printed light pipes in order to generate a thin laser line, which is needed for optical metrology . Additionally we briefly discuss the needed rework of the printed l ight pipes and the propagation of light within the light pipes.

Link
2016Additive Manufacturing – Design and Fabrication of Fisheye Objectives

A. Suckow, F. M. Shariff, S. Pekrul, A. Heinrich, DGaO Tagung, 2016, Hannover

Nowadays, the additive manufacturing technology is used in many applications such as in medical industry, lighting application and print optical technology for illumination. The purpose of this article is to show the possibility of the production of a complete optical system based on the additive manufacturing technology. The complete optical system includes the optical and the mechanical parts that are the mountings of the lenses.

Link
2016Individualized optical metrology for in-line applications based on additive manufacturing

A. Sigel, M. Rank, P. Maillard, Y. Bauckhage, S. Pekrul, M.Merkel, A.Heinrich, Forum Bildverarbeitung, Karlsruhe, Conference Proceedings, pp. 25-36; 2016

In the field of additive manufacture rapid progress could be observed in recent years. Based on this progress transmissive and reflective optical elements can now be manufactured with 3D printers. Hereby the manufacturing process is focused on with classical technologies difficult to manufacture freeform optics, which are optimized for specific metrology tasks. This article summarizes recent developments of additive manufactured, optimized metrology systems designed for in-line inspection use.

20153D printed Free Form Optical Sensors for Metrology Application

P. Maillard, A. Heinrich, , Proc. SPIE 9628, Optical Systems Design 2015: Optical Fabrication, Testing, and Metrology V, 96281J; doi: 10.1117/12.2191280; 2015

3D printed freeform optical sensors are a different and new approach for optical metrology. Thereby the optical design is adapted to the fabrication characteristics of additive manufacturing. All needed optical elements like mirrors and lenses are reduced to one simple printed sample, which is capable to illuminate a complex shaped industrial part for shaped measurement based on light section technique. Additionally the laser line can be formed on the part in a way, so that no shadow appears–even in the case of kinks etc.. Due to the physical limitations of the printing process and different printing techniques each optical design would present some drawbacks that has to be considered prior a printing process in order to obtain the best results possible.

Link
2015Additive Manufacturing – a new approach for individualized optical shape metrology

A. Heinrich, P. Maillard, A. Suckow, A. Grzesiak, B. Sorg, U. Berger, Proc. SPIE 9525, Optical Measurement Systems for Industrial Inspection IX, 95251T; doi:10.1117/12.2183168; 2015

In general in industrial manufacturing a larger lot size gives the potential to decrease the production costs. There is however also a big demand on individualization in order to cover all customer requirements. These individual requests of a customer lead to a production complexity and cannot always be covered within the current manufacturing processes sufficiently. In metrology we can see an equivalent situation. A metrology tool should be suitable for a large variety of parts. E.g. in shape metrology, the tool should be able to measure any kind of shapes (spheres, tips, steps, etc.). As a standard measurement tool is not adjusted to an individual measurement task, the best performance is not reached equal wise for all shapes.
In this paper we want to present a new approach for shape metrology of parts, fabricated in small lots: the individualized optical metrology based on additive manufacturing. Thereby the main idea is that the sampling signal of an optical metrology tool is individually adapted to the shape of the object to be inspected. This can be reached by an individual design of the optics, leading to a complex shape of the optical components. In order to manufacture these complex shaped optical parts, additive manufacturing (3D printing) is used.

Link
2015An optical bore hole sensor based on additive manufacturing

A. Heinrich, B. Sorg, A. Grzesiak, U. Berger, DGAO Tagung, 2015, Brno, Tschechien

To measure the inner shape of a bore hole is one of the most common tasks in industrial metrology. If an optical sensor is used, the shape can be recorded in a fast way with a high data density.
Here we focus on shape metrology of bore holes using the light section technique. Thereby the illumination optics images light coming from a light source onto the inner wall of the bore hole. A camera records the scattered light from the wall. From the images one can calculate the diameter of the hole using standard triangulation formulas.
For the set-up two points are essential: First, the light source and the camera need to be miniaturized, so that the sensor can “dive into” the bore hole. Second, as the illumination is from “top”, the optical set-up needs to redirect the light into a horizontal 360° ring onto the wall of the hole. For this we developed a single optical component, which was fabricated using Additive Manufacturing techniques.
Here we present the optic design of our sensor. Additionally we discuss the challenges and advantages of using Additive Manufacturing for design and manufacturing of our optics. The performance of the whole prototype will be shown as well

Link
2015Detektion von Lufteinschlüssen bei der Kleberaupenapplikation

A. Kölmel, J. Bareis, L. Stefan, A. Heinrich, G. Lanza, tm - Technisches Messen. Band 82, Heft 11, pp. 585–594; 2015

Die Klebetechnik gewinnt als zukunftsträchtige, variabeleinsetzbare Fügetechnik immer mehr an Bedeutung. Um Ausschuss zuvermeiden und Prozesse steuern zu können, müssenzerstörungsfreie Qualitätssicherungsmaßnahmen in dieProzessketten integriert werden. Ultraschallbasierte Messkonzeptebieten hierfür eine mögliche Lösung zur Detektion vonqualitätskritischen Lufteinschlüssen bei der Applikation vonKleberaupen.

