
Microflows: Leveraging Process Mining and an
Automated Constraint Recommender

for Microflow Modeling

Roy Oberhauser[0000-0002-7606-8226] and Sebastian Stigler

Computer Science Department, Aalen University, Aalen, Germany
{roy.oberhauser, sebastian.stigler}@hs-aalen.de

Abstract. Businesses and software development processes alike are being chal-
lenged by the digital transformation and agility trend. Business processes are in-
creasingly being automated yet are also expected to be agile. Current business
process modeling is typically labor-intensive and results in rigid process models.
For larger processes it becomes arduous to consider all possible process varia-
tions and enactment circumstances. Contemporaneously, in software develop-
ment microservices have become a popular software architectural style for parti-
tioning business logic into fine-grained services accessible via lightweight pro-
tocols which can be rapidly and individually developed by small teams and flex-
ibly (re)deployed. This results in an increasing number of available services and
a much more dynamic IT service landscape. Thus, a more dynamic form of mod-
eling, integration, and orchestration of these microservices with business pro-
cesses is needed. This paper describes agile business process modeling with Mi-
croflows, an automatic lightweight declarative approach for the workflow-centric
orchestration of semantically-annotated microservices using agent-based clients,
graph-based methods, and the lightweight semantic vocabularies JSON-LD and
Hydra. A graphical modeling tool supports Microflow modeling and provides
dynamic constraint and microservice recommendations via a recommender ser-
vice using machine learning of domain-categorized Microflows. To be able to
utilize existing process model knowledge, a case study shows how Microflow
constraints can be automatically extracted from existing Business Process Mod-
eling Notation (BPMN) process files and transformed into flexible Microflow
constraints, which can then be used to train the recommendation service. Further,
it describes process mining of Microflow execution logs to automatically extract
BPMN models and automated recovery for errors occurring during enactment.

Keywords: Business Process Modeling, Workflow Management Systems, Mi-
croservices, Service Orchestration, Agent Systems, Semantic Technology, De-
clarative Programming, Recommenders, Recommendation Engines, Business
Process Mining, Business Process Modeling Notation.

2

1 Introduction

Congruent with and related to the digital transformation sweeping across businesses
and industry, there is a growing emphasis on business agility and process automation.
One key automation area are business processes (BP) or workflows, evidenced by $2.7
billion in spending on Business Process Management Systems (BPMS) (Gartner 2015).

The automation of a BP according to a set of procedural rules is known as a work-
flow (WF) (WfMC 1999). A workflow management system (WfMS), defines, creates,
and manages the execution of workflows (WfMC 1999). However, with regard to agil-
ity, these workflows are often rigid, and while adaptive WfMS can handle certain ad-
aptations, they usually involve manually intervention to determine the appropriate ad-
aptation. Business Process Model and Notation (BPMN) (OMG 2011) supports Busi-
ness process modeling (BPM) with a common notation standard. However, past BP
models have hitherto not been accessible or leveraged in an automated way to support
BPM.

To support digital automation, WFs often utilize software services. One trend sup-
porting agility in the development and deployment of software is the now popular ap-
plication of the microservice architecture style (Fowler and Lewis 2014). It provides an
agile and loosely-coupled partitioning of business capabilities into fine-grained services
individually evolvable, deployable, and accessible with lightweight mechanisms. How-
ever, as the dynamicity of the service world increases, the need for a more automated
and dynamic approach to service orchestration becomes evident.

As the IT landscape becomes more complex and agile, it is evident that manual mod-
eling will be handled by more automation. Approaches have included service orches-
tration, where a single executable process uses a flow description (such as WS-BPEL)
to coordinate service interaction orchestrated from a single endpoint. In contrast, ser-
vice choreography involves a decentralized collaborative interaction of services
(Bouguettaya et al. 2014), while service composition involves the static or dynamic
aggregation and binding of services into some abstract composite process. While auto-
mated dynamic workflow planning could potentially remove the manual overhead in-
volved in workflow modeling, a fully automated semantic integration process remains
challenging, with one study indicating that it is achieved by only 11% of Semantic Web
applications (Heitmann et al. 2012).

Thus, in our view constraint-based declarative approaches toward process modeling
provide maximum flexibility when searching the solution space for an optimal process
model solution in an automated fashion. Thus, rather than pursue the heavyweight ser-
vice-oriented architecture (SOA) and semantic web, we chose a pragmatic lightweight
bottom-up approach. Analogous to the microservices principles, we use the term Mi-
croflow to mean lightweight workflow planning and enactment of microservices, i.e. a
lightweight service orchestration of microservices. In our prior work, we described our
declarative approach called Microflows for automatically planning and enacting light-
weight dynamic workflows of semantically annotated microservices (Oberhauser
2017a) using cognitive agents and investigated its resource usage and viability (Ober-
hauser 2016). In (Oberhauser and Stigler 2017b), we extended our work to transform

3

existing BPMN models to Microflow constraints, as well as enabling bi-directional sup-
port for graphical modeling in BPMN tools via automated constraint extraction and
BPMN generation from the execution log of a Microflow. Furthermore, automated er-
ror handing and on-the-fly replanning capabilities were extended to address the dy-
namic microservice landscape.

This paper contributes a graphical Microflow Modeler with drag-and-drop support
that automatically generates the equivalent textual JSON Microflow constraints, pro-
vides a catalog of microservices currently available for a Microflow, and utilizes a Rec-
ommendation Service that suggests microservices or constraints based on prior Micro-
flows. This can make Microflow modelers aware of constraints or microservices that
occur frequently in Microflows within a certain domain. Note that the Microflow ap-
proach is not intended to address all facets of BPMS support, but focuses on a narrow
area towards addressing the automatic orchestration of dynamic workflows given a
multitude of microservices, and does so by using a pragmatic lightweight approach ra-
ther than a theoretical treatise.

