
Towards Virtual Reality Immersion in Software Structures:
Exploring Augmented Virtuality and Speech Recognition Interfaces

Roy Oberhauser and Carsten Lecon
Computer Science Dept.

Aalen University
Aalen, Germany

email: {roy.oberhauser, carsten.lecon}@hs-aalen.de

Abstract - Due to its abstract nature, program code structures
have been inherently challenging to visualize. As virtual reality
(VR) hardware products become common, their utilization for
providing insights into these software structures become
feasible. However, for certain user programmer-centric
interaction scenarios, typical VR interfaces (controller held in
each hand) can be awkward. This paper describes our VR and
mixed reality (MR) fly-through software structure approach
for visualizing internal program code structures and
investigates additional interfaces to augment the virtuality. MR
use of any keyboard and mouse are supported for
programming tasks. To interface with a virtual tablet menu
that is used as an oracle, a real tablet is used as a touchpad for
the VR tablet. Voice control of the tablet menu was also
implemented and investigated in comparison to the other
interfaces. The paper evaluates the various VR and MR
interfaces for their suitability for selected software
development and computer science educational tasks. The
evaluation results provide insight into which interfaces were
more efficient and preferred by subjects.

Keywords - Virtual reality; mixed reality; augmented
virtuality; software visualization; program comprehension;
software engineering; speech recognition; voice control.

I. INTRODUCTION
This paper extends [1], where we described a VR

approach for visualizing, navigating, and conveying program
code information interactively in a VR environment called
VR-FlyThruCode (VR-FTC).

The volume of program source code produced and
maintained worldwide continues to increase, yet gauging this
metric is difficult since large portions are not publicly
available. Google alone is estimated to have at least 2bn lines
of code (LOC) internally accessible by 25K developers [2].
By some estimates well over a trillion lines of code (LOC)
exist worldwide with 33bn added annually [3]. The
limitations for humans to comprehend source code are
evident in the relatively low code review reading rates of
around 200 LOC/hour [4].

Faced with this ever-increasing code base, the question
becomes: how can programmers quickly comprehend large
amounts of code and understand their underlying and mostly
invisible abstract structures? Common display forms used in
the comprehension of source code include text, the two-
dimensional Unified Modeling Language (UML), and
software analysis tools. For large projects, typically multiple
UML diagrams exist that are not coherently tied together and
no screen can support showing all diagrams simultaneously,

thus a mental patchwork of the multiple visual images is
used to create a coherent model in the programmer’s mind.
For code files, typically these are hierarchically hidden
among various subdirectories, and determining relations is an
arduous task. These forms of extraction leave the
programmer creating and stitching explicit or implicit visual
images together.

One software pioneer, F. P. Brooks, Jr., asserted that the
invisibility of software is an essential difficulty of software
construction because the reality of software is not embedded
in space [5]. Yet the philosopher Aristotle once stated,
"thought is impossible without an image."

In 1998, Feijs and De Jong [6] presented a vision of
walking through a 3D visualization of software architecture
using VRML. Currently the immersive potential of VR and
game engines for improving software engineering (SE) tools
has still not been realized, and their practicality with off-the-
shelf VR hardware remains insufficiently explored.

This paper describes our visually immersive VR
approach for visualizing, navigating, and conveying program
code information interactively to support exploratory,
analytical, and descriptive cognitive processes [7]. In
extending [1], it contributes additional interface capabilities
to the VR-FTC solution concept and investigates their
suitability. Specifically, the following interfaces: speech
recognition for voice-directed control of the oracle – our VR
voice FTC (VRVoc-FTC), as well as an MR tablet that was
added to the to the MR-FTC variant to control the oracle like
a touchpad. Furthermore, the fly-in theaters were replaced
with an always-accessible virtual tablet which functions as
an oracle – an interactive screen supplying information on
request to the user. Also, as a form of augmented virtuality
[8], MR support for real keyboard and mouse interfacing
were added to support programming on the tablet [9],
henceforth known as the MR-FTC variant. A prototype
realization demonstrates the viability of these capabilities,
and initial empirical experiments investigate effectiveness,
efficiency, and user experience (UX) factors of the various
interfaces for programming and menu navigation tasks.

The paper is organized as follows: the next section
discusses related work; Section III then describes the
solution approach. Section IV provides details on our
prototype realization. Section V describes the evaluation of
prototype and the alternative interfaces from a technical or
empirical perspective. It is followed in Section VI by a
conclusion.

34

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK
As to voice interfaces in SE, work related to voice

control of SE tools includes Delimarschi et al. [10], who
applied voice and gesture control to IDE tools. Lahtinen and
Peltonen [11] investigated voice control for UML modeling
tasks.

As to utilizing tablets in VR, Afonso et al. [12] tracked
hand movement to determine if people preferred to see a
virtual hand on a virtual tablet while holding a real tablet in
VR. In our case, the tablet is not necessarily held (it is placed
on the desk like the keyboard and mouse in a known
position), we do not track hand movement, and we do not
show a hand but do show a small box indicator where the
tablet was last touched.