Link
2014Fast high-precision distance measurements with electro-optic frequency combs

C. Weimann, S. Wolf, D. Meier, Y. Schleitzer, M. Totzeck, A. Heinrich, F. Hoeller, W. Freude, C. Koos , DGaO Tagung 2014, Karlsruhe

Link
2013Accurate distance measurement to scattering surfaces using frequency combs generated by electro-optical moldulation

C. Weimann, D. Meier, S. Wolf, Y. Schleitzer, A. Heinrich, F. Höller, J. Leuthold, W. Freude, C. Koos, Conf. on Lasers and Electro-Optics (CLEO'13 ), San Jose (CA), USA, Paper CTu2I.3 ; June 9–14, 2013

2013Nanometrology of periodic nanopillar arrays by means of light scattering

O. Paul, F. Widulle, B. Kleemann, A. Heinric; Proceedings of SPIE - The International Society for Optical Engineering 8788:87881O, 2013

2012Nanometrology of periodic nanopillar arrays by means of light scattering

F. Widulle, V.D. Calzadilla, E. Gridneva, H. Wegendt, B.H. Kleemann, and A. Heinrich, 9th international conference on Multi-Material Micro Manufacture, doi:10.3850/978-981-07-3353-7_312, 2012

2011Magneto-optical garnets for integrated optoelectronic devices

T. Wehlus, T. Körner, S. Leitenmeier, A. Heinrich, and B. Stritzker, Phys. Status Solidi A 208, No. 2, pp 252–263; 2011

2011Mechano- and magneto-optical sensitivity of YIG buffer systems

J. Griesbauer, T. Körner, T. Wehlus, A. Heinrich, B. Stritzker, J. Simon and W. Mader, CrystEngComm, Vol. 13, pp77-82, 2011

2011Metrology Module for laser system

H. Münz, W. Anderl, J. Kraus, A. Heinrich, Patent, WO 11023765 A1, 2011

2008Double Layered Poly Iron Garnet Structure of BiFeO and YIG grown von SiO substrates by pulsed laser deposition

A. Heinrich, T. Körner, J. Simon, W. Mader, M. Knoll, A. Kalytta, S. Horn, B. Stritzker, Journal of the Magnetics Society of Japan, vol. 32, no. 2-2, pp 130-134, 2008

2008Integration of magneto-optical active bismuth iron garnet on non-garne substrates

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, B. Stritzker, Journal of Applied Physics, vol. 103(7), 07B337, 2008

2008Laser modified Titanium Implants for improved cell adhesion

A. Heinrich, K. Dengler, T. Körner, C. Haczek, H. Deppe, B. Stritzker,Lasers in Medical Science3, vol. 23, pp 55-58, 2008

2008Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition

S. Leitenmeier, T. Körner, J. Griesbauer, M. Herbort, A. Heinrich, B. Stritzker, Journal of Crystal growth, vol. 310 pp 5392–5401, 2008

2006Growth of epitaxial bismuth and gallium substituted lutetium iron garnet films by pulsed laser deposition

S. Leitenmeier, A. Heinrich, J.K.N. Lindner, B. Stritzker; Journal of Applied Physics, vol. 99, pp 08M704, 2006

2006Herstellung von funktionellen Schichten und Multischichten mittels Laserdeposition (PLD)

M. Kuhn, A. Heinrich, B. Schey, B. Stritzker, Dornbirner Mikrotechniktage, 2006

2006Laser ablation of MgB2 thin films and characterisation of the magnetic flux structure be means of magneto-optics and surface acoustic waves

A. Heinrich, B. Stritzker, C. Leirer and A. Wixforth; Buchartikel in New Topics in Josephson Junction and Superconductivity Research, ISBN 1600211836, 2006

2006Magnetoopitsche Materialien und magnetooptische Untersuchungen an Supraleitern

A. Heinrich, Habilitationsschrift, http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docID/283, 2006

2006Pulsed-Lase Deposition and growth studies of BiFeO

R. Lux, A. Heinrich, S. Leitnemeier, T. Körner, B. Stritzker, Journal of Applied Physics, vol. 100, pp 113511, 2006

2006Pulsed Laser Deposition and Growth Studies of Bi3Fe5O12 on Gd3Ga5O12 and SiO2