This paper is organized as follows: the next section discusses related work. Section
3 presents the solution approach, while Section 4 describes its realization. The solution
is evaluated in Section 5, which is followed by a conclusion.

2 Related Work

In IBM business process manager terminology microflow is used to mean a transient
non-interruptible BPEL (Web Services Business Process Execution Language) process
(IBM 2015), whereas in our terminology a microflow is independent of any BPMS,
choreography, or orchestration language.

As to the combination of BPM with microservices, while Alpers et al. (2015) men-
tion BPM with microservices, their focus is on collaborative BPM tool support services,
presenting an architecture that groups them according to editor, management, analysis
functionality, and presentation. Singer (2016) proposes a compiler-based actor-centric
approach to directly compile Subject-oriented Business Process Management (S-BPM)
models into a set of executable processes called microservices that coordinate work
through the exchange of messages. In contrast, we assume our microservices preexist.

With regard to orchestration of microservices, related work includes Rajasekar et al.
(2012), who describe the integrated Rule Oriented Data System (iRODS) for large-
scale data management, which uses a distributed event-condition-action rule engine to
orchestrate micro-services into conditional chain-oriented workflows, maintaining
transactional properties through recovery micro-services. Alpers et al. (2015) describe
a microservice architecture for BPM tools, highlighting a Petri Net editor to support
humans with BPM. Sheng et al. (2014) surveys research prototypes and standards in
the area of web service composition. Although the web service composition using the
workflow technique (Rao and Su 2004) can be viewed as similar, our approach does
not explicitly create an abstract composite service; rather, it can be viewed as automated
dynamic web service orchestration using the workflow technique. Declarative ap-
proaches for process modeling include DECLARE (Pesic 2007). A DECLARE model

4

is mapped onto a set of LTL formulas that are used to automatically generate automata
that support enactment. Adaptations with verification during enactment are supported,
typically via GUI interaction with a human, whereby the changed model is reinitiated
and its entire history replayed. As to inputs, DECLARE facilitates the definition of
different constraint languages such as ConDec and DecSerFlow.

For combining multi-agent systems (MAS) and microservices, Florio (2015) pro-
poses a MAS for decentralized self-adaptation of autonomous distributed components
(Docker-based microservices) to address scalability, fault tolerance, and resource con-
sumption. These agents known as selfLets mediate service decisions using partial
knowledge and exchanging messages. Toffetti et al. (2015) provide a position paper
focusing on microservice monitoring and proposing an architecture for scalable and
resilient self-management of microservices by integrating management functions into
the microservices, wherein service orchestration is cited to be an abstraction of deploy-
ment automation (Karagiannis et al. 2014), microservice composition or orchestration
are not addressed.

Related standards include OWL-S (Semantic Markup for Web Services), an ontol-
ogy of services for automatic web service discovery, invocation, and composition (Mar-
tin et al. 2004). Combining semantic technology with microservices, (Anderson et al.
2015) present an OWL-centric framework to create context-aware applications, inte-
grating microservices to aggregate and process context information. For a more light-
weight semantic description of microservices, JSON-LD (Lanthaler and Gütl 2012) and
Hydra (Lanthaler 2013) (Lanthaler and Gütl 2013) provide a lightweight vocabulary
for hypermedia-driven Web APIs and enable the creation of generic API clients.

Kluza et al. (2013) provide a survey of recommendation techniques for BPM and
discuss machine learning (ML) approaches but do not address the use of neural net-
works and state that that feature extraction from BPMN diagrams is still an unsolved
task. According to their classification we provide subject-based, position-based, and
structural recommendations. As to BP recommenders, Chan et al. (2011) use a process
fragment model and composition context graph with context matching to determine the
requested service’s behavior and implicitly infer the service’s functionality to recom-
mend a related or alternative service. They do not show an actual prototype user inter-
face or a case study of it in use. Barba et al. (2013) propose a constraint-based BP
recommendation system focused on planning and scheduling BP activities for perfor-
mance goal optimization. Schobel and Reichert (2017) utilize machine learning to an-
alyze historic BP performance, determine diverging processes, and recommend
changes. Bobek et al. (2013) base recommendations on a Bayesian Network model that
is built manually based on a configurable process. Our approach is to extract constraints
and then use supervised learning via pre-classification by domain to automatically train
an artificial neural multi-layer network to make recommendations.

In general, in contrast to the above work, our contribution specifically focuses on
microservices with an automatic lightweight declarative approach for the workflow-
centric orchestration of microservices using agent-based clients, graph-based methods,
and lightweight semantic vocabularies like JSON-LD and Hydra. The extraction of
goals and constraints from existing BPM in conjunction with modelling recommenda-
tions is supported, and error handling permits dynamic recovery and replanning.

5

3 Solution Approach

Referencing the solution architecture of Fig. 1, the principles and process constituting
the solution approach are elucidated below and are based on Oberhauser (2016) and
Oberhauser (2017a). One primary difference of our solution approach compared to typ-
ical BPM is the reliance on goal- and constraint-based agents using automated planners
to navigate semantically-described microservices, thus the workflow is dynamically
constructed, reducing the overall labor involved in manual modeling of rigid workflows
that cannot automatically adapt to changes in the microservice landscape, analogous to
the benefits of declarative over imperative programming.

Fig. 1. Solution concept.