Work on visualization of software structures in VR
includes Imsovision [13], which visualizes object-oriented
software in VR using electromagnetic sensors attached to
shutter glasses and a wand for interaction. ExplorViz [14] is
a Javascript-based web application that uses WebVR to
support VR exploration of 3D software cities using Oculus
Rift together with Microsoft Kinect for gesture recognition.

Work regarding software visualization without the use of
VR includes Teyseyre and Campo [15], who give an
overview and survey of 3D software visualization tools
across the various software engineering areas. Software
Galaxies [16] provides a web-based visualization of
dependencies among popular package managers and
supports flying. Every star represents a package that is
clustered by dependencies. CodeCity [17] is a 3D software
visualization approach based on a city metaphor and
implemented in SmallTalk on the Moose reengineering
framework. Buildings represent classes, districts represent
packages, and visible properties depict selected metrics,
improving task correctness but slowing task completion time
[18]. Rilling and Mudur [19] use a metaball metaphor
(organic-like n-dimensional objects) combined with dynamic
analysis of program execution. X3D-UML [20] provides 3D
support with UML in planes such that classes are grouped in
planes based on the package or hierarchical state machine
diagrams. A case study of a 3D UML tool using Google
SketchUp showed that a 3D perspective improved model
comprehension and was found to be intuitive [21]. Langelier
et al. [22] supports the visualization of metrics (e.g.,
coupling, test coverage).

In contrast to the above work, the VR-FTC approach and
its variants (MR-FTC and VRVoc-FTC) leverage game
engine capabilities to support an immersive VR software
structure visualization environment; provide multiple
dynamically-switchable (customizable) metaphors; use one
VR system and controller set (without requiring gesture
training) for interaction and navigation; uses a virtual tablet
to provide an information screen within the VR landscape;
leverages MR to support keyboard, mouse, and tablet
interfaces in VR; and provides a voice direction capability to
control menu options.

III. SOLUTION APPROACH
As described in [1], our VR-FTC solution approach uses

VR flythrough for visualizing program code structure or
architecture. This inherent 3D application domain view
visualization [15] arranges customizable symbols in 3D
space to enable users to navigate through an alternative
perspective on these often-hidden structures. For example,
certain information typically not readily accessible is
visualized, such as the relative size of classes (not typically
visible until multiple files are opened or a UML class
diagram is created), the relative size of packages to one
another, and the dependencies between classes and packages.

A. Principles
The principles (P:), (basic ideas or primary methods)

involved in the VR-FTC solution approach include:
P:Multiple 3D visual metaphors: Analogous to the

concept of skins, it models and supports tailoring and
switching between multiple code structure visualization
metaphors. While our initial implementation focused on
modeling and visualizing object-oriented packages, classes,
and their relationships, the approach is extensible for other
programming languages. Initially, two metaphors are
provided "out-of-the-box" while custom mappings to other
object types are supported. In the universe metaphor, each
planet represents a class with its size based on the number of
methods, and solar systems represent a package. Any metric
can be used to map to any visual object property (like color).
Multiple packages are shown by layer solar systems over one
another. In the terrestrial metaphor, buildings can represent
classes, building height can represent the number of
methods, and glass bubbles can group classes into packages.
Relationships are modeled visually as colored pipes.

P:Group metaphor: elements (classes) are grouped and
delineated in a way appropriate for that language (packages
for Java) and metaphor. For instance, the terrestrial metaphor
uses either a glass bubble over a city or a circle of trees at the
city border, and the universe metaphor uses solar systems.

P:Connection metaphor: elements (classes) are
connected in a way appropriate for that metaphor. For our
two metaphors, we chose colored light beams, which often
are used to portray networks on a geological background.

P:Flythrough navigation: 3D navigation (motion) is
provided by moving the camera in space based on controller
or motion sensor input. The scenery, however, remains
anchored in the scene, allowing users to remember places via
their geolocation relative to other elements.

P:Oracle: a virtual tablet is provided, and can be viewed
as a type of oracle to answer questions a user might have,
although these cannot be formulated directly like a chatbot.
Instead, it provides menus and displays source-code and SE
tool-generated information as selected by the user within
their given context (such as a selected object). The screens
currently presented include:

• Tags: Setting, searching, or filtering automatic (via
patterns) or manual persistent annotations/tags.

• Source Code: code is shown in scrollable form.

35

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• UML: 2D UML diagrams can be shown on the
tablet, including dynamically generated 2D
diagrams, allowing users to leverage knowledge of
this form if already available or if dynamic
generation thereof is desired.

• Metrics: code metrics are displayed textually due to
the large number of possible metrics that may be of
interest to the user; displaying a large amount of
metric information visually may be disconcerting.
Customization enables metrics of interest to be
utilized in a metaphor (e.g., colors, object height can
relate to number of class methods, font colors can
indicate a threshold is exceeded).

• Filtering: shows elements that match selectors.
• Project: change metaphors, load, or import a project.
P:MR interfaces: in addition to the VR controllers and a

virtual keyboard and a virtual tablet, use of a real keyboard,
mouse, and tablet used as a touch pad are supported in the
MR-FTC variant.

P:Voice interface: Voice control of the tablet menu is
supported in the VRVoc-FTC variant using speech
recognition.

