
C-TRAIL: A Program Comprehension Approach for  
Leveraging Learning Models in Automated Code Trail Generation 

Roy Oberhauser 
Department of Computer Science, Aalen University, Aalen, Germany 

 

Keywords: Program Code Comprehension, Learning Models, Recommender Systems, Obfuscation. 

Abstract: With society's increasing utilization of (embedded) software, the amount of program source code is 
proliferating while the skilled human resources to maintain and evolve this code remain limited. Therefore, 
software tools are needed that can support and enhance program code comprehension. This paper focuses on 
program concept location and cognitive learning models, and contributes an automatic code trail generator 
approach called a Code Trail Recommender Agent Incorporating Learning models (C-TRAIL). Initial 
empirical results applying the prototype on obfuscated code show promise for improve program 
comprehension efficiency and effectiveness. 

1 INTRODUCTION 

The software industry continues to struggle to meet 
society's seemingly insatiable demand for software 
production and maintenance. Indicators for the 
immensity of the problem include code size, the lack 
and turnover of human resources, and costs. It has 
been estimated that well over a trillion lines of code 
(LOC) exist with 33bn added annually (Booch, 
2005). E.g., Google has 2bn LOC accessible by 25K 
developers (Metz, 2015). Active open source 
projects double in size and number in ~14 months 
(Deshpande & Riehle, 2008). Conversely, the pool 
of programmers is not growing correspondingly. 
E.g., Computer Science degrees in 2011 in USA 
were equivalent to 1986 in number (~42K) and 
percentage of 23 year olds (~1%) (Schmidt, 2015). 
The situation is exacerbated by the typically high 
employee turnover rates for software companies, 
e.g., 1.1 years at Google (PayScale, 2016). As to 
costs, Y2K exacted >$300bn globally (Mitchell, 
2009)., while >50% of information systems in the 
EU needed modification for Euro support (Jones, 
2006).  

Given limited resources and such a vast amount 
of code, ~75% of technical software workers are 
estimated to be doing maintenance (Jones, 2006). 
Moreover, program comprehension may consume up 
to 70% of the software engineering effort (Minelli, 
2015). Activities involving program comprehension 

include investigating functionality, internal 
structures, dependencies, run-time interactions, 
execution patterns, and program utilization; adding 
or modifying functionality; assessing the design 
quality; and domain understanding of the system 
(Pacione et al., 2004). 

One key challenge faced by programmers when 
presented with an unfamiliar preexisting program 
codebase is how to become sufficiently familiar with 
relevant areas in a short time. Questions include: 
Where should one start? What should one look at 
next? What is relevant to know and what is optional? 

To improve this program comprehension 
situation, the solution approach Code Trail 
Recommender Agent Incorporating Learning models 
(C-TRAIL) contributes a code trail recommender 
approach  builds on our prior work (Oberhauser, 
2016) by amalgamating diverse cognitive learning 
model styles with granular computing, collaborative 
filtering, and the traveling salesman paradigm. 
Given only the program code, C-TRAIL provides a 
web service offering automated code trail guidance 
to help the user avoid missing relevant areas, avoid 
dead ends, avoid reorientation waste, and avoid 
irrelevant areas. Analogous to geographic route 
planning via navigation software, it readjusts on-the-
fly to trail deviations and replans the route.  

The paper is organized as follows: Section 2 
discusses related work. Section 3 describes the 
solution concept followed by its realization. Section 
5 evaluates the solution, followed by a conclusion. 
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2 RELATED WORK 

(Robillard et al, 2014) provides an overview of 
recommendation systems in software engineering. 
Mylar (Kersten & Murphy, 2005) utilizes a degree-
of-interest model to filter out irrelevant files from 
the File Explorer and other views in the Eclipse 
integrated development environment (IDE). 
NavTracks (Singer et al., 2005) recommends files 
related to the currently selected files based on 
previous navigation patterns. For maintenance tasks 
in unfamiliar projects, Hipikat (Čubranić et al., 
2005) recommends software artifacts relevant to a 
context based on the source code, email discussions, 
bug reports, change history, and documentation. The 
FEAT tool uses concern graphs either explicitly 
created by a programmer or automatically inferred 
based on navigation pathways utilizing a stochastic 
model, whereby a programmer confirms or rejects 
them for the concern graph (Robillard & Murphy, 
2003). The Eclipse plugin Suade supports drag-and-
drop of related fields and methods into a view to 
specify a context, and Suade utilizes a dependency 
graph and heuristics to recommend suggestions for 
further investigation (Robillard, 2008). Codetrail 
(Goldman & Miller, 2009) connects source code and 
hyperlinked web resources via Eclipse and Firefox. 
(Yin et al., 2010) propose applying coarse-grained 
call graph slicing, intra-procedural coarse-grained 
slicing, and a cognitive easiness metric to guide 
programmers from the easiest to the hardest non-
understood methods. (Cornelissen et al., 2009) 
survey work on program comprehension via 
dynamic analysis. 