3.1 Microflow Principles

The solution approach consists of the following principles:
Microservice semantic self-description principle: Microservices provide sufficient

semantic metadata to support autonomous client invocation, such that the client state at
the point of invocation contains the semantic inputs required for the microservice invo-
cation. Our realization uses JSON-LD/Hydra.

Client agent principle: For the client agent of Fig. 1, intelligent agents exhibit reac-
tivity, proactiveness, and social ability, managing a model of their environment and can
plan their actions and undertake goal-oriented behavior (Wooldridge 2009). Nominal
WfMS are typically passive, executing a workflow according to a manually determined
plan (workflow schema). Because of the expected scale in the number of possible mi-
croservices, the required goal-oriented choices in workflow modeling and planning,
and the autonomous goal-directed action required during enactment, agent technology
seems appropriate. Specifically, we chose Belief-Desire-Intention (BDI) agents (Brat-
man et al. 1988) for the client realization, providing belief (knowledge), desire via
goals, and intention utilizing generated plans that are the workflow.

Graph of microservices principle: Microservices are mapped to nodes in a graph and
can be stored in a graph database (see Fig. 1). Nodes in the graph are used to represent

6

any workflow activity, such as a microservice. Nodes are annotated with properties.
Directed edges depict the directed connections (flows) between activities annotated via
properties. To reduce redundant resource usage via multiple database instances, the
graph database could be shared by the clients as an additional microservice.

Microflow as graph path principle: A directed graph of nodes corresponds to a work-
flow, a sequence of operations on those microservices, and is determined by an algo-
rithm applied to the graph, such as shortest path. The enactment of the workflow in-
volves the invocation of microservices, with inputs and outputs retained in the client
and corresponding to the client state.

Declarative principle: Any workflow requirement specifications take the form of
declarative goal and constraint modelling statements, such as the starting microservice
type, end microservice type, and constraints such as sequencing or branch logic con-
straints. As shown under Models in Fig. 1, these specifications may be (automatically)
extracted from an existing BPM should one exist, or (partially) discovered via process
execution log mining.

Microservice discovery service principle (optional): We assume a microservice
landscape to be much more dynamic with microservices coming and going in contrast
to more heavyweight services. A microservice registry and discovery service (a type of
Meta Service in Fig. 1) can be utilized to manage this and could be deployed in various
ways, including centralized, distributed, client-embedded, with voluntary microservice-
triggered registration or multicast-triggered mechanisms. For security purposes, there
may be a desire to avoid discovery (of undocumented microservices) and thus maintain
a whitelist. Clients thus may or may not have a priori knowledge of a particular micro-
service.

Abstract microservices principle (optional): Microservices with similar functional-
ity (search, hotel booking, flight booking, etc.) can be grouped behind an abstract mi-
croservice (a type of Meta Service in Fig. 1). This simplifies constraints, allowing them
to be based on a group rather than having to be individually based. It also provides an
optional level of hierarchy to allow concrete microservices to only provide a client with
a link to the logical next abstract microservice(s) without having to know the actual
concrete ones, since the actual concrete microservice followers can be numerous and
rapidly change, while determining exactly which ones are appropriate can perhaps best
be decided by the client in conjunction with the abstract microservice.

Path weighting principle (optional): any follower of a service, be it abstract or con-
crete, can be weighted with a potentially dynamic cost that helps in quantifying and
comparing one path with another in the form of relative cost. This also permits the
navigation from one to another to be dynamically adjusted should that path incur issues
such as frequent errors or slow responses. The planning agent can determine a minimal
cost path.

Path constraint logic principle (optional): If the path weighting is insufficient and
more complex logic is desired for assessing branching or error conditions, these can be
provided in the form of constraints referencing scripts that contain the logic needed to
determine the branch choice.

Note that the Data Repository and Graph Database could readily be shared as a com-
mon service, and need not be confined to the Client.

7

3.2 Microflow Lifecycle

Fig. 2. Microflow lifecycle.

The Microflow lifecycle involves five stages as shown in Fig. 2. In the Microflow Mod-
eling stage, Microflow specifications (goal and constraints), retained as JSON files in
a repository (Fig. 1), are modeled: 1) graphically (in our Microflow Modeler and Con-
straint Recommender), 2) textually, 3) extracted and transformed via tools from exist-
ing BPMN process models, or 4) via process mining of execution logs (e.g., Microflow
logs) and transformed to BPMN and then Microflows.

The Microservice Discovery stage involves utilizing a microservice discovery ser-
vice to build a graph of nodes containing the properties of the microservices and links
(followers) to other microservices, analogous to mapping the landscape.

In the Microflow Planning stage, an agent takes the goal and other constraints and
creates a plan known as a Microflow, finding an appropriate start and end node and
using an algorithm such as shortest path to determine a directed path. In our opinion, a
completely dynamic enactment without any planning (no schema) could readily lead to
dead-end or circular paths, causing a waste of unnecessary invocations that do not lead
to the desired goal and can potentially not be undone. This is analogous to following
hyperlinks without a plan, which does not lead to the goal and require backtracking.
Alternatively, replanning after each microservice invocation involves planning re-
source overhead (CPU, memory, network), and since this is unlikely to dynamically
change within the enactment lifecycle, we chose a pragmatic and lightweight approach
from a resource utilization perspective: plan once and then enact until an exception
occurs, at which point a necessary replanning is triggered. Further advantages of our
approach, in contrast to a thoroughly adhoc approach, is that the client is assured that
there is at least one path to the goal before starting, and validation of various structural,
semantic, and syntactic aspects can be readily performed.