B. Process
Five steps are involved in the solution process, consisting

of:
1) Modeling: modeling generic program code structures,

metrics, and artifacts as well as visual objects. More details
on what models and formats are used in our prototype are
given in Section IV.

2) Mapping: mapping a model to a visual object
metaphor.

3) Extraction: extracting a given project's structure (via
source code import and parsing) and metrics.

4) Visualization: visualizing a given model instance
within a metaphor.

5) Navigation: supporting navigation through the VR
model instance (via camera movement based on user
interaction) and navigation of the oracle menu.

IV. IMPLEMENTATION
For the implementation, we utilized the Unity engine for

3D visualization due to its multi-platform support, VR
integration, and popularity, and for VR hardware both HTC
Vive, a room scale VR set with a head-mounted display and
two wireless handheld controllers tracked using two
'Lighthouse' base stations. First, we reiterate implementation
details based on [1] and then in Sections E, F, and G we
provide descriptions of the new interface implementations.

A. Architecture
Figure 1 shows the architecture. Assets are used by the

Unity engine and consist of Animations, Fonts, Imported
Assets (like a ComboBox), Materials (like colors and
reflective textures), Media (like textures), 3D Models,
Prefabs (prefabricated), Shaders (for shading of text in 3D),
VR SDKs, and Scripts. Scripts consist of Basic Scripts like
user interface (UI) helpers, Logic Scripts that import, parse,
and load project data structures, and Controllers that react to

user interaction. Logic Scripts read Configuration data about
Stored Projects and the Plugin System (input in XML about
how to parse source code and invocation commands). Logic
Scripts can then call Tools consisting of General and
Language-specific Tools. General Tools currently consist of
BaseX, Graphviz, PlantUML, and Graph Layout - our own
version of the KK layout algorithm [23] which we use for
placing and spacing objects within a metaphor. Java-specific
tools are srcML, Campwood SourceMonitor, Java
Transformer (invokes Groovy scripts), and Dependency
Finder. Our Plugin system enables additional tools and
applications to be easily integrated.

Figure 1. VR-FlyThruCode software architecture.

B. Information Extraction
For extracting existing code structure information into

our model, srcML [24] is used to convert source code into
XML that is then stored in the XML database BaseX,
Campwood SourceMonitor, and DependencyFinder are used
to extract code metrics and dependency data, and plugins
with Groovy scripts and a configuration are used to integrate
the various tools.

C. Project structure
For an imported project the following files are created:
• metrics_{date}.xml: metrics obtained from

SourceMonitor and DependencyFinder are grouped
by project, packages, and classes.

• source_{date}.xml: holds all classes in XML
• structure_{date}.xml: contains the project structure

and dependencies utilizing the DependencyFinder.
• swexplorer-annotations.xml: contains user-based

annotations (tags) with color, flag, and text including
both manual and automatic (pattern matching) tags.

• swexplorer-metrics-config.xml: contains thresholds
for metrics.

• swexplorer-records.xml: contains a record of each
import of the same project done at different times
with a reference to the various XML files such as
source and structure for that import. This permits
changing the model to different timepoints as a
project evolves.

36

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Metaphor Realization
To support P:Multiple 3D visual metaphors, a universe

and a city metaphor were chosen since these are universally
known and can be easily related to by users, however other
metaphors are easily realizable. A welcome room similar to a
cockpit, shown in Figure 2, enables the user to select the
desired metaphor and project state. Figure 3 shows the city
metaphor, where buildings represent classes with a label at
the top and the height can portray a metric of interest such as
the number of methods in that class. In the City metaphor,
P:Group was implemented as a glass bubble over the city as
shown in Figure 4. In the universe metaphor, planets
represent classes and have a label in the center as shown
Figure 5. P:Group was implemented as solar systems (see
Figure 6 and compare with Figure 7). For P:Connection, in
both metaphors colored light beams were used to show
dependencies between classes or packages (see Figure 8 and
Figure 9) To highlight a selected object, we utilized a 3D
pointer in the form of a rotating upside-down pyramid.
Graph Layout was used for placement of the visual objects,
which is done automatically by the system.

To allow the user to remember objects, tagging is
supported, which allows any text label to be entered and
placed on an object (e.g., the ‘Important’ Tag in Figure 5).

Figure 2. VR-FlyThruCode software architecture.

Figure 3. The city metaphor, with buildings as classes and the VR

controller visible.

Figure 4. City metaphor showing glass bubbles with oracle visible.

Figure 5. Universe metaphor showing tagged planet (class) and oracle.

Figure 6. Universe metaphor showing solar systems.

Figure 7. City metaphor showing glass bubbles.

37

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. A directed dependency in the City metaphor.

Figure 9. A directed dependency in the Universe metaphor.

To highlight a selected object, we utilized a 3D pointer in
the form of a rotating upside-down pyramid (see Figure 4
and Figure 5). This was needed because, once an object is
selected, after navigating to a screen or menu one may turn
around and lose track of where the object was, especially if
the object was small relative to its surrounding objects.