In contrast, C-TRAIL automatically generates a 
code-centric time-limited trail of relevant areas via a 
web service, ordered based on the selected learning 
model while not requiring a project history or 
visualization paradigm. Visualization also has the 
potential issue of information overload versus 
relevance, and auto-generated diagrams face ideal 
element placement issues. Human-generated 
diagrams may not remain consistent, and may reflect 
abstractions but still leave a user unfamiliar with the 
code. Furthermore, the user internal cognitive model 
may not adhere to a presented visual model, while 
visual-text paradigm switching may distract or be 
cognitively burdensome. Support for not navigating 
class relationships includes the empirical eye-
tracking study finding that "software engineers do 
not seem to follow binary class relationships, such as 
inheritance and composition" (Guéhéneuc, 2006). 

3 SOLUTION APPROACH 

Concepts are the fundamental building blocks of 
knowledge and human learning, and are processable 
by the human mind, exhibit some perceived 
regularity, and can be designated by a label (Rajlich 
& Wilde, 2002). Hence, we designate concept 
location as the understanding about where a concept 
is implemented in code relative to other concepts, 
which is the primary focus of this paper within the 
larger sphere of program comprehension. While the 
exact identification of concepts and their locations in 
a program remains an open problem, our solution 
takes a pragmatic approach utilizing the existing 
modularization within the program, especially 
method to class and class to package relationships. 

We assume a program comprehension activity is 
time constrained, and that it is unrealistic to 
understand a sufficiently large codebase in its 
entirety (Rajlich & Wilde, 2002), nor is it necessary 
or always possible (Lakhotia, 1993). Thus, an 
inherent trade-off is assumed between sufficient 
coverage (ensuring that at least the most essential 
program areas were presented) and relevance 
(minimizing irrelevant or optional program areas). 

Given the diversity of individuals, 
comprehension activities and intentions (Pacione et 
al., 2004), programming languages, tooling, and 
environments, we chose to support comprehension 
via an automated approach that: 1) recommends a 
code-centric navigation, 2) supports a spectrum of 
learning models, 3) utilizes individual profiles and 
collaborative filtering, and 4) can be readily 
integrated in various tools and environments.  

3.1 Cognitive Learning Models 

In the constructivist theory of human learning, 
humans actively construct their knowledge (Novak, 
1998). We thus view program comprehension as 
individualistic for aspects such as capacity, speed, 
motivation, and how mental models are constructed. 
Additionally, programmers possess different 
application-independent general and application-
specific domain knowledge. Information processing 
habits of an individual are known as cognitive 
learning styles. C-TRAIL provides individual and 
automated support for various learning model (M:) 
styles, primarily ordering or adjusting concept 
location (code area) visitation scope.  

M:Bottom-Up: in this learning model, chunking 
(Letovsky, 1986) is used with the program model 
being correlated with a situation model (Pennington, 
1987). Microstructures are mentally chunked into 
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larger macrostructures as comprehension increases. 
C-TRAIL assumes a package hierarchy. 

M:Top-Down: this model (Soloway et al., 1988) 
is typically applicable when familiarity with the 
code, system, domain, or similar system structures 
already exists. Beacons and rules of discourse are 
used to hierarchically decompose goals and plans. 
To automate support, C-TRAIL assumes a cluster 
hierarchy and starts trails from the highest hierarchy.  

M:Topics/Goal: when programmers are given a 
specific task, they tend to utilize an as-needed 
strategy to comprehend only those portions relevant 
for the task (Koenemann & Robertson, 1991). To 
support this simply, C-TRAIL supports investigating 
a limited code subset via topic filtering. Topic filters 
(positive and negative) can be shared and support a 
goal (e.g., optimize memory) or apply to a specific 
topic (e.g., security, database access, user interface). 