In the Microflow Enactment stage, the Microflow is executed by invoking each mi-
croservice in the order of the plan, typically sequentially but it could involve parallel
invocations. A replanning of the remaining Microflow can be performed if an exception
occurs or if notified by the discovery service of changes to the set of microservices. A
client should retain the Microflow model (plan) and be able to utilize the service inter-
faces and thus have sufficient semantic knowledge for enactment.

The Microflow Analysis stage involves the monitoring, analysis, and mining of exe-
cution logs in order to improve future planning. This could be local, in a trusted envi-
ronment, or this could be distributed. Thus, if invocation of a microservice has often
resulted in exceptions, future planning for this client or other clients could avoid this
troublesome microservice. Furthermore, the actual latency incurred for usage of a mi-
croservice could be tracked and shared between agents and taken into account as a type
of cost in the graph algorithm.

8

4 Realization

As various details of our Microflow realization and lifecycle were previously detailed
in (Oberhauser, 2016) and (Oberhauser, 2017), a short summary is provided and the
rest of this section details the newer extensions.

Implementations of microservices are assumed to be REST compliant using JSON-
LD and Hydra descriptions. For our prototype testing, REST (REpresentational State
Transfer) and HATEOAS support (Fielding 2000) were integrated with Spring-boot-
starter-web v. 1.2.4, which includes Spring boot 1.2.4, Spring-core and Spring-web v.
4.1.6, Embedded Tomcat v. 8.0.23; Hydra-spring v. 0.2.0-beta3; and Spring-hateoas v.
0.16 are integrated. For JSON (de)serialization Gson v. 2.6.1 is used. Unirest v. 1.3.0
is used to send HTTP requests. As a REST-based discovery service, Netflix’s open
source Eureka v. 1.1.147 is used.

The Microflow clients uses the BDI agent framework Jadex v. 3.0-SNAPSHOT
(Pokahr et al. 2005). Jadex's BDI nomenclature consists of Goals (Desires), Plans (In-
tentions), and Beliefs. Beliefs can be represented by attributes like lists and maps. Three
agents were created: the DataAgent is responsible for providing for and maintaining
data repository, the PlanningAgent generates a path through the graph as a Microflow,
while the ExecutionAgent communicates directly with microservices to invoke them
according to the Microflow. Neo4j and Neo4j-Server v. 2.3.2 is used as a client Data
Repository.

Microflow specifications (goals and constraints) are referred to as PathParameters
and consist of the startServiceType, endServiceType, and constraint tuples. Each con-
straint tuple consists of the target of the constraint (the service type affected), the con-
straint, and a constraint type (required, beforeNode, afterNode). For instance, target =
"Book Hotel", constraint = "Search Hotel", and constraint type = "afterNode" would be
read as: "BookHotel" is after node "Search Hotel", implying the Microflow sequencing
must ensure that "Search Hotel" precedes "Book Hotel" (but does not require that it
must be directly before it).

During Microflow Planning, constraint tuples are analyzed, whereby any AfterNode
is converted to a BeforeNode by swapping target and constraint, RequiredNode con-
straints are also converted to BeforeNode constraints, and redundant constraints are
removed and the constraints are then ordered.

4.1 BPMN to Microflow Specification Transformation

To leverage existing process model knowledge, a BPMN-to-Microflow (B2M) trans-
formation tool is implemented in Java and parses BPMN 2.0 files, automatically ex-
tracting the start and end node (goal) and any constraints, generating a Microflow JSON
specification file (left corner of Fig. 1) for the Microflow repository. The java libraries
camunda-bpmn-model and camunda-xml-model version 7.6.0 are utilized for parsing.
It includes support for the following BPMN elements: activities, events, gateways, and
connections. Currently unsupported in the implementation for automated extraction are
swimlanes, artifacts, and event subprocesses (throwing, catching, and interrupting
events). Some of these can be manually modelled in the Microflows using scripting.

9

4.2 Microflow Constraint Mining

A MicroflowLog-BPMN mining tool is implemented in Java that automatically parses
a Microflow execution log file (taking the Log in Fig. 1 as input) and generates a BPMN
2.0 file, which could in turn be automatically converted to a Microflow specification
file, for instance if constraint extraction is desired. Since it generates a direct sequence
of the actual path taken, it results in a simple sequence of tasks. However, this can be
helpful in providing a graphical depiction for human analysis and comparison, deter-
mining issues, debugging constraints, and as a reference or starting point for models
having greater complexity.

4.3 Recommender Service

A Microflow modeler is confronted with many options and decisions, the number of
possible Microservices to consider can be quite large, and there are various constraints
that may or may not be appropriate, yet if certain essential constraints or Microservices
are missing the Microflow may be problematic. To assist the modeler and raise aware-
ness of possibly relevant constraints as well as microservices, a Microflow Recom-
mender Service (shown in Fig. 1) utilizing machine learning (ML) was realized.

It creates an artificial neural multi-layer network using DeepLearning4J (DL4J)
0.7.2 and provides a global recommendation of microservice types frequently used to-
gether with an input type, as well as frequent before and after constraints for some
selected microservice. Three layers were used: Layer 0 takes the different constraints
as input and has 200 fixed outputs, Layer 1 has both 200 inputs and 200 outputs, and
Layer 2 takes 200 inputs and produces a probability distribution of available constraints
as output equivalent to the number of inputs. Other relevant parameters are: the layer
size was set to 200, total number of training epochs was set to 100, 8 constraints are
batched at once for training, the stochastic gradient descent optimization, learning rate
of 0.1 as to what degree correct suggestions should improve certainty, rms decay of
0.95 as to what degree unused suggestions lose relevance, truncated backpropagation,
with further parameters left to their default.