E. Virtual Reality Interaction
On the HTC Vive the touchpad on the left controller

controls altitude (up, down) and the one on the right hand the
direction (left, right, forward, backward), which realizes
P:Flythrough navigation by moving the camera position.
The controllers are shown in the scenery when they are
within the view field, as shown in Figure 10. A virtual laser
pointer was created for selecting objects, as was a virtual
keyboard (see Figure 10) to support text input for searching,
filtering, and tagging. To implement P:Oracle, menus and
screens showing source code, code metrics, UML diagrams,
tags, filtering, and project data are accessible via a virtual
tablet.

Figure 10. VR controller using the virtual keyboard.

F. Mixed Reality Keyboard, Mouse, and Tablet
To implement P:MR interfaces in the MR-FTC variant,

access to a real keyboard and mouse in MR was achieved via
a live camera view, which was integrated into the VR
landscape using a virtual plane object (see Figure 11). A
Logitech C920 webcam with a 1080p resolution was used
instead of the Vive Front camera to achieve better resolution.
With this option, the user can utilize their favorite keyboard
and mouse that they are already accustomed to.

Figure 11. MR-FTC variant with a MR keyboard (mouse out of view).

We chose to automatically activate and show MR when
the user's tilts the goggles low enough, as one would if one
were to wish to see the keyboard when using it and turn MR
off again if one tilts the head up far enough again. Keyboard
and mouse inputs are accessible at any time, not just when
MR is activated.

Figure 12. Android tablet use as augmented virtuality.

To support a tablet, we created an Android app with no
visible user interface (it only needs to detect the finger
location as shown in Figure 12) and tested it on a Sony
XPERIA Z2 Tablet with Android 6.0.1. When a user touches
the App screen, a UDP packet consisting of the finger
location coordinates and a tap event flag to our MR-FTC
Unity application on the PC via the wireless network. A
mouse pointer in the form of a white cube is then shown on
the oracle (virtual tablet) at the equivalent position. A
double-tap results in an OnClick-Event. Figure 12 shows a
user holding the tablet and “seeing” the location on the

38

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

virtual tablet. Figure 13 shows a closeup of the oracle and
shows the cube indicator of the finger location. Note that no
orientation information is sent (e.g., tilt angle) and that for
the experiment the tablet was fixed to the desktop in a known
location for the user, so they do not need to hold it. The app
is blank except for displaying the coordinates because the
user in VR does not see the real tablet; it is not under the
camera as the MR keyboard and mouse but rather in a fixed
position on the desk known to the user before putting the VR
goggles on. A Sony XPERIA XZ with Android 8.0.0 was
also tested.

Figure 13. Closeup of the oracle showing menus and the source code view.

G. Voice Directed Control
To implement a P:Voice interface in our VRVoc-FTC

variant - specifically voice-directed control of the oracle
menu, we evaluated various openly available speech
recognition options. Our constraints were that we not be
required to pay for any service, which constrained certain
well-known cloud options. We then evaluated various
popular libraries but our requirements were that little to no
training would be required. After various attempts that did
not result in satisfying solutions, we settled on Windows
System Speech (WSS) and Unity Speech (Cortana). For the
evaluation, only WSS was used since network access to
Cortana was blocked by campus IT. Off-campus, Windows
10 Pro (with Fall Creators Update) was tested with Cortana.

Because WSS support is not integrated in Unity 5.6, we
used a client-server program to send the commands from
WSS to Unity, where it is processed by the SpeechHandler
class. Thus, any Speech API (Application Programming
Interface) could send the commands over TCP/IP to VR-
FTC.

The microphone was mounted on a headset, so it is close
to the mouth and thus reduces unrelated noise inputs.
Currently no indication is given if a command is not
understood, but because the response is normal fast, after a
second the user should notice that the command was not
executed and will likely try again.

The following words are supported at this time:
"class information", "class details": opens the view

"Class Details"
"source code", "source": shows the source code for the

selected class
"project manager", "project": opens the view "Project

Manager"

"feature screen", "feature": opens the view "Feature
Screen"

"option screen", "options screen", "option", "options":
opens the configuration options view

"left", "previous": changes the view to the previous
window

"right", "next": changes the view to the next window

Under Unity Cortana, we also support "search

<classname>", which shows the program code of that class.
In WSS this functionality was not possible since only
predefined words can be used, and its free speech recognition
mode performance was unusable for SE-specific tasks.

WSS does not improve automatically over time. While
one can manually improve WSS, we noticed no
improvements after a half hour session. Unity Speech
(Cortana) probably improves automatically but we were
unaware of an option to manually improve it via sessions.

V. EVALUATION
After showing the feasibility of the solution with our

implementation, our technical evaluation focused on
assessing the implementation’s viability on current VR
hardware options. To compare our VR-FTC solution’s
suitability, effectiveness, and efficiency with non-VR and
provide an overall picture, empirical evaluations were
performed as indicated below. Section D includes new
evaluations focused on the interfaces for programming-
centric tasks, where we performed an empirical evaluation of
MR-FTC with a keyboard and mouse input compared to
non-VR and a virtual keyboard. And to evaluate menu
interfaces of the oracle (virtual tablet), we performed an
empirical study comparing VR controllers, a MR touchpad-
like tablet interface, and voice control.