M:DynamicPath: in this model, ordering is 
oriented on actual invocation execution traces 
(Cornelissen et al., 2009).  

M:Exploratory: this model supports either 
discovery or analysis to confirm a hypothesis, with 
the learner actively deciding and controlling the 
navigation. It is supported by default, since a user 
can deviate at any time.  

3.2 Solution Principles 

C-TRAIL includes these solution principles (P:): 
P:POI: code locations, currently at the 

granularity of functions or methods, are considered 
concept locations identified and viewed as Points-
of-Interest (POI), a knowledge concept in a 
knowledge landscape (the codebase) or a granule 
(here a cluster of code lines) in granular computing 
paradigm (Bargiela & Pedrycz, 2012), analogous to 
geographical locations in navigational systems. A 
POI is identified by a unique identifier, such as a 
fully qualified name (FQN) in the Java programming 
language (concatenating its package name, class 
name, colon, and its method name).  

P:POILocality: conceptually, POIs can be 
viewed from the perspective of knowledge distance 
(Qian et al., 2007) or closeness (locality). To reduce 
the cognitive burden of code context switches, POI 
visitations are ordered and clustered by locality to 
reduce unnecessary switches. The T:POI Distance 
technique (Section 3.4) is currently used. 

P:POIRanking: a POI's relative importance for 
comprehension is ranked in accord with a learning 
model. Statically, the T:MethodRank technique 
(Section 3.4) or a dynamic analysis can be applied. 

P:POIFiltering: topic or named goal selection 

supports a positive/negative POI filtering, currently 
via FQN pattern matching. 

P:POIVisitTime: given no initial data, visitation 
times can be estimated using static code metrics like 
LOC and complexity. When the historical visitation 
times of similar users are available, T:UserBased-
CollaborativeFiltering (Section 3.4) can be used. 

P:Timeboxing:  comprehension is usually time-
bound, so a subset of priority ordered POIs that can 
likely be visited in the given timebox is selected, and 
may be reordered to accommodate POI locality.  

P:CodeTrails: the recommendation service agent 
provides code trails (in a format such as XML) 
consisting of a navigation and visitation order for the 
POIs while considering locality. A mapping of the 
traveling salesman problem and related traveling 
salesman planning (TSP) algorithms (Lawler et al., 
1985) are applied to these granules (the POIs) and 
the associated knowledge distance between them. 
While the recommended path may not necessarily be 
optimal, it provides an efficient path nonetheless 
through the knowledge landscape (source code). 
Two modes are supported: initial mode generates a 
trail from scratch, while adapt mode dynamically 
reoptimizes it based on the actually visited POIs and 
session time left. Visited POIs (including deviations) 
are detected via events and automatically removed 
from the adapted trail. Via events, the POI visitation 
history is tracked and can be replayed later. 

P:UserProfile: a user's individual knowledge 
level (e.g., familiar vs. unfamiliar) and competency 
level (junior vs. senior) are taken into consideration. 

3.3 Solution Architecture 

The conceptual architecture (Figure 1) consists of 
four modules: Cognitive Learning, Knowledge 
Processing, a Database Repository, and Integration.  

 
Figure 1: C-TRAIL conceptual architecture. 

The Cognitive Learning module supports various 
program code learning Models, Goals, Topics, 
execution Traces, and visitation History. The 
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Knowledge Processing module includes the 
components POI Prioritizer for ranking POIs, a POI 
Filter that filters based on visitations or topics, a 
Trail Estimator for visitation times, and a Trail 
Planner. The Database Repository utilizes 
appropriate database types to retain metadata, 
knowledge, or data. The Integration module 
includes a REST Web Service API (application 
programming interface) for development tool 
integration, an Input Processor to process inputs, 
transformations, and events (such as a POI visit) 
including analysis and tracing inputs, and a Trail 
Generator for generating a planned trail into a 
desired format. 

3.4 Solution Techniques  

The solution incorporates these techniques (T:): 
T:MethodRank: absent other indicators, it is 

assumed that frequently utilized domain methods 
should be comprehended before others. Thus to 
prioritize POIs, a variation of the PageRank 
algorithm (Page et al., 1999) we call MethodRank is 
applied. Here, webpages correspond to methods 
(code locations) and hyperlinks to invocations. 
Methods with more static references (invocations) in 
the code set are ranked higher. While runtime 
invocations (such as loops) are not considered, it can 
indicate methods with broader relative utilization 
and thus likely of greater comprehension relevance.  

T:POIDistance: granules (functions/methods) are 
assumed to be grouped in classes/files and 
packages/directories are ordered hierarchically. 
(Sub)package depth is mapped to a vertical axis, 
while classes group methods horizontally. Loosely 
analogous to geographical distance, a distance 
POIdist between any two POIs (3) A and B is 
determined by the vertical vdist (1) and horizontal 
hdist (2) distance. 

vdist = | depth(A) − depth(B) | (1)
 

 = 0 if class A  = class(B)			1 otherwise                      
 (2)

 

POIdist = vdist + hdist (3)
For example, the POIdist between methods in the 

same class is thus 0, between classes in the same 
package 1, etc. Although a higher cluster may 
represent a greater abstraction (e.g., only interfaces) 
and not necessarily be cognitively distant, any 
clusters between them should still be cognitively 
"closer". For instance, while the Java programming 
language has no concept of subpackages (each 
package is a separate entity), we assume a 

convention with additional dots implying further 
depth, and initial matching names implying a 
common cluster up to the first mismatch. 

T:HamiltonianCycle: For P:CodeTrails it is 
assumed that proper modularity and hierarchy are 
followed, implying a greater POIdist is equivalent to 
a larger mental jump. To reduce the cognitive 
burden, the shortest trail is sought that provides a 
POI visitation order such that each POI is visited 
exactly once (except the start is also the end, i.e. a 
Hamiltonian cycle). This calculation problem is a 
special case of the well-known TSP, so a constraint-
satisfaction solver can be utilized to calculate this. 

T:UserBasedCollaborativeFiltering: predicting 
POI visitation duration is difficult. Thus, analogous 
to allotting sufficient visitation time for geographical 
tourist destinations, user-based collaborative 
filtering is used to detect profile similarities and then 
recommend visitation times based on similar users.  

3.5 Data Processing 

Figure 2 shows the various data processing stages. 

 
Figure 2: C-TRAIL data processing stages. 

1) Input Processing: source code is imported 
and analyzed, resulting in a list of all POIs as FQNs. 
Each POI's cluster depth is determined by counting 
FQN subpackage depth, used to apply the 
T:POIDistance calculation. For M:DynamicPath, 
dynamic runtime traces are also required as input. 

2) POI Filtering: Any topic filters are applied, 
and POIs visited by this user (either in the expected 
order or out-of-order) are removed from the set. 

3) POI Prioritization: An ordered list of POIs is 
created. T:MethodRank is utilized when appropriate. 

4) POI Time Planning: actual per-user POI 
visitation times are tracked via events and stored. 
T:UserBasedCollaborativeFiltering is used to 
estimate visitation times. For a cold start, it can be 
estimated based on factors such as the user's profile, 
a configured default time per LOC, cyclomatic 
complexity. Starting at the top, the POI prioritized 
list is trimmed at the point where the cumulative 
time exceeds the timeboxed session. 

5) POI Locality Planning: POIs are reordered 
using a T:HamiltonianCycle planner accounting for 
locality (nearby POIs visited before distant POIs).  

6) Trail Generation: the trail in the 
recommended POI visitation order is then generated. 
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4 REALIZATION 

The C-TRAIL approach is independent of any 
realization or specific programming language. To 
determine its viability, a Java prototype was created 
that generates XML code trails for Java codebases, 
with a Neo4J  graph and a H2 relational database.  

4.1 Input Processing 

T:MethodRank requires a static analysis of methods 
(as FQNs) and their target invocation relationships 
and counts. For Java code, jQAssistant 1.0.0 and the 
GraphAware Neo4j NodeRank plugin (with a 
damping factor of 0.85) were used. A Cypher query 
selects all method FQNs and their invoked method 
FQNs and the result exported to a CSV file, which is 
imported to the C-TRAIL Neo4J server. A separate 
simplified graph is created of FQN(Method)-
>INVOKES->FQN(TargetMethod) relationships. 
Then, NodeRanks for every node (i.e., Method) are 
calculated based on the number of invocations, with 
the NodeRank stored in each node's property (see 
Figure 3). Via the Neo4J REST API, the result is 
retrieved in JSON (see Figure 4), parsed, converted 
to FQNs, and stored in an H2 MethodRank table. 
For simplification, the prototype only considers class 
methods and ignores method overloading. 