Supervised learning using classification (pre-classification by domain) is used to
train the network from a repository of Microflow specifications, one network per do-
main. All Microflows constraints within a domain are aggregated, and during training
the ordering of available constraint inputs is randomized. To provide a recommenda-
tion, a single time step is run to feed the current constraints through the network, and
then the network output is converted into a JSON constraint recommendation.

The REST interface for the service (DELETE omitted) consists of:
GET /domains – returns list of available domains and POST and DELETE to add

and remove specific domains respectively.
POST /recommendation/{domain} - based on an input of a Microflow as

JSON and given a selected node, returns a recommendation consisting of a list of global
microservice types, a list of predecessor constraints, and a list of follower constraints.
POST /train/{domain} – trains system with an additional list of constraints
GET /train/{domain} – returns the list of constraints used to train the system

10

4.4 Microflow Modeler and the Recommender Service

The Microflow Modeler Tool provides a graphical and text-based editor to assist with
the Microflow modeling process (see Fig. 3). It is implemented using NodeRED, a
web-based tool for flow-based programming. Nodes or building blocks can connected
to each other to direct the information flow or execute functionality. A Microflow con-
straint is in essence a description of a relation between microservices and can be de-
picted via a connection.

Fig. 3. Microflow Modeler Tool.

Fig. 3c shows the Microflow modelling workspace, where nodes representing Micro-
services can be inserted and moved and relations drawn to indicate before and after
constraints. Fig. 3e shows the generated textual equivalent of the graphical model on
the workspace, and can be directly edited with changes dynamically reflected in the
graphical model (round-trip). Fig. 3b shows Microservices, a catalog of the available
microservices, any of which can be pulled into the workspace via drag-and-drop. Fig.
3d shows a drop-down menu to select the modeling domain (e.g., Travel, Business,
Health). This controls the domain (category) of the Microflow repository used for con-
straining recommendations and categorizing this Microflow. Nearby is the Deploy but-
ton, which saves the Microservice specification to the repository and permits execution.
that includes recommendations based on mining historical Microflows and, utilizing
machine learning, recommends microservices and constraints included in past work-
flows (BPMN or Microflows). Any change to the constraints causes an update request
for recommendations. Fig. 3a shows the recommendation area, which includes a Global
Recommendation for a suggested microservice that was most frequently included in
this domain or based on the currently selected microservice type. Fig. 3f starts a Rec-
ommender Service training session with the given Microflow. The background pro-
cessing performed in the Microflow Modeler is shown in Fig. 4.

11

Fig. 4. Microflow Modeler background processing.

4.5 Microflow Error Recovery

To support enactment error recovery, the Microflow client now supports data version-
ing of its state, integrating the javersion data versioning toolkit v. 0.14. The algorithm
is shown in Fig. 5 and referred to by line. At each abstract node, the current client state
(JSON data outputs from microservices) is committed (Line 11). If the execution of a
microservice is not successful, the transition is penalized by adding to its cost so that
any replanning does not necessarily continue to include a microservice with constant
issues (Line 22); the node index is set to the last node where a commit was performed
(Line 24) (ultimately the start node if none) and its state at that node restored (analogous
to a rollback); and a replanning is initiated (Line 25) from that node.

Thus, Microflow clients support an automated recovery and replanning mechanism.
This is in contrast to standard BPMS whereby an unhandled exception typically results
in the process terminating. In contrast to basic HATEOAS client implementations, the
client state can be rolled back to the last known good service and a replanning enables
the client to seek an alternative to reach its goal. This error recovery technique can be
used to support the Microflow equivalent of BPMN subprocess transactions.

12

Fig. 5. Microflow execution algorithm.

5 EVALUATION

Case studies is used to evaluate the solution, first considering the extraction of con-
straints from BPMN models, the mining of BPMN models from a Microflow execution
log, usage of the Microflow Modeler and then error recovery.

5.1 BPMN Transformation

As an illustrative example, we created our own travel booking process shown in Fig. 6,
whereby both a hotel and flight should be found, and then a booking (reservation) of
each is performed, and then payment is collected. Virtual microservices are used during
enactment that differentiate themselves semantically but provide no real invocation
functionality. The BPMN model of Fig. 6 generated an XML file using Camunda Mod-
eler consisting of 209 lines and 11372 characters. In contrast, the Microflow constraint
JSON file generated from this model by our BPMN-Microflow transformation tool con-
tains 14 lines and 460 characters (Fig. 9a).

13

Fig. 6. Our travel booking example as BPMN.

Fig. 7. Collapsed SubProcess BPMN model from OMG (2010).

Fig. 8. Expanded SubProcess BPMN model from OMG (2010).

Fig. 9. Extracted constraints from the BPMN of (a) Travel booking and (b) SubProcess examples.

To determine to what extent the spectrum of BPMN 2.0 is supported and if any issues
are a result of the approach or limitations of the implementation, the BPMN files from

14

OMG BPMN Examples (OMG 2010) were tested. Both the collapsed SubProcess (Fig.
7) as well as the Expanded SubProcess (Fig. 8) BPMN models consist of 222 lines and
13996 characters of BPMN XML and were automatically transformed to constraint
files of 19 lines and 622 characters in Microflow JSON as shown in Fig. 9b. Both
BPMN files contain the subprocess information which is hidden in the graphical repre-
sentation in Fig. 8.