A. Heinrich, S. Leitenmeier, R. Lux, T. Körner, M. Herbort, B. Stritzker, Journal of Magentics Society of Japan, vol. 30, pp 584-587, 2006

2005Epitaxial NiO buffer layer by Chemical Enhanced Surface Oxidation Epitaxy on Ni5%W RABiTS for YBCO coated conductors

B. Woerz, A. Heinrich, B. Stritzker, Physica C vol. 418/3-4 pp 107-120, 2005

2005Influence of oxygen pressure, temperature and substrate/target distance on Cu2Ta4O12 thin films prepared by pulsed-laser deposition

A. Heinrich, B. Renner, R. Lux, A. Reller, B. Stritzker; Thin Solid Films, 479/1-2, pp. 12-16, 2005

2005Laser-assisted three-dimensional surface modifications of titanium implants: preliminary data

H. Deppe, S. Warmuth, A. Heinrich, T. Körner; Lasers in Medical Science, vol. 19, pp 229-233, 2005

2005Pulsed Laser Deposition of MgB2-Films with high critical temperatures

A. Heinrich, C. Leirer, B. Stritzker; Superconductor Science and Technology, vol. 18, pp 1215-1217, 2005

2005Quenching of superconductivity and propagation of the resulting normal phase in YBCO films

A. Heinrich, Superconductor Science and Technology, vol. 18, pp 1354-1359, 2005

2004Deposition of Magneto-Optical Materials and Magneto-Optical Analysis of Superconductors

A. Heinrich, S. Leitenmeier, S. Che’Rose, J. Schwartz, B. Stritzker,  Moldavien Journal of Physical Sciences, 2004

2004Influence of external magnetic field geometry on flux and current distribution in superconducting thin films

A. Heinrich, M. Kuhn, B. Schey, W. Biegel, B. Stritzker; Physica C, vol 405/1, pp 41-46, 2004

2003Chemical enhanced Surface Oxidation Epitaxie: Oriented (001) NiO, buffer and YBCO growth on Ni5at%W RABiTS

A. Heinrich, B. Wörz, B. Stritzker; Applied Superconductivity, IOP, vol. 181, pp 1798-1805, 2003

2003Study of a Non-Thermal / Thermal Formation of NiO on Ni5W-Tapes

A. M. Heinrich, B. Woerz, H. Karl and B. Stritzker; IEEE Transactions on Applied Superconductivity; vol. 13; no. 2; pp. 2559-2562; 2003

2002Active high power switches based on Y-Ba2-Cu3-O7-d thin films

A. Hiebl, A. Heinrich, K. Numssen, H. Kinder, W. Weck, A. Müller, H. Schölderle; Physica C; vol. 372-376; pp. 1615-1618; 2002

2002Probing the temperature during switching of YBCO films

A. Lehner, A. Heinrich, K. Numssen, H. Kinder; Physica C; vol. 372-376; pp. 1619-1621; 2002

2001Magnetooptical Investigations of Large Transport Currents in Y-Ba-Cu-O-Thin Films

M. Kuhn, A. Heinrich, B. Schey, W. Biegel, K. Numssen, H. Kinder, B. Stritzker; IEEE Transactions on Applied Superconductivity; Vol. 11; No. 1; pp. 3178-3181; 2001

2001Y-Ba-Cu-O Thin Films as Active High Power Switches

A. Heinrich, J. Müller, A. Hiebl, K. Numssen, H. Kinder, W. Weck, A. Müller, H. Schölderle; IEEE Transactions on Applied Superconductivity; Vol. 11; No. 1; pp. 1952-1955; 2001

2000Current limiting properties of YBCO films on sapphire substrates

A. Heinrich, R. Semerad, H. Kinder, J. Grundmann, H. Mosebach, M. Lindmayer, M. Kuhn, W. Biegel, B. Stritzker; Inst. Phys. Conf. Ser. No 167; pp. 967-970; 2000

1999Fault Current Limiting Properties of YBCO-Films on Sapphire Substrates

A. Heinrich, R. Semerad, H. Kinder, H. Mosebach, M. Lindmayer; IEEE Transactions on Applied Superconductivity; Vol. 9; No. 2; pp. 660-663; 1999

1999Switching properties of fault current limiters with very high power density

H. Kinder, A. Heinrich, R. Semerad, J. Grundmann, H. Mosebach, M. Lindmayer; Tagung Hawaii 1999

Prof. Dr. Andreas Heinrich

+49 7361 576-3114
G1 2.13
Sprechzeiten
nach Absprache