
Immersed in Software Structures: A Virtual Reality Approach

Roy Oberhauser and Carsten Lecon
Computer Science Dept.

Aalen University
Aalen, Germany

email: {roy.oberhauser, carsten.lecon}@hs-aalen.de

Abstract - Program code has been inherently challenging to
visualize due to its abstract nature. With the advent of
affordable virtual reality (VR) hardware products, the use of
VR has become a feasible option for software tools. In this
paper, we describe a VR approach for visualizing internal
program code structures and evaluate its suitability for
selected software development and education tasks. VR
efficiency and effectiveness was equivalent to mouse and screen
mechanisms, but provided an enhanced user experience for
70% of the subjects, whereas 30% experienced VR sickness.

Keywords - Virtual reality; software visualization; program
comprehension; software engineering; engineering training;
computer education.

I. INTRODUCTION
With the ongoing digitalization of society, the amount of

program source code produced and maintained worldwide is
dramatically increasing. Google alone has at least 2bn LOC
accessible by 25K developers [1], and it has been estimated
that well over a trillion lines of code (LOC) exist worldwide
with 33bn added annually [2]. Aristotle stated, "thought is
impossible without an image", and F. P. Brooks, Jr. asserted
that the invisibility of software is an essential difficulty of
software construction because the reality of software is not
embedded in space [3]. Common display forms used in the
comprehension of source code include text and the two-
dimensional Unified Modeling Language (UML). Program
comprehension limitations are evident in the relatively low
code review reading rates of around 200 LOC/hour [4].

Feijs and De Jong [5] present a vision of walking through
a 3D visualization of software architecture with VRML. Yet
the potential of VR and game engines have not been realized
in software engineering (SE) tools, and their practicality with
off-the-shelf VR hardware remains insufficiently explored.

In prior work, we developed a non-VR (PC display)
FlyThruCode (FTC) 3D fly-through approach for navigating
software structures [6]. This paper contributes VR-
FlyThruCode (VR-FTC), a new VR approach for visualizing,
navigating, and conveying program code information
interactively in a VR environment to support exploratory,
analytical, and descriptive cognitive processes [7]. A
prototype demonstrates its viability, with a technical and
empirical study investigating effectiveness, efficiency, and
user experience (UX) factors for SE tasks and SE education.

The paper is organized as follows: the next section
discusses related work; Section III then describes the
solution approach. Section IV provides realization details.
Section V evaluates the solution, which is followed by a
conclusion.

II. RELATED WORK
Teyseyre and Campo [8] give an overview and survey of

3D software visualization tools across the various software
engineering areas. Software Galaxies [9] provides a web-
based visualization of dependencies among popular package
managers and supports flying. Every star represents a
package that is clustered by dependencies. CodeCity [10] is a
3D software visualization approach based on a city metaphor
and implemented in SmallTalk on the Moose reengineering
framework. Buildings represent classes, districts represent
packages, and visible properties depict selected metrics,
improving task correctness but slowing task completion time
[11]. Rilling and Mudur [12] use a metaball metaphor
(organic-like n-dimensional objects) combined with dynamic
analysis of program execution. X3D-UML [13] provides 3D
support with UML in planes such that classes are grouped in
planes based on the package or hierarchical state machine
diagrams. A case study of a 3D UML tool using Google
SketchUp showed that a 3D perspective improved model
comprehension and was found to be intuitive [14]. Langelier
et al. [15] supports the visualization of metrics (e.g.,
coupling, test coverage).

As to VR, Imsovision [16] visualizes object-oriented
software in VR using electromagnetic sensors attached to
shutter glasses and a wand for interaction. ExplorViz [17] is
a Javascript-based web application that uses WebVR to
support VR exploration of 3D software cities using Oculus
Rift together with Microsoft Kinect for gesture recognition.

 In contrast to the above work, the VR-FTC approach
leverages game engine capabilities to support an immersive
VR software visualization environment multiple
dynamically-switchable (customizable) metaphors; uses one
VR system and controller set (not requiring gesture training)
for interaction and navigation; supports tagging, searching,
and filtering; and integrates information screens within the
VR landscape that dynamically invoke external SE tools.

III. SOLUTION APPROACH
VR-FTC uses VR flythrough for visualizing program

code structure or architecture. This inherent 3D application
domain view visualization [8] arranges customizable
symbols in 3D space to enable users to navigate through an
alternative perspective on these often hidden structures. For
example, certain information typically not readily accessible
is visualized, such as the relative size of classes (not
typically visible until multiple files are opened or a UML
class diagram is created), the relative size of packages to one
another, and the dependencies between classes and packages.

181Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

184Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

185Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

186Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