Assessing the subset of BPMN transformations of the OMG BPMN examples that
were unsuccessful, which included portions of Incident Management, Nobel Prize Pro-
cess, Procurement Process with Error Handling, Travel Booking, Pizza Order Process,
Hardware Retailer, Email Voting, we identified the following issues:

• Multiple start events: this implies multiple processes are enacted concurrently, re-
sulting in issues with planning and merging state and potential race conditions. These
issues, however, are due to limitations with our prototype implementation, not of the
approach. Future work will consider concurrent enactment and synchronization.

• Multiple end or terminate events: in this case, the planner cannot identify the goal
node for the Microflow. One current implementation workaround is to create an ab-
stract final node or a final common end node, which can be inserted into our internal
graph with the appropriate additional relations.

• Missing start and end events: these are optional in BPMN and result in no clear start
and end goal for the planner. One workaround for our implementation is to assume
these are implied based on activities having no predecessor or no successor.

• Event subprocess: the prototype does not automatically map exception areas, yet it
would be feasible by adding a constraint to each contained node with a conditional
before whereby a new path is then dynamically replanned from this relation on error.

• Swim lanes: currently only isolated swim lanes are supported, but future work will
consider a mapping to abstract nodes and possible communication and synchroniza-
tion support.

• Artifacts: our implementation cannot map BPMN inputs since in these models they
lack sufficient semantic detail. One workaround would be to provide a manually
created map of BPMN types to JSON-LD types.

5.2 Microflow Constraint Mining

From a Microflow execution log (Fig. 10a) that injected an automated error recovery
condition for the Travel example of Figs. 6 and 9a, our MicroflowLog-BPMN mining
tool extracted a BPMN file (Fig. 10c shows an excerpt from its BPMN XML file and
Fig. 10d its graphical equivalent). As explained in Section 4.2, this can assist human
analysis or serve as a starting point for further modeling. To demonstrate the feasibility
of a full cycle (roundtrip) back to a Microflow specification from an execution log, this
BPMN was transformed to Microflow constraints shown in Fig. 10b. These constraints
could, for example, then be reduced by a human to only those truly required and ad-
justed for requisite sequencing in order to optimize the dynamic planning capability.

15

Fig. 10. Travel Booking example (a) Microflow process log file output with recovery elements
highlighted in bold; (b) extracted Microflow constraints; (c) extracted BPMN XML; and (d)
BPMN graphical equivalent.

5.3 Microflow Modeler and Recommender Service Case Study

A case study is used to demonstrate Microflow Modeler and Constraint Recommender
capabilities.

16

5.3.1 Recommender Service Training Set

In searching for available BPMN diagrams for testing we faced various difficulties. The
OMG (2010) BPMN examples lack significant variants for a domain. Few companies
are willing to share their internal processes for various reasons and potential risks, as
these are often seen as a competitive advantage and significant investments in business
process modeling were made. Ones we did publically available find were difficult to
categorize (service names vary tremendously between organizations and no obvious
semantic equivalence was available based on the service name itself) and they also
lacked sufficient variation within a domain. Specifically, we were looking for reoccur-
ring services use in various workflows. We thus chose to develop a synthetic Microflow
repository dataset to ensure that certain reoccurring sequences that map to constraints
would occur and to use semantically equivalent service names within three different
domains. These are fairly basic Microflows, and consisted of ten travel Microflows, ten
health Microflows, and eight business Microflows, samples of which are shown in Figs.
11, 12, and 13 respectively. This is not ideal for training ML, and one would wish there
were large accessible repositories with clarity on the semantic mapping between ser-
vices. Nevertheless, they provide an initial starting point for the evaluation.

Fig. 11. Sample of BPMN travel domain training workflows variants.

Fig. 12. Sample of BPMN health domain training workflows variants.

17

Fig. 13. Sample of BPMN business domain training workflows variants.

For instance, in the travel domain the recurring pattern is Preferences before other ser-
vices, and payment after any other services. Likewise, Search occurs before Book. In
the health domain the pattern is that Patient Information comes first, and Treatment
comes only after checking various other information. Thus, domain-specific knowledge
in the form of constraints are now made readily available for ML training without an
expert being available by automatically extracting constraints from available process
knowledge held within the process models.

5.3.2 Recommender Service Usage

In the following case study, the Recommender Service is used in conjunction the Mi-
croflow Modeler after having been trained with the Microflow specifications mentioned
in Section 5.3.1. Fig. 14 shows the initial state with the domain Travel selected. A
global recommendation to include the Book Flight microservice is made on the basis
of the frequency of occurrence of this microservice in the models in this domain.

Fig. 14. Microflow Modeler initial state for the travel domain.

In Fig. 15a, a Preferences microservices was added and is currently selected (outlined
in red). Recommendations for its followers ‘After Selection’ are ‘Search Hotel’ and
‘Search Flight’ with a global recommendation to include ‘Book Hotel’ somewhere in

18

the Microflow. In Fig. 15b, ‘Search Hotel’ was dragged and dropped behind Prefer-
ences and connected as its follower. No microservice is selected so the Before and After
are irrelevant. Book Hotel is still recommended, but ‘Search Flight’ was added after
‘Search Hotel’ in Fig. 15c. In Fig. 16, the Microflow has been further modeled to in-
clude Payment, which is currently selected. No ‘After’ microservice is recommended
(because no microservices in the training came after this), for Before recommendations
‘Cancel Hotel’ and ‘Change Hotel Booking’ are shown, and also ‘Book Flight’ since it
could come directly before Payment. ‘Change Flight’ is now a global recommendation.

Fig. 15. Microservices with constraints added to a Microflow in the travel domain.

Fig. 16. Microflow Modeler showing a completed Microflow in the travel domain.

19

Fig. 17 shows that the recommendations differ when the selected domain is health care,
for the selected node ‘Check ‘Insurance’ a Before suggestion is ‘Patient Information’
and After suggestions are Payment and Symptoms, whereby Treatment is given as a
global recommendation to be included somewhere. Fig. 18 shows a business domain
example where ‘Confirm Vacation’ is selected, with ‘Accept Vacation Confirmation’
suggested under After and this happens to also be the top global recommendation.

Fig. 17. Sample of BPMN business domain training workflows variants.

Fig. 18. Sample of BPMN business domain training workflows variants.

20

5.3.3 Recommender Service Technical Evaluation

Performance measurements were made to assess the practicality of usage on typical
PCs. For the measurements, the hardware configuration consisted of an i5-4460@ 3,20
GHz and 8GB of RAM. The software configuration was Win10 Pro, Java 1.8.0_144,
NodeRed based on 0.17.5, and DeepLearning4J 0.7.2.

Training the system took 22.4 seconds on average (over five invocations). The initial
get recommendation request involves initialization and took 221 milliseconds total.
Thereafter, any recommendation requests took 6.9 milliseconds on average (over five
invocations).

Based on these results, the system seems fluid and viable for dynamic modeling and
use of recommendations. While the training time has a noticeable delay (which is also
why we have an explicit button in red), this is likely not to occur as frequently in usage
and could be done without hampering modeling work in the background or at night, or
the microservice could be placed on a high-performance server. No explicit tuning was
performed.

5.4 Microflow Error Recovery

To demonstrate the automated error recovery capability, the Flight Booking service was
modified to return a HTTP 500 status code and a Recovery for Flight Booking micro-
service (which could for example attempt to restart the failing service) was added as a
microservice with a path cost higher than that of the normal Flight Booking just to
demonstrate the ability for replanning to adjust and take a different path after receiving
an error. It does not imply that recovery microservices are needed.

Fig. 19. Travel Booking example as Neo4J graph (error recovery shown in green).

21

Fig. 20. Output of client state in JSON.

Fig. 19 includes a recovery microservice (green). In the execution log file of Fig. 10a,
after receiving an error the execution returns to Abstract Booking Service. The client
state (shown in Fig. 20) is restored to that which it was at the last commit, leaving
ItemList, Hotel, and Flight (Lines 5-10) and discarding LodgingReservation and Flight-
Reservation (Lines 1-4). The relation between Abstract Booking and Flight Booking is
penalized, resulting in a replanning from Abstract Booking that now includes Recovery
for Flight Booking since it is the path with the least cost. This is seen in Fig. 10a with
the difference in the planning sequence from [CAN_CALL,9] to [CAN_CALL,12]--
>(10)-->[CAN_CALL,13].

6 Conclusion

In this paper, we described business process mining for constraints, Microflow model-
ing tool support, constraint recommendations based on machine learning, automatic
lightweight declarative workflow-based orchestration of semantically-annotated micro-
services using agent-based clients, graph-based methods, and lightweight semantic vo-
cabularies. The solution principles of the Microflow approach and its lifecycle were
elucidated and details on its realization. The evaluation showed that Microflow con-
straints can be automatically extracted from existing BPMN files, that Microflow exe-
cution log file process mining can be used to extract BPMN models, that these can be
used to train a constraint recommender service using machine learning, and that certain
types of client error recovery can be automated with client state rollback, path cost
penalization, and dynamic replanning during enactment. The Microflow constraint
specification files were found to be much smaller than the equivalent BPMN files.

22

With the Microflow approach, only the essential rigidity is specified via constraints,
permitting a greater degree of agility in the business process models since the remaining
unspecified areas of the workflow are automatically determined and planned (and thus
remain dynamically adaptable). This significantly reduces business process modeling
labor and permits a higher degree of reuse in a dynamic microservice world, reducing
the total cost of ownership. Since the workflow (or plan) is not completely adhoc and
dynamic, validation and verification checks can be performed before execution begins,
and one is assured that the workflow is executable as planned. However, enhanced sup-
port for verification and validation of the correctness of the Microflow is still required
for users to entrust the automatic planning. By integrating Microflow constraint recom-
mendations in the Microflow Modeler, modeling mistakes due to lack of awareness or
forgetfulness can be reduced as the constraint complexity increases.

Future work includes expanded support for BPMN 2.0 elements in our implementa-
tion, integrating advanced verification and validation techniques, integrating semantic
support in the discovery service, supporting compensation and long-running processes,
enhancing the declarative and semantic support and capabilities, tuning the recom-
mender service, and empirical and industrial usage studies.

Acknowledgments. The authors thank Florian Sorg and Tobias Maas for their assis-
tance with the design, implementation, evaluation, and diagrams.

7 References

Alpers, S., Becker, C., Oberweis, A., Schuster, T.: Microservice based tool support for business
process modelling. In: IEEE 19th International Enterprise Distributed Object Computing
Workshop (EDOCW), pp. 71-78. IEEE (2015).

Anderson, C., Suarez, I., Xu, Y., David, K.: An Ontology-Based Reasoning Framework for Con-
text-Aware Applications. In: Modeling and Using Context, pp. 471-476. Springer Interna-
tional Publishing (2015).

Barba, I., Weber, B., Del Valle, C., Jiménez-Ramírez, A.: User recommendations for the opti-
mized execution of business processes. Data & Knowledge Engineering, 86, 61-84 (2013).

Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of Bayesian Networks to Recommen-
dations in Business Process Modeling. In: Proceedings of the Workshop AI Meets Business
Processes 2013, pp. 41-50. ceur-ws.org (2013).

Bouguettaya, A., Sheng, Q., Daniel, F.: Web services foundations. Springer (2014).
Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning.

Computational intelligence, 4(3), 349-355 (1988).
Fielding, R. T.: Architectural Styles and the Design of Network-based Software Architectures.

Doctoral dissertation, University of California, Irvine (2000).
Florio, L.: Decentralized self-adaptation in large-scale distributed systems. In: Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering, pp. 1022-1025. ACM
(2015).

Fowler, M., Lewis, J.: Microservices a definition of this new architectural term,
http://martinfowler.com/articles/microservices.htm, last accessed 2018/1/31

Gartner: Gartner Says Spending on Business Process Management Suites to Reach $2.7 Billion
in 2015 as Organizations Digitalize Processes (Press release), https://www.gartner.com/news-
room/id/3064717, last accessed 2018/1/31

23

Heitmann, B., Cyganiak, R., Hayes, C., Decker, S.: An empirically grounded conceptual archi-
tecture for applications on the web of data. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, 42(1), 51-60 (2012).

IBM: IBM Business Process Manager V8.5.6 documentation, http://www.ibm.com/sup-
port/knowledgecenter/SSFPJS_8.5.6/com.ibm.wbpm.wid.bpel.doc/topics/
cprocess_transaction_micro.html, last accessed 2018/1/31

Karagiannis, G. et al.: Mobile cloud networking: Virtualisation of cellular networks. In: 21st
International Conference on Telecommunications (ICT), pp. 410-415. IEEE (2014).

Kluza, K., Baran, M., Bobek, S., Nalepa, G. J.: Overview of recommendation techniques in busi-
ness process modeling. In: Proceedings of 9th Workshop on Knowledge Engineering and
Software Engineering (KESE9), pp. 46-57. CEUR-WS.org (2013).

Lanthaler, M.: Creating 3rd generation web APIs with hydra. In: Proceedings of the 22nd Inter-
national Conference on World Wide Web (WWW '13 Companion), pp. 35-38. ACM, New
York, NY, USA, (2013). DOI: http://dx.doi.org/10.1145/2487788.2487799

Lanthaler, M., Gütl, C.: On using JSON-LD to create evolvable RESTful services. In: Proceed-
ings of the Third International Workshop on RESTful Design, pp. 25-32. ACM (2012).

Lanthaler, M., Gütl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs. In: Proceed-
ings of the 6th Workshop on Linked Data on the Web (LDOW2013) at the 22nd International
World Wide Web Conference (WWW2013), vol. 996. CEUR-WS (2013).

Martin, D. et al.: OWL-S: Semantic markup for web services. W3C member submission, W3C
(2004).

OMG: BPMN 2.0 by Example Version 1.0. OMG (2010).
OMG: Business Process Model and Notation (BPMN) Version 2.0. OMG (2011).
Oberhauser, R.: Microflows: Lightweight Automated Planning and Enactment of Workflows

Comprising Semantically-Annotated Microservices. In: Proceedings of the Sixth International
Symposium on Business Modeling and Software Design (BMSD 2016), pp. 134-143.
SCITEPRESS (2016).

Oberhauser, R.: Microflows: Automated Planning and Enactment of Dynamic Workflows Com-
prising Semantically-Annotated Microservices. In: 6th International Symposium on Business
Modeling and Software Design (BMSD 2016), Revised Selected Papers, B. Shishkov (Ed.).
LNBIP, Vol. 275, pp. 183-199. Springer International Publishing (2017a).

Oberhauser, R., Stigler, S.: Microflows: Enabling Agile Business Process Modeling to Orches-
trate Semantically-Annotated Microservices. In: Proceedings of the Seventh International
Symposium on Business Modeling and Software Design (BMSD 2017), pp. 19-28.
SCITEPRESS (2017b).

Pesic, M., Schonenberg, H., van der Aalst, W. M.: Declare: Full support for loosely-structured
processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference
(EDOC 2007), pp. 287-287. IEEE (2007).

Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: Multi-agent pro-
gramming, pp. 149-174. Springer (2005).

Rajasekar, A., Wan, M., Moore, R., Schroeder, W.: Micro-Services: A Service-Oriented Para-
digm for Data Intensive Distributed Computing. In: Challenges and Solutions for Large-scale
Information Management, pp. 74-93. IGI Global (2012).

Rao, J., Su, X.: A survey of automated web service composition methods. In: Semantic Web
Services and Web Process Composition, pp. 43-54. Springer Berlin Heidelberg (2004).

Schobel, J., Reichert, M.: A Predictive Approach Enabling Process Execution Recommendations.
In Advances in Intelligent Process-Aware Information Systems, pp. 155-170. Springer, Cham
(2017).

Sheng, Q. Z. et al.: Web services composition: A decade’s overview. Information Sciences, 280,
218-238 (2014).

24

Singer, R.: Agent-Based Business Process Modeling and Execution: Steps Towards a Compiler-
Virtual Machine Architecture. In: Proceedings of the 8th International Conference on Subject-
oriented Business Process Management. ACM (2016).

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., Edmonds, A.: An architecture for self-
managing microservices. In: Proceedings of the 1st International Workshop on Automated
Incident Management in Cloud, pp. 19-24. ACM (2015).

WfMC: Workflow Management Coalition Terminology & Glossary, WFMC-TC-1011, Issue
3.0. Workflow Management Coalition (1999).

Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2009).