 
Figure 3: Partial Neo4J graph for T:MethodRank. 

 
Figure 4: Example JSON NodeRank request result. 

For M:DynamicPath, we wrote a parser for 
Intrace-Agent trace output (timestamp, ThreadID, 
method FQN, and entering/leaving file line), 
following the ThreadID via a hashtable containing 
stacks of method FQN strings (multi-threading was 
excluded). Each graph (calling method-INVOKES-

>called method) is stored in Neo4J. H2 tables store 
per method FQN: 

TraceSessionsBreadth (b): number of traces 
using this method (maximum of one per trace). 
Thus, methods used in multiple scenarios (involved 
in more trace sessions) have a higher value. 

TraceHits (h): frequency a method was invoked. 
TraceOrderPerSession: a sequential numbering. 

4.2 C-TRAIL Service 

The C-TRAIL service is accessed via REST 
(Representational State Transfer) implemented with 
Restlet. It runs locally or in the cloud and be readily 
integrated in IDEs or other tooling. To support tool 
integration, XML was chosen as the trail format (see 
Figure 5). All learning models were supported. 

 
Figure 5: Trail output snippet (simplified for space). 

For P:UserProfile, UUIDs (universally unique 
identifiers) differentiate users. Based on their 
profile, in the absence of similar user historical 
visitation times, configurable multiplication factors 
(default = .5) are used to adjust visitation times for 
senior or familiar users (a senior familiar user being 
four times faster). All user sessions are tracked with 
GUIDs (globally unique identifiers) and time-boxed 
(a configurable setting, default is midnight) for 
P:Timeboxing.  

P:POIRanking weights various parameters 
according to the selected learning model. Also, 
WeightingMode provides maximum flexibility (via 
wtotal) using configurable parameter weighting inputs 
(wn) (4). E.g., this supports deviations from strict 
trace session order to weight frequently (f) or 
broadly (b) executed or visited (hits) methods more. 

wtotal = w1 ⋅ hits + w2 ⋅ b + w3 ⋅ h +  ... (4)
The prioritized POI list is trimmed to where the 

accumulated expected visitation times exceed the 
remaining session time. Actual POI visitation time is 
tracked via navigation events received from clients 
and stored in H2 with FQN, UUID, and visitation 
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time (in seconds). Visited POIs (expected or not) are 
filtered and removed from the replanned trail. 

T:UserBasedCollaborativeFiltering for POI 
Time Planning was realized by integrating Apache 
Mahout (Schelter & Owen, 2012), mapping the 
typical triple (user, item, value) to (user, method, 
time). CustomFileModelMahout was used to convert 
UUIDs to a compatible Apache Mahout format. 
P:POIFiltering was realized via a user-defined 
function in H2 that filters using regular expressions.  

Applying T:HamiltonianCycle on this set, the C-
TRAIL Trail Planner integrates OptaPlanner and 
utilizes its constraint solver for TSP using 
T:POIDistance, specifically optimizing the trail with 
regard to P:POILocality and P:CodeTrails. For 
responsiveness, solving was limited to 5 seconds to 
permit finding a (not necessarily optimal) solution, 
dependent on POI set size and hardware capability. 

4.3 C-TRAIL Client 

To demonstrate integratability, an Eclipse IDE 
plugin was developed (see Figure 6), providing a 
dropdown learning model choice. Selecting a POI in 
SERE opens the Eclipse source view to that method. 
Eclipse navigation events are monitored and sent via 
REST to the C-TRAIL service to reoptimize and 
regenerate the client trail based on actual POI visits.  

 
Figure 6: Our Eclipse plugin SERE (a C-TRAIL client). 

5 EVALUATION 

As the prototype realization showed C-TRAIL's 
feasibility, the evaluation focused on a practical 
demonstration of key C-TRAIL conceptual features, 
performance measurements, and a limited empirical 
study with learning models and structural analysis. 
A project codebase consisting of 15 POIs was used 
(Figure 7a). Package names were abbreviated. 

The prototype was run in a VirtualBox VM 
(Debian 8 x86, one CPU, 1.7GB RAM) on a W10 
x64 T9400 CPU@2.5GHz 4GB RAM notebook 
(viewable as an intentionally non-ideal developer 
deployment vs. a decent cloud deployment). 

 
Figure 7: a) Original and b) obfuscated project structure. 

