
The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

77

Gamified Virtual Reality for Program Code Structure Comprehension

Roy Oberhauser 1 and Carsten Lecon 1

1 Department of Computer Science, Aalen University, Aalen, Germany

 Abstract - When programmers view program code
text, the abstract and invisible nature of the underlying
program code structures remains inherently challeng-
ing for them to visualize. Widespread availability of
virtual reality (VR) hardware and software now make
VR visualization of program code structures accessible.
In such potentially visually satiating environments, the
application of gamification has the potential to provide
an additional focus and motivational factor towards
comprehending program structures. Towards this end,
this paper describes our Gamified Virtual Reality
FlyThruCode (GVR-FTC) approach which gamifies
our immersive metaphorical visualization of any given
software code structure. Our initial results show that
VR-based gamification (specifically code dependencies
and modularization) can be more fun and motivational
and support structural program comprehension better
than using a PC-based text editor for a similarly gami-
fied situation.

Index Terms - Virtual reality; Gamification; Software
visualization; Program comprehension; Software engi-
neering; Computer education.

I. INTRODUCTION
The rapid digitalization of society is inexorably linked with
an increased demand for and dependence on software.
Accordingly, the amount of program source code produced
and maintained worldwide by software developers is in-
creasing dramatically. At least 2bn lines of code (LOC) can
be accessed by 25k developers at Google1, and well over a
trillion lines of code (LOC) are estimated to exist world-
wide with at least 33bn added annually (Booch, 2005). In
one study2, 11m professional software developers are esti-

E-mail: roy.oberhauser@hs-aalen.de,
carsten.lecon@hs-aalen.de

1 http://www.wired.com/2015/09/google-2-billion-lines-
codeand-one-place/
2 http://www.infoq.com/news/2014/01/IDC-software-
developers

mated to be producing or maintaining program code, ex-
cluding hobby and other IT-skilled workers.

Given such a volume of code, these developers contin-
ue to struggle with comprehending unfamiliar complex
code structures and dependencies utilizing common display
forms of program source code or the two-dimensional
Unified Modeling Language (UML). Reasons for this in-
clude cognitive limitations as well as the inherent invisibil-
ity of software, which remains an essential difficulty for
software construction, as the reality of software is not em-
bedded in space (Brooks, 1995). A vision of walking
through a 3D visualization of software architecture has
been described (Feijs and De Jong, 1998), and in prior
work we developed our 3D (non-VR) fly-through code
(FTC) approach for navigating software structures (Ober-
hauser, Silfang, and Lecon, 2016). Yet the potential of VR
and game engines has not been fully realized in software
engineering (SE) tools, and their practicality with off-the-
shelf VR hardware has been insufficiently explored. To
address this, in prior work (Oberhauser and Lecon, 2017)
we described our VR-based FlyThruCode (VR-FTC) ap-
proach for visualizing, navigating, and conveying program
code information interactively in a VR environment using
a game engine to support exploratory, analytical, and de-
scriptive cognitive processes (Butler et al., 1993).

Although VR-FTC provided a VR-based software visu-
alization capability, it did not directly support learning.
According to game designer C. Crawford (Crawford,
1984), learning is a fundamental motivation for all game-
playing. Computer games involving the learning of some
knowledge area are known as educational computer games
(Wolf, 2012). Serious games (Michael and Chen, 2005)
(Abt, 1970), be they digital games (DG) or not, have an
explicit educational focus and can be used to educate, train,
and inform. (Connolly et al., 2012) identified 7392 papers
that included 129 with empirical evidence and found that
the most frequently reported outcome and impact of play-
ing games were affective and motivational as well as
knowledge acquisition or content understanding. Further-
more, DG-based learning research has largely shown that it
is now accepted that DG can be an effective learning tool
(Van Eck, 2006). With respect to gamification in software

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

78

engineering (SE), (Connolly et al., 2007) found that users
liked game-based learning and found it motivating and
enjoyable. However, within SE and computer science (CS)
education, the potential of serious DG in combination with
VR for motivating and enhancing program code compre-
hension remains insufficiently explored. Furthermore, in
our previous study on gamification in SE (Oberhauser,
2016), most SE DGs were simulation-based and focused
primarily on management aspects, with almost no SE DG
dealing with software design or code structural aspects.