A. Technical Evaluation
Our technical evaluation performed in [1] utilized an

HTC Vive with a 2160×1200 447 PPI resolution, Unity
5.3.5f1 PE, SteamVR 1479163853. The desktop PC had a
4GHz i7-6700K, 32GB RAM, SSD, NVIDIA GeForce
GTX980Ti with 6GB GDDR5, Win7 Pro x64 SP1. The
notebook was a MSI GS60 2.5GHz i7-4710HQ, 16GB
RAM, NVIDIA GeForce GTX870M with 3GB GDDR5,
SSD, Win10 Home x64, which did not meet Vive's
minimum requirements but allows us to determine if a
notebook (popular among software developers) would
suffice for our VR application.

1) Resource usage: RAM was allocated for a 64-bit
implementation was 220MB (with no project), 250MB
(project with 27 classes), and 620MB (project with 95
classes). On the notebook, graphics card load was 80%
without a project and went to 90% with a loaded project (for
the PC 20%). We determined the CPU was the bottleneck,
with load on the PC for a large project almost always at
100%. We believe that scripts attached to each visible class
invoke their update method for each frame, and plan to
optimize this in future work.

39

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Frame rate: to determine the performance impact of
each metaphor and if a notebook would be sufficient, the
Saxon XSLT 2.0 and XQuery processor consisting of 300K
lines of code and 1635 classes was loaded and the frames
per second (FPS) measured via a custom script.

Figure 14. Universe metaphor frame rate over time on notebook and PC.

Figure 15. City metaphor frame rate over time on notebook and PC.

Figure 14 and Figure 15 show that the notebook mostly
exhibited lower FPS rates than the PC, and that the city
metaphor lowered the FPS rate. This is also shown by the
average FPS rates for universe (notebook=20.0; PC=22.2)
and city (notebook=12.7; PC=16.0). Below 15 FPS is not
tolerable (early silent films had 16-20). An initial analysis
found the dynamic UML generator - run in a separate
process - as a main cause, and this will be addressed in future
work. The universe ran better than city, since city included
multiple shadows, reflections from the glass bubble, and a
terrain. Higher FPS occurred when flying to an outer
package such that far fewer objects were in view.

B. Suitability of VR for SE Tasks
Our empirical evaluation to compare the SE task

suitability of VR vs. non-VR was performed in [1] using the
HTC Vive. Our hypotheses were (1) that VR mode is on par
with non-VR in effectiveness and efficiency for SE code
structure analysis tasks and education, and (2) VR mode
offers an immersive and UX quality absent in non-VR.

Resource-constraints such as having only one Vive and
the time-intensive 2-on-1 supervision of the experiment with
a single subject at a time limited our sample size. A
convenience sample of 10 computer science students of

various academic semesters (1; 3-4; 6-9 grouped respectively
as beginner, intermediate, and advanced) participated and
self-rated their programming and UML competency (Figure
16). Object-orientation (OO) is taught in the second and
UML in the fourth semester. The one first semester student
had work experience in the software industry and thus knew
OO and UML. Each received a short tutorial on non-VR
FTC (three had prior experience). Project A consisted of 2
packages, 27 classes, and 170 methods, while Project B had
5 packages, 95 classes, and 800 methods.

Figure 16. Participant UML/programming self-rating by semester level.

In non-VR mode, project A was loaded in the universe
and thereafter the city metaphor, and likewise with B, and
the same sequence repeated for VR mode. 8 questions were
asked per case dealing with program code structural
comprehension requiring navigation (not the same set each
time), resulting in 64 questions (see Figure 17); 5 additional
general questions followed giving 69 in total. So that the VR
glasses need not be removed, and in order not to skew the
task durations in non-VR mode, questions were asked and
answered verbally and noted by a supervisor.

Figure 17. Sample timed task questions and requests.

As to efficiency, on average 92.5 min were needed for
the 64 questions, 43.4 in VR mode vs. 39.5 min in non-VR
(10% difference), while VR training took 9.4 min. Figure 18
shows the sum of the task durations for each mode per
subject, whereby subjects 8-10 had prior FTC familiarity.
Although VR mode was 10% slower, this was their first

1) How many connections/dependencies does class X
have within the package Foo?

2) How many connections/dependencies does class Y
have within the package Bar?

3) Add a tag to the class X
4) Which package is the largest/smallest?
5) How many connections/dependencies does package

Foo have?
6) How many connections/dependencies does package

Bar have?
7) How many variables are declared in the class Y in

package Foo?
8) Which classes are directly connected with the class Y?
9) Name all classes on the shortest path from A to B.
10) How many overloaded functions does the class Z have

in package Bar?
11) In what package did you set your tag?

40

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

experience using VR. In addition, in non-VR mode the HUD
is instantly available and screens can be switched, while in
VR mode navigation to a screen is required. In our opinion,
more VR practice might reduce this difference further.

With regard to effectiveness, given 32 questions in each
mode across 10 subjects, in non-VR 300 (94%) and in VR
296 (93%) were answered correctly.

Figure 18. Sum of task durations per subject for VR and non-VR modes.

Subjects considered both FTC application modes suitable
for these SE tasks. Comments included liking how
information was visually displayed, its closeness to a reality,
its clear arrangement, and that head movement could be used
for exploring (which non-VR cannot provide). Subjects felt
no differently after using non-VR, whereas after VR the
feeling was described as impressive for seven of the ten
subjects. The other three subjects reported VR sickness
symptoms, a type of visually-induced motion sickness
exhibiting disorientation. We plan to address the VR
sickness in future work, e.g., by increasing the frame rate via
optimizations and reducing the speed of camera movement.

C. Mixed-Reality Interface for SE Tasks
An empirical evaluation of the MR-FTC keyboard

capability using a convenience sample consisting of
Computer Science students was performed as described in
[9]. For evaluating typing speed in particular, for program
text such as comments which are full words without special
characters, five subjects were required to write two unique
pangrams consisting of 18 words using a text editor
(Notepad++), the MR keyboard, and the VR only keyboard.
We varied the starting configuration order among the
subjects to minimize training effects. As shown in Table I,
the text editor was the most efficient with 50 seconds
duration and 22.5 words per minute (wpm) with an average
error rate of 3.3%. With MR 75 seconds were required (16.0
wpm) with an error rate of 3.3%. With the VR keyboard 110
seconds were required (10.1 wpm) with an error rate of
4.4%. Thus, the MR keyboard was faster than the VR
keyboard and did not exhibit a higher error rate. However,
the subjects needed 11 seconds on average between laying
down the VR controllers and pressing the first letter on the
keyboard.

TABLE I. TEXT EDITOR, MR, AND VR PANGRAM MEASUREMENTS
(AVERAGE)

Text

Editor MR VR

Duration (seconds) 50 75 110

Words per minute 22.5 16.0 10.1

Error rate 3.3% 3.3% 4.4%

For evaluating programming, four subjects were required

to view a certain class and then create a class and were given
certain specified modifications thereafter (creating some
object and setting some variable to some value) using either
a text editor or the MR keyboard. As seen in Table II, using a
text editor (Notepad++), they needed on average 50 seconds
to analyze a similar class, 30 seconds to create a new class,
and 144 seconds to do the programming. Using the MR
keyboard, they needed 84 seconds to analyze a similar class,
77 seconds to create a class, and 245 seconds to complete the
programming.

TABLE II. TEXT EDITOR AND MR MEASUREMENTS (AVERAGE IN
SECONDS)

 Analysis Class Creation Programming

Text editor 50 30 144

MR 84 77 245

We were pleased that none of the subjects reported

motion sickness despite the inclusion of MR and the average
response to how they felt afterwards was 4.75 (on a scale of
1 to 5 with 5 best).

Although the keyboard was a German layout keyboard,
we noted that some subjects already had used that specific
keyboard model before (Logitech K280e) while others had
not and thus needed more time to search for certain specific
keys. In searching they needed to get close with the VR
goggles to see the key label, so we will consider providing a
zoom or magnification option in the interface in the future.

D. Voice, Tablet, and Controller Interface Comparison
To compare menu-centric control of the oracle with the

VR-FTC, MR-FTC tablet, and VRVoc-FTC variants
empirically, we used a convenience sample of six Computer
Science students. During the experiment, one of the subjects
exhibited VR sickness symptoms and could not continue, so
the results for this student were removed. In future work, we
will attempt various optimizations and see if this reduces the
likelihood. After the supervised treatments, the subjects
filled out a questionnaire and were debriefed.

To ascertain efficiency effects of the different interfaces,
each subject was given five different SE tasks by a
supervisor to perform in the VR-Based VR-FTC City
metaphor with each interface, such as find a certain class,
determine how many methods a certain class has, tag a class,
add a comment. Similar tasks were given for each case of
interface when using primarily Voice control (V), Tablet
control (T), or VR Controller (C). A random order of

41

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

treatments was applied in order to ascertain if the treatment
ordering created a training effect (e.g., always faster with the
second or third interface), and the order is depicted as labels
in Figure 19 which shows the total task duration by subject
for each interface. As can be seen, the ordering did not show
a clear trend. On average, voice took 353 seconds, the tablet
346 seconds, and the VR controller 197 seconds. we
approximate that the tablet and voice are similar in efficiency
and averaged together (350s) they are 77% slower than
controller use.

Figure 19. VR-FTC total task duration in seconds by subject for voice,
tablet, and controller interfaces.

Figure 20 shows the results of the subjective assessment
of suitability and enjoyment by the subjects. Overall one
observes that the VR controllers had the most positive
suitability and enjoyment ratings, and that voice was had
three positive assessments for suitability and enjoyment. The
tablet had the least positive suitability and enjoyment
assessment.

Figure 20. Suitability and enjoyment assessments in VR-FTC for voice,
tablet, and controller interfaces from very high (++) to very low (--).

The supervisor gave subjects their tasks via speech, and
subjects also spoke with supervisor during their tasks, which
caused unintended commands to be executed. Also, the
university lab setting included various other students and
background noise, which reflect a realistic setting for
software developers. From approximately 50 voice
commands that were required to perform the SE tasks, the
supervisor noted that less than 1 was not heard and less than
1 misinterpreted. For instance, if the subject was naming the

functions the speech interpreter might interpret a command
based on the name of a function or class. To address this, in
future work we plan to provide a clear delineation for voice
command mode (e.g., push to talk on a controller) and to
inject the experiment directions into the scenery.

We were surprised that the MR-FTC tablet was not found
to be that suitable or enjoyable for controlling the virtual
tablet. We thought it would be found to be similar to a touch
pad on a notebook, some users thought it was a good idea
and more stable than holding the controllers.

Voice was the slowest overall. Voice direction almost
always requires more time than direct control (e.g., keyboard
or mouse on a PC vs. voice control), however it can free up
other interfaces, and this was recognized as a benefit in the
debriefing by a number of subjects.

E. Discussion
The technical evaluation of Section V.A showed suitable

resource usage but pointed out frame rate issues. As to the
suitability of using VR-FTC for SE tasks such as answering
structural issues like those in Figure 17, Section V.B showed
that while VR-FTC was 10% slower on average for
untrained VR users, no significant difference in correctness
were observed. Thus, our empirical hypotheses were
confirmed by our results and the feedback from participants.

One threat to validity is the order effect of application
usage in that non-VR followed VR. Thus, non-VR times
include the overhead for gaining familiarity with the
application concepts, and VR mode did not have this
overhead. However, 2D monitor and mouse-centric
interaction was a pre-existing competency, while VR display
and navigation was a new interaction paradigm for all
subjects. Furthermore, subjects 8, 9, and 10 had prior
familiarity with the non-VR FTC via a prior experiment, yet
their task duration times did not exhibit any clear trend that
prior familiarity sped up the non-VR task durations.
Furthermore, the 1% difference in correctness might be
attributed to mental fatigue since VR was done in the second
hour. A further threat to validity is that the positive
experience is possibly a novelty effect - VR veterans would
be needed to be included to assess this factor. For better
external validity, the sample size should be larger and more
diverse to include professionals. However, the results can be
viewed as indicative and the approach as promising if we can
address the VR sickness. We made optimizations for the
frame rate issues to address VR sickness in further empirical
studies, and only one person in those experiments
experienced VR sickness.

With regard to the results in Section V.C of using FTC
with a keyboard, a non-VR text editor remains more
efficient, yet usage of the MR-FTC keyboard was faster than
a purely VR-FTC keyboard and, once familiar with a certain
keyboard, we expect the overhead of MR to be reduced to an
acceptable level given sufficient practice. The overhead of
switching between VR controllers to keyboard and back
again can be seen as analogous to the overhead of keyboard
use on a PC and moving the hand to the mouse and back
again and may thus be considered acceptable for certain
users. We will investigate this further in future work.

42

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Section V.D results regarding interfaces for oracle
menu control found that the use of the VR controllers was
most efficient, suitable, and enjoyable. Since VR controllers
are specifically intended for interacting in VR, this result is
not surprising. However, our investigation showed that the
impacts of alternative interfaces may still be acceptable for
certain users, and this efficiency impact is not on the order of
magnitudes in scale. VRVoc-FTC indicated that it has
potential, with no subject indicating it was not suitable. MR-
FTC with a real tablet was not found to be suitable or
enjoyable and was about as slow as VRVoc-FTC, which we
found surprising since the virtual tablet is shown in VR and
one would think it would be enjoyable to hold one while in
VR. In future work we will investigate potential
improvements to its interface and removing all need for
having VR controllers when using the tablet. One threat to
validity is the small sample sizes, yet it does provide some
indicator as to which interfaces to pursue and investigate
further and consider for industrial usage studies.

VI. CONCLUSION
As VR devices become more commonplace, the potential

of VR to assist programmers in program comprehension can
provide an immersive alternative to commonly available
tools and paradigms. This paper described our VR flythrough
software structure visualization approach called VR-FTC. As
augmented virtuality we explored alternative interfaces to the
VR controllers including MR-FTC (keyboard and tablet) and
VRVoc-FTC (voice) variants. It immerses users into
multiple and customizable VR metaphors for visualizing,
navigating, conveying, and changing program code
information interactively to support exploratory, analytical,
and descriptive cognitive processes.

Our investigation observed that when comparing SE
tasks in VR to non-VR, non-VR (with which the subjects are
quite familiar) was more efficient. However, given more VR
experience and training these differences could become
smaller, and the VR efficiency overhead may be justified by
the better and more enjoyable and motivational experience
for users. In exploring alternative interfaces in VR, for text
input we found that MR-FTC using keyboard and mouse was
a viable option and faster than a virtual keyboard. For menu
navigation, we found that VR controllers were most efficient
and that voice, although less efficient, was an acceptable
alternative option. A real tablet interface equivalent to a
touchpad was not found to be suitable or enjoyable and was
equivalent to voice in efficiency. However, in future work
we intend to turn the tablet into a complete replacement for
the VR controllers and reevaluate its suitability.

Future work includes further analysis and optimizations
to address any remaining VR sickness symptoms, and
comprehensive empirical studies in the industry.

ACKNOWLEDGMENT
The authors would like to thank Dominik Bergen, Sinan

Emecan, Alexandre Matic, Lisa Philipp, and Camil Pogolski,
and Patrick Sprenger for their assistance with various aspects
of the design, implementation, and evaluation.

REFERENCES
[1] R. Oberhauser and C. Lecon, "Immersed in Software

Structures: A Virtual Reality Approach," Proc. of the Tenth
International Conference on Advances in Computer-Human
Interactions (ACHI 2017). IARIA, 2017, pp. 181-186.

[2] C. Metz, Google Is 2 Billion Lines of Code—And It’s All in
One Place. [retrieved: May, 2018]. Available from:
http://www.wired.com/2015/09/google-2-billion-lines-
codeand-one-place/

[3] G. Booch, "The complexity of programming models,"
Keynote talk at AOSD 2005, Chicago, IL, Mar. 14-18, 2005.

[4] C. F. Kemerer and M. C. Paulk, "The impact of design and
code reviews on software quality: An empirical study based
on PSP data," IEEE Trans. on Software Engineering, vol. 35,
no. 4, 2009, pp. 534-550.

[5] F. P. Brooks, Jr., The Mythical Man-Month. Boston, MA:
Addison-Wesley Longman Publ. Co., Inc., 1995.

[6] L. Feijs and R. De Jong, "3D visualization of software
architectures," Comm. of the ACM, 41(12), 1998, pp. 73-78.

[7] D. M. Butler et al., “Visualization reference models,” in Proc.
Visualization ’93 Conf., IEEE CS Press, 1993, pp. 337–342.

[8] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino,
“Augmented reality: A class of displays on the reality-
virtuality continuum,” In: Telemanipulator and telepresence
technologies, Vol. 2351. International Society for Optics and
Photonics, 1995, pp. 282-293.

[9] R. Oberhauser, “Immersive Coding: A Virtual and Mixed
Reality Environment for Programmers,” In: Proceedings of
The Twelfth International Conference on Software
Engineering Advances (ICSEA 2017), IARIA XPS Press,
2017, pp. 250-255.

[10] D. Delimarschi, G. Swartzendruber, and H. Kagdi, “Enabling
integrated development environments with natural user
interface interactions,” Proceedings of the 22nd International
Conference on Program Comprehension (ICPC 2014). ACM,
2014, pp. 126-129.

[11] S. Lahtinen and J. Peltonen, "Enhancing usability of UML
CASE-tools with speech recognition," Proceedings of the
2003 IEEE Symposium on Human Centric Computing
Languages and Environments. IEEE, 2003, pp. 227-235.

[12] L. Afonso, P. Dias, C. Ferreira and B. S. Santos, "Effect of
hand-avatar in a selection task using a tablet as input device in
an immersive virtual environment," 2017 IEEE Symposium
on 3D User Interfaces (3DUI). IEEE, 2017, pp. 247-248.

[13] J. I. Maletic, J. Leigh, and A. Marcus, “Visualizing software
in an immersive virtual reality environment,” 23rd Intl. Conf.
on Softw. Eng. (ICSE 2001) Vol. 1., IEEE, 2001, pp. 12-13.

[14] F. Fittkau, A. Krause, and W. Hasselbring, "Exploring
software cities in virtual reality," IEEE 3rd Working
Conference on Software Visualization (VISSOFT), IEEE,
2015, pp. 130-134.

[15] A. R. Teyseyre and M. R. Campo, "An overview of 3D
software visualization," Visualization and Computer
Graphics, IEEE Trans. on, vol. 15, no. 1, 2009, pp. 87-105.

[16] A. Kashcha. Software Galaxies [retrieved: May, 2018].
Available: http://github.com/anvaka/pm/

[17] R. Wettel and M. Lanza, “Program comprehension through
software habitability,” in Proc. 15th IEEE Int'l Conf. on
Program Comprehension, IEEE CS, 2007, pp. 231–240.

[18] R. Wettel et al., "Software systems as cities: A controlled
experiment," in Proc. of the 33rd Int'l Conf. on Software
Engineering, ACM, 2011, pp. 551-560.

[19] J. Rilling and S. P. Mudur, "On the use of metaballs to
visually map source code structures and analysis results onto
3d space," in Proc. 9th Work. Conf. on Reverse Engineering,
IEEE, 2002, pp. 299-308.

43

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] P. M. McIntosh, "X3D-UML: user-centred design,
implementation and evaluation of 3D UML using X3D,"
Ph.D. dissertation, RMIT University, 2009.

[21] A. Krolovitsch and L. Nilsson, "3D Visualization for Model
Comprehension: A Case Study Conducted at Ericsson AB,"
University of Gothenburg, Sweden, 2009.

[22] G. Langelier et al., "Visualization-based analysis of quality
for large-scale software systems," in Proc. 20th Int. Conf. on
Automated Software Engineering, ACM, 2005, pp. 214-223.

[23] T. Kamada and S. Kawai, "An algorithm for drawing general
undirected graphs," Information processing letters, 31(1),
1989, pp. 7-15.

[24] J. Maletic et al, "Source code files as structured documents,"
in Proc. 10th Int. Workshop on Program Comprehension,
IEEE, 2002, pp. 289-292.

44

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