5.1 Conceptual Features 

To demonstrate key conceptual features including 
P:POIRanking, P:POILocality, P:CodeTrails, 
P:POI, T:HamiltonianCycle, T:MethodRank, and 
T:POIDistance, the code trail in Figure 8 was 
generated based on Figure 7a code. As the session 
timebox was larger than the cumulative estimated 
visitation (46 minutes and 4 seconds), no POI was 
time-filtered. To demonstrate P:POIVisitTime and 
P:Timeboxing, the session timebox was then limited 
to 30 minutes. Lower ranked POIs (having fewer 
invocations) were removed from the set and the code 
trail replanned while preserving locality (Figure 9). 
For P:UserProfile, it was verified that changing the 
profile changed the expected visitation times 
accordingly (not shown due to space constraints). 
 
myapp.Program:main 
myapp.f.basic.rounding.Rounding:Ceiling  
myapp.f.basic.rounding.Rounding:Floor  
myapp.f.basic.rounding.Rounding:Abs  
myapp.f.basic.rounding.Rounding:RoundToInt  
myapp.f.basic.quadratic.QuadraticOps:Square 
myapp.f.trigonometric.Trigonometry:CalculateTan 
myapp.f.trigonometric.Trigonometry:CalculateCos 
myapp.f.trigonometric.Trigonometry:CalculateSin 
myapp.f.trigonometric.Trigonometry:CalculateCoTan 
myapp.f.basic.MultiplicationDivide:Divide 
myapp.f.basic.MultiplicationDivide:Multiply 
myapp.f.basic.MultiplicationDivide:Pow 
myapp.f.basic.AdditionSubtraction:Add  
myapp.f.basic.AdditionSubtraction:Subtract 

Figure 8: Code trail without limiting session timebox. 
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myapp.Program:main 
myapp.f.trigonometric.Trigonometry:CalculateCos 
myapp.f.trigonometric.Trigonometry:CalculateSin 
myapp.f.trigonometric.Trigonometry:CalculateCoTan 
myapp.f.basic.MultiplicationDivide:Divide  
myapp.f.basic.MultiplicationDivide:Multiply  
myapp.f.basic.MultiplicationDivide:Pow  
myapp.f.basic.AdditionSubtraction:Add  
myapp.f.basic.AdditionSubtraction:Subtract 

Figure 9: Code trail with limited session timebox. 

5.2 Performance Measurements  

Average total latency (of 10 measurements) for trail 
generation with 13 POIs and 1504 method visit 
entries in Apache Mahout was 5.73 seconds. 
Decomposing this latency, approximately 300 ms 
was attributed to Apache Mahout, 100 ms to POI 
prioritization, and less than 100ms for network 
overhead. OptaPlanner TSP optimization (capped at 
5 seconds) was the primary latency factor.  

5.3 Empirical Study 

“A person understands a program when he or she is 
able to explain the program, its structure, its 
behavior, its effects on its operation context, and its 
relationships to its application domain in terms that 
are qualitatively different from the tokens used to 
construct the source code of the program” 
(Biggerstaff et al., 1993). The human factor plays a 
significant role in assessing program 
comprehension, making it difficult to compare 
results and benefits. In the absence of readily 
available program comprehension assessment 
frameworks, obfuscation was selected as a primary 
technique in the empirical assessment method.  

Obfuscation transforms or destroys the original 
software structure and semantics and negatively 
affects the efficiency of attacks while reducing the 
gap between a novice and skilled attacker (Ceccato 
et al, 2009). Although obfuscation is usually used to 
avoid code from being understood by an attacker, we 
apply it here to explicitly remove the semantic and 
structural points of reference in order to determine if 
C-TRAIL actually supports the navigation of 
unfamiliar code (few semantic or domain anchors).  

Using the convenience sampling technique, two 
programmers having Eclipse, Java, and UML skills 
were selected. Eclipse and C-TRAIL were used. 

5.3.1 Learning Models 

M:Top-Down: one programmer was tasked with 
drawing the project structure of non-obfuscated code 
without class revisitations (to avoid time-consuming 

mental sorting techniques or determining POI 
relations), but could take notes. Without C-TRAIL, 
it took 13 minutes to produce Figure 10, and with C-
TRAIL it took 10 minutes to produce Figure 11 (the 
circle is due to the trail ending at the starting POI), a 
23 % improvement. 

 
Figure 10: Transposed user diagram without C-TRAIL. 