Extending our VR-FTC paper (Oberhauser and Lecon,
2017), this paper contributes a digital gamification ap-
proach to VR-based program code structure visualization
called Gamified Virtual Reality FlyThruCode (GVR-FTC).
Our prototype demonstrates the viability of the approach
while the empirical study investigates its potential.

The paper is organized as follows: the following sec-
tion discusses related work; Section 3 then describes our
solution approach. In Section 4, details about the realiza-
tion are provided. Our evaluation is described in Section 5,
which is followed by a conclusion.

II. RELATED WORK
Work related to software visualization includes Teyseyre
and Campo (Teyseyre and Campo, 2009), who provide an
overview and survey of 3D software visualization tools
across the various SE areas. Software Galaxies3 gives a
web-based visualization of dependencies among popular
package managers and supports flying, with each star rep-
resenting a package clustered by dependencies. CodeCity
(Wettel and Lanza, 2007) is a 3D software visualization
approach based on a city metaphor and implemented in
SmallTalk on the Moose reengineering framework. Build-
ings represent classes, districts represent packages, and
visible properties depict selected metrics, with Wettel et al.
(Wettel et al., 2011) showing a significant improvement in
task correctness and task completion time. X3D-UML
(McIntosh, 2009) provides 3D support with UML in planes
such that classes are grouped in planes based on the pack-
age or hierarchical state machine diagrams. As to VR ap-
proaches, Imsovision (Maletic, Leigh, and Marcus, 2001)
visualizes object-oriented software using electromagnetic
sensors attached to shutter glasses and a wand for interac-
tion. ExplorViz (Fittkau, Krause, and Hasselbring, 2015) is
a browser-based web application that uses Javascript-based
WebVR to support VR exploration of 3D software cities
using Oculus Rift together with Microsoft Kinect for ges-
ture recognition. In contrast, GVR-FTC, visualizes soft-
ware structures by leveraging common game engine VR
capabilities and a single VR system and controller set (not
requiring trained gestures) for an immersive VR software
visualization environment. It is also unique in providing
multiple dynamically-switchable and customizable meta-

3 http://github.com/anvaka/pm/

phors that support tagging, searching, and filtering of visu-
al objects. An oracle in the form of a virtual tablet and
keyboard are unique for providing an additional intuitive
interaction capability within the VR landscape for access-
ing diverse external non-VR SE tool data.

With regard to digital gamification within SE, Pedreira
et al. [25] carried out a systematic mapping of studies by
extending the ISO/IEC 12207 to classify the SE process
areas that were gamified for 29 primary studies from 2011-
2014 and concluded that: the application of gamification in
SE is in an initial stage, research in this area is quite pre-
liminary, there is little sound evidence of its impact, and
that there is scarce empirical evidence. They found the
focus to lie mostly on software design, and to a lesser ex-
tent software requirements, project management, and other
support areas. With regard to the use of gaming within the
SE education field, Connolly et al. [17] performed a litera-
ture search of games-based learning in SE and "found a
significant dearth of empirical research to support this
ap3proach." We were unable to find work related to the
application of VR-based DG in the area of program code
comprehension.

Our approach GVR-FTC supports the gamification of
software program structures in VR for exploration, analy-
sis, description, training and education. In contrast to other
games, our GVR-FTC can gamify any provided real pro-
ject program code, rather than creating some simulated or
fictional environment, and thus motivate the learning of an
actual program for a software organization.

III. SOLUTION APPROACH
GVR-FTC utilizes a 3D application domain view visuali-
zation (Oberhauser, Silfang, and Lecon, 2016) of program
code structure (i.e. the software architecture). On these
often invisible abstract structures, it provides a non-textual
perspective, arranging customizable symbols in 3D space
and enabling fly-through navigation. For example, certain
information typically not readily accessible is visualized,
such as the relative size of classes (not typically visible
until multiple files are opened or a UML class diagram is
created), the relative size of packages to one another, and
the dependencies between classes and packages.

A. Architecture
Figure 1 shows the GVR-FTC game-engine-based archi-
tecture. Assets are used by the game engine (Unity in our
implementation) and consist of Animations, Fonts, Import-
ed Assets (like a ComboBox), Materials (like colors and
reflective textures), Media (like textures), 3D Models,
Prefabs, Shaders (for shading of text in 3D), VR SDKs,
and Scripts. Scripts consist of Basic Scripts like user inter-
face (UI) helpers, Logic Scripts that import, parse, and load
project data structures, and Controllers that react to user
interaction. Logic Scripts read Configuration data about
Stored Projects and the Plugin System (input in XML
about how to parse source code and invocation com-

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

79

mands). Logic Scripts can call Tools consisting of General
and Language-specific Tools. General Tools currently
consist of BaseX, Graphviz, PlantUML, and Graph Layout
- our own variant of the KK layout algorithm for position-
ing objects. Java-specific tools are srcML, Campwood
SourceMonitor, Java Transformer (invokes Groovy
scripts), and Dependency Finder. Additional tools and
applications to be easily integrated as Plugins.

Figure 1: Software architecture.

B. Principles
Solution principles include: multiple dynamically switcha-
ble and tailorable 3D visual metaphors (space, terrestrial,
custom); delineated grouping metaphors of representative
objects for code packages or components (solar systems,
glass bubble or tree-lined cities); directed connection met-
aphors for object dependencies (pipes, light rays);
flythrough navigation (i.e. motion) via camera movement
by controllers in an anchored scene; an oracle to readily
access data (virtual tablet); tagging support to custom label
objects in the landscape; and immersive background
sounds.

C. Code Structure Extraction Process
The structure extraction process consists of: (1) modeling
generic program code structures, metrics, and artifacts as
well as visual objects, (2) mapping the model to a visual
object metaphor, (3) extracting a given project's structure
and metrics, (4) visualizing a given model instance within
a metaphor, and (5) supporting navigation through the
model instance (via camera movement based on user inter-
action).

D. Gamification
The intention of our serious digital gamification approach
is to motivate users to familiarize themselves with the
actual (not fictional) textual source code or code structures
of any given project within a (VR or non-VR) visualization

environment. For this, various DGs were realized (BLong
and DepEnd) and others are foreseen, for instance, to gam-
ify project knowledge (program code or structural) com-
prehension of a given project by reconstructing missing
structures or by searching and exploring it to find certain
program or structural elements. A game aspect of ranking
is also included by showing the top scorers at the end of a
game, and the reward system thus permits one type of
knowledge or understanding comparison with cohorts.

IV. REALIZATION
We now describe the VR environment and metaphors be-
fore detailing the implemented DGs.

A. VR Environment
The HTC Vive, a room scale VR set, is used to track

the movement of a head-mounted display and two wireless
handheld controllers (see Figure 2) using two 'Lighthouse'
base stations (not shown). Note that the pictured wall is
mirroring what the subject is viewing. The touchpad on the
left hand-held controller controls altitude (up, down) and
the right one direction (left, right, forward, backward) to
realize flythrough navigation by moving the camera posi-
tion. A laser pointer for selection becomes visible when the
controller enters the view field, (shown in the universe
metaphor in Figure 2) and a selected object (class) changes
to a whitish color and is pointed to by a rotating inverted
pyramid to track smaller objects during navigation.

Figure 2: Subject using Vive HTC headset and controller
(visible in a scene making a planet selection in solar
system).

B. VR Metaphors
A welcome room in the form of a space vehicle cockpit is
shown initially for metaphor and game or other destination
selection (Figure 3). To exemplify support for multiple 3D
visual metaphors, a universe (Figure 4) and a terrestrial
metaphor (Figure 5) were implemented, as they are rela-
tively universal metaphors - more detailed justification is
described in (Oberhauser, Silfang, and Lecon, 2016). In the
terrestrial metaphor, labeled glass bubble cities represent
packages (Figure 5); buildings represent classes (Figure 6,
labeled in blue at the top) - the number of stories represent

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

80

some metric (in this case the number of class methods);
and colored pipes show directed dependencies. In the uni-
verse, packages are represented by a solar system (Figure
2), classes via a labeled planet (Figure 4), and dependen-
cies between classes or packages are indicated via directed
colored light beams.

Figure 3: Welcome room cockpit for metaphor selection.

Figure 4: Universe metaphor showing the selected planet
(class) via an inverted pyramid as an arrow. Tags on
planets are evident above their label, and the oracle shows
the interface for the selection.

While our non-VR 3D FTC variant utilizes a semi-
transparent Heads-Up Display (HUD) paradigm to show
various informational screens, in VR mode we determined
that a HUD was not practical, since these screens contain
large amounts of text that must be fairly opaque to be read-
able - hiding the background landscape. Moreover, any
head movement shifts the then hidden landscape and can
thus cause disorientation, while the focal point must be
further inset than on a monitor. Thus, we chose to use a
virtual tablet as an oracle (Figure 7) for providing source
code (Figure 7), code metrics (Figure 5), interfaces (Figure

4), dynamically generated UML diagrams, tagging, filter-
ing, and project data for a selected object. Two buttons at
the top support switching to the previous or next screens, a
scrollbar is on the right, and various features buttons are
placed at the bottom. To enable users to more easily recall
objects, persistent tagging permits labels matching auto-
matic patterns or any manually inserted label to be placed
on an object (e.g., the Important Tag on the Player class in
Figure 4).

Figure 5: Terrestrial metaphor with bubbled cities
(packages) and the oracle showing metrics for a selected
object (notice upside-down pyramid pointer).

Figure 6: Terrestrial metaphor with building (class)
selected and oracle (tablet) showing metrics for the
selected object (pink building).

As to the internal realization, XML is used to hold rele-
vant source code, metrics, and metadata. For extracting
existing code structure information into our model, srcML
(Maletic, J. et al. 2002) is used to convert source code into
XML and BaseX used for XML storage. Campwood
SourceMonitor and DependencyFinder extract code met-
rics and dependency data, and plugins with Groovy scripts

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

81

and a configuration file are used to integrate the various SE
tools. The game logic for both DGs described in this sec-
tion was realized within the Scripts module of Figure 1.

Figure 7: The oracle (virtual tablet) interface showing
source code for a selected object. A bidirectional
(dependency) pipe is seen in the background.

C. Dependency Structure Gamification (DepEnd)
While in a visually appealing metaphor, the game DepEnd
seeks to motivate players to familiarize themselves with
source code dependency structures. Referencing key game
elements from the Game Ontology Project (GOP)4 (Zagal
and Bruckman, 2008), the main DG elements are:

• Goal: The goal is to earn points by correctly determin-

ing the directed dependencies between program code
classes by analyzing the source code via our oracle
(virtual tablet) and then indicating the determined de-
pendencies via drag-and-drop of a connector. Further,
time is tracked and compared in the rankings to moti-
vate the user to work quickly.

• Interfaces: As to hardware, a VR headset is used for
the visual display and VR controllers are used to inter-
act in VR. Source code is accessed via an oracle (vir-
tual tablet). A virtual laser pointer on the controller is
used to connect classes with directional dependencies.

• Rules: Points and the time necessary function as the
reward system and are used for comparison with other
high scorers. One point is accrued for each correctly
set dependency, no points are given for each missing
dependency, and -1 points are given for each incorrect
dependency (between the wrong objects or in the
wrong direction) - in order to penalize guessing.

• Entity Manipulation: All visualized dependencies
between classes are hidden when the game is started.
Class objects, be they buildings in the terrestrial or
planets in the universe metaphor, are then selected in-
dividually and, after code analysis within the oracle, a
dependency is dragged-and-dropped (drawn) onto an-

4 http://www.gameontology.com

other class object.

Figure 8: Initial DepEnd game setup in the City metaphor.

Figure 9: Initial DepEnd game setup (Universe metaphor).

Figure 10: Directed dependency created in City metaphor.

Initially all dependencies between classes and packages
are hidden (Figure 8 and Figure 9). On the oracle, access to
the source code Java import statements (Figure 7) and the
Interface screen (Figure 4), which shows inbound and
outbound dependencies, is restricted to prevent cheating.
Time tracking starts as soon as soon as the project is load-
ed. The oracle is then used to read and analyze the source

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

82

code to determine class dependencies without knowing the
actual import statements. The missing directed connections
are then inserted by the user by selecting a class with the
controller and releasing the connector via drag and drop on
another class (Figure 10, Figure 11, Figure 12, and Figure
13). For bidirectional dependencies, the procedure is re-
peated starting with the opposite class. When finished the
user selects “Check” on the “Game” screen, stopping the
clock. The result analysis is shown in Figure 14 and Figure
15, where connectors are colored green when correct, yel-
low when wrong (in direction or between the wrong ob-
jects), and red when missing. The player can then navigate
to see where mistakes were made and check the source
code. The highest scores are shown in a table on the oracle
for comparison Figure 16 with the ability to add one’s
name if one has a top score.

Figure 11: Determining dependencies in the Universe
metaphor.

Figure 12: A directed dependency in the City metaphor.

Figure 13: A directed dependency in the Universe
metaphor.

Figure 14: DepEnd game analysis (City metaphor).

Figure 15: DepEnd game analysis (Universe metaphor).

Figure 16: Game ranking screen.

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

83

D. Code Modularization Gamification (BLong)
The focus of the game BLong is for users to familiarize
themselves with the modularization of a code project and
be able to recall its structural modularization. Referencing
key game elements from the GOP, the main DG elements
are:

• Goal: The goal is to earn points while being timed by

determining the module (Java package) for each ele-
ment (Java class) while being timed and then to indi-
cate this by drag-and-drop of the object onto the cor-
rect module.

• Interfaces: A VR headset is used for the visual dis-
play, VR controllers are used to interact in VR to ac-
cess code via an oracle (virtual tablet) and to place
classes in packages (in accordance with the metaphor).

• Rules: Points and the total time duration function as
the reward system and are used for comparison with
other high scorers. One point is accrued for each cor-
rect and -1 points for each incorrect placement, in or-
der to penalize guessing.

• Entity Manipulation: Class objects, be they buildings
in the terrestrial or planets in the universe metaphor,
are selected individually and dragged-and-dropped on-
to some package object (e.g., bubble or sun) for group-
ing placement.

First, based on Java packages as a grouping mecha-

nism, the configuration of classes within packages is pre-
sented (Figure 17 and Figure 18). The user then has unlim-
ited time to visually impregnate the modularization config-
uration (or its implicit underlying principles or patterns).
Once the user starts the game, the classes are placed ran-
domly in a line external to empty packages (Figure 19 and
Figure 20) and the user is timed as to how quickly they can
correctly reproduce the modularization by moving classes
via drag-and-drop to the appropriate package (Figure 21
and Figure 22) while minimizing the need to access the
source code to determine its package. In contrast to De-
pEnd, no interaction with the oracle for code analysis is
required, since the correct allocation is shown visually
before starting the game, unless one forgets where an ob-
ject belongs and needs to look. When finished, the user
selects “Check” on the “Game” screen, stopping the clock.
The result analysis is shown in Figure 23 and Figure 24,
where correctly placed objects are colored green and oth-
erwise red to provide visual feedback. The player can then
navigate to see where mistakes were made and also check
the source code. The highest scores are shown in a table on
the oracle for comparison (Figure 25) with the ability to
add one’s name if one has a top score.

Figure 17: Example initial BLong module depiction in the
City metaphor.

Figure 18: Example initial BLong module depiction in the
Universe metaphor.

Figure 19: Initial BLong game start (City metaphor).

Figure 20: Example initial BLong game start in the
Universe metaphor.

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

84

Figure 21: BLong drag-and-drop in the City metaphor.

Figure 22: BLong drag-and-drop in the Universe metaphor.

Figure 23: BLong game analysis in the City metaphor.

Figure 24: BLong game analysis in the Universe metaphor.

Figure 25: BLong points and time ranking.

V. EVALUATION
The experiential and motivational benefits of VR-FTC for
VR novices were underscored in our previous empirical
study (Oberhauser, Silfang, and Lecon, 2016). Further-
more, in our prior work (Oberhauser and Lecon, 2017), we
noted no significant difference in usability efficiency of
VR-FTC vs. desktop mouse usage for SE analysis tasks.
Thus the focus of this evaluation was on the games them-
selves, for which we utilized a convenience sample of six
Master of Computer Science students. Due to various
scheduling restrictions and resource limitations, we were
unable to expand the number of subjects for this study.

While BLong and DepEnd can use any real project of
any number of packages, classes, and dependencies, for the
empirical evaluation we initially limited the experiment to
placement of a maximum of 10 objects or dependencies,
just exceeding the cognitive working memory limit (Miller,
1956). Otherwise, for BLong users might attempt to dis-
cover allocation patterns for classes to certain packages
rather than being able to remember an arbitrary configura-
tion. Also, this limit reduced the experiment duration.
While the object grouping was primarily a domain associa-
tion, to ensure that users inspected and paid attention to the
entire configuration, a few objects were randomly assigned
to a contrary package (an exception to expectations). When
questions requiring the editor (Notepad++) occurred, for
BLong a table was provided and a mark needed to be made
to indicate in which of the 3 packages each of the 10 clas-
ses were; for DepEnd a drawing of the 3 packages and
their classes was provided and they only needed to draw
the dependencies.

To analyze the effects of GVR-FTC gamification with
regard to code modularization using the BLong game,
Table 1 shows the averaged results in relation to typical
editor usage (using Notepad++ on a PC) for BLong. BLong
had a lower error rate (5.0% vs. 8.3%) and was faster to
complete (157 vs. 209 seconds) versus an editor. The game
was more fun (4.7 vs. 4.0) and the subjects felt they under-
stood the structure better (3.8 vs. 3.3) versus an editor
(Notepad++), whereby the mouse-based editor interface

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

85

(which they are used to) was found to be more intuitive
(4.3) than the VR controller interface of BLong (3.8).

For GVR-FTC gamification of dependency structures
using the DepEnd game, Table 1 shows that DepEnd had a
much higher error rate than editor (Notepad++) usage
(40% vs. 6.7%). This may be due to the requirement in
DepEnd to access the oracle and analyze the code to
determine dependencies, and then visually draw these
using the VR controllers without forgetting the relation
start, end, and direction. Using the editor, the user need
only draw a line on the answer sheet and move on. This
also explains the higher duration (504 vs. 401 seconds) for
DepEnd vs. editor usage, since more cumbersome
interaction to place both ends of the dependency were
required. This also affected its intuitiveness (3.8 vs. 4.6 for
the editor). However, DepEnd had a higher fun factor (4.0
vs. 3.0) and was felt to provide a better structural
understanding (4.2 vs. 2.6), which underscore the positive
potential of VR visualization and gamification for program
comprehension.

When comparing the DepEnd to BLong games, BLong
had fewer erroneous placements (5% vs. 40% for DepEnd)
and was more fun than DepEnd (4.7 vs. 4.0). Users found
both DepEnd and BLong to be equivalently helpful in
understanding the project structure (4.0 vs. 3.83 for
BLong). DepEnd required users to read and analyze code
to determine dependencies, whereas BLong required only
visual object analysis. BLong was just as intuitive as
DepEnd to use.

Table 1: Averaged results for VR and editor-based games.

 BLong Editor vs.
BLong

DepEnd Editor vs.
DepEnd

Error rate 5.0% 8.3% 40% 6.7%
Duration
(seconds)

157 209 504 401

Fun factor1 4.7 4.0 4.0 3.0
Intuitiveness1 3.8 4.3 3.8 4.6

Structural
understanding1

3.8 3.3 4.2 2.6

1Scale of 1 to 5 (best)

As to possible threats to validity, the enjoyment factor

might be independent of the gamification factor and be
based, for instance, primarily on the attractiveness of the
visualization environment or perhaps the newness of such a
VR application. However, based on the open comments
that asked about motivation and which reported game-like
motivation, in our opinion this is unlikely. While the re-
sults of our study are not statistically significant due to the
limited sample and resources, we interpret these prelimi-
nary results to show that the gamification approach holds
promise and future work will pursue this further with a

more comprehensive empirical study and a more tightly
integrated gamification interface.

VI. CONCLUSION
The GVR-FTC VR-based gamification approach provides
an immersive VR flythrough game experience of any given
program code structure (currently only Java is realized)
using multiple metaphors for visualizing, navigating, and
conveying program code information interactively. Two
games (DepEnd and BLong) were realized to demonstrate
gamification's potential for improving the comprehension
of structural dependencies and code modularization. In
contrast to other approaches, it can gamify any given pro-
gram code project (currently only Java projects are sup-
ported). The evaluation showed that the VR-based games
were more fun and provided better program structure com-
prehension support than equivalently gamified text editor
interaction. While our evaluation sample was not statisti-
cally significant, our results underscore the potential for
gamification to help focus a VR user's attention in a visual-
ly distracting environment. Future work will investigate
gamification's potential with regard to program code com-
prehension with a more comprehensive empirical study
and will look into improving the game interfaces to reduce
error rates and improve efficiency.

ACKNOWLEDGMENTS
The authors thank Sinan Emecan, Alexandre Matic, Camil
Pogolski, and Patrick Sprenger for their assistance with the
design, implementation, and evaluation.

REFERENCES

Abt, C. 1970. Serious Games. The Viking Press.

Booch, G. 2005. The complexity of programming models. Key-
note talk at AOSD 2005, Chicago, IL, Mar. 14-18, 2005.

Brooks, F. P. Jr.. 1995. The Mythical Man-Month. Boston, MA:
Addison-Wesley Longman Publ. Co., Inc.

Butler, D. M. et al. 1993. Visualization reference models. In Proc.
Visualization ’93 Conf. IEEE CS Press, 337–342.

Connolly, T.M., Boyle, E.A. MacArthur, E., Hainey, T., and
Boyle, J.M. 2012. A systematic literature review of empirical
evidence on computer games and serious games, Computer
Education, 59, pp. 661–686.

Connolly, T., Stansfield, M. and Hainey, T. 2007. An application
of games-based learning within software engineering. British
Journal of Educational Technology, 38(3), pp. 416-428.

Crawford, C. 1984. The art of computer game design. McGraw-
Hill/Osborne Media.

Feijs, L. and De Jong, R. 1998. 3D visualization of software
architectures. Comm. of the ACM, 41, 12 (1998), 73-78.

Fittkau, F., Krause, A., and Hasselbring, W. 2015. Exploring
software cities in virtual reality. In Proc. IEEE 3rd Working
Conf. Software Visualization (VISSOFT), IEEE, 130-134.

The International Journal of Virtual Reality, 2017, 17(02): pp77-pp86

86

Maletic, J. et al. 2002. Source code files as structured documents.
In Proc. 10th Int. Workshop on Program Comprehension,
IEEE, pp. 289-292.

Maletic, J. I., Leigh, J. and Marcus, A. 2001. Visualizing software
in an immersive virtual reality environment. In Proc. 23rd
Intl. Conf. on Softw. Eng. (ICSE 2001). IEEE.

McIntosh, P. M. 2009. X3D-UML: user-centred design, imple-
mentation and evaluation of 3D UML using X3D. Ph.D. dis-
sertation, RMIT University.

Michael, D.R. and Chen, S.L. 2005. Serious games: Games that
educate, train, and inform. Muska & Lipman/Premier-Trade,
2005.

Miller, G. A. 1956. The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review. 63 (2): 81–97.

Oberhauser, R. 2016. An Ontological Perspective on the Digital
Gamification of Software Engineering Concepts. Journal on
Advances in Software, IARIA, ISSN: 1942-2628, vol 9, no 3
& 4, pp. 207-221.

Oberhauser, R., and Lecon, C. 2017. Virtual Reality Flythrough

of Program Code Structures. In Proc. of the 19th ACM Virtu-
al Reality International Conference (VRIC 2017). ACM.

Oberhauser, R., Silfang, C., and Lecon, C. 2016. Code structure
visualization using 3D-flythrough. In Proc. 11th Int'l Conf. on
Comp. Sc. & Educ. (ICCSE), IEEE, pp. 365-370.

Teyseyre, A. R. and Campo, M. R. 2009. An overview of 3D
software visualization. Visualization and Computer Graphics,
IEEE Transactions on, 15, 1 (2009), 87-105.

Van Eck, R. 2006. Digital game-based learning: It's not just the
digital natives who are restless, EDUCAUSE review, 41(2),
pp. 16-30.

Wettel, R. and Lanza, M. 2007. Program comprehension through
software habitability. In Proc. 15th IEEE Int'l Conf. on Pro-
gram Comprehension, IEEE CS, pp. 231–240.

Wettel, R. et al. 2011. Software systems as cities: A controlled
experiment. In Proc. of the 33rd Int'l Conf. on Software Engi-
neering, ACM, pp. 551-560.

Wolf, M. 2002. The medium of the video game. University of
Texas Press.