 
Figure 11: Transposed user diagram using C-TRAIL. 

M:Bottom-Up: results similar to M:Top-Down. 
M:DynamicPath: given only the source code 

without debugging tools, a programmer inspected 
the code and reconstructed how the application 
executes based on the correct ordering of the first ten 
steps of method execution. It took 3.5 minutes 
without errors for non-obfuscated code, and 5.8 
minutes (66% longer) using obfuscated code. After 
inputting traces and utilizing a M:DynamicPath trail 
generated by C-TRAIL, the trail distilled the answer.  

M:Topics/Goal (utilizing P:POIFiltering) and 
M:Exploratory were verified with manual testing. 

The learning models support incorporated in C-
TRAIL appears promising for improving code 
navigation and comprehension efficiency. 

5.3.2 Structural Analysis 

Code identifiers (as in Figure 12) were obfuscated 
with ProGuard utilizing random dictionaries 
containing strings of two-character length generated 
by Random.org. Obfuscated .class files were 
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decompiled to source code files with Java's 
decompiler (see Figure 7b and Figure 13). 

Two programmers were then asked to sketch 
models first without C-TRAIL and then with (each 
time with newly obfuscated code and prior 
notes/diagrams removed). Diagrams with C-TRAIL 
showed significantly less errors. Table 1 shows the 
structural analysis time needed for obfuscated code. 
 
package myapp.func.trigonometric; 
... 
public class Trigonometry { 
... 
  public static int calculateTan (int x) { 
    int numeratorSin = calculateSin(x); 
    int denominatorCos = calculateCos(x); 
    return multiplicationDivide.divide( 
      numeratorSin , denominatorCos); 
  } 
} 

Figure 12: Snippet of original project source code. 

package myapp.Ya; 
... 
public class rY { 
  ... 
  public static int aE(int paramInt) { 
    int i = JY(paramInt); 
    int j = hd(paramInt); 
    return co.hd(i, j); 
  } 
} 

Figure 13: Obfuscated project source code snippet. 

Table 1: Structural analysis efficiency for obfuscated code 
(in minutes). 

 User1 User2 
Without C-TRAIL 15.5 11.3 

With C-TRAIL 8.3 7.5 
Improvement 46% 34% 

Some observations: Towards an explanation for 
the efficiency benefit of using C-TRAIL in the 
obfuscated code setting, the programmers reported 
that without C-TRAIL support they intuitively 
compared concept locations mentally (analogous to 
Bubblesort) to try to somehow determine a concept 
grouping and relations. We also observed that the 
diagrams created by users using C-TRAIL code trail 
guidance exhibited locality order (which C-TRAIL 
preserves) and had fewer errors, even in the absence 
of domain or meaningful semantic anchors.  

With regard to structural analysis, the limited 
empirical study indicates that C-TRAIL can 
potentially improve the effectiveness and efficiency 
in navigating unfamiliar program code. Future work 
includes a large-scale empirical study with a diverse 
pool of subjects utilizing various learning models 
and project sizes. 

6 CONCLUSIONS 

The program comprehension situation is exacerbated 
by a combination of a spiraling amount of program 
code, ongoing demand for corrective and adaptive 
maintenance and evolution of legacy or existing 
codebases, high industry and open source developer 
turnover rates, and a limited trained human resource 
pool with the associated high labor costs and limited 
time.  Within the program comprehension sphere, 
this paper focused on program code concept location 
familiarity and structural understanding.  

This paper contributed a practical solution approach 
called C-TRAIL that automates the recommendation of 
code visitation trails given only code or optionally code 
execution traces. By amalgamating cognitive learning 
model styles with the traveling salesman, granular 
computing, and collaborative filtering paradigms, it 
automates the planning of relevant visitation trails for 
an available session timebox. Its guidance can help the 
user not miss essential areas while avoiding dead ends, 
reorientation waste, and irrelevant areas. As a web 
service, it can easily be integrated in various tools and 
IDEs while leveraging available user profile data and 
collaborative filtering to estimate visitation times. It 
requires no prior project history inputs and does not 
depend on a visualization paradigm. The evaluation 
demonstrated its viability with a prototype of various 
conceptual features, including integration with an IDE. 
The limited empirical study showed improved 
navigation efficiency results when comprehending non-
obfuscated and obfuscated code, as well as structural 
analysis efficiency and effectiveness improvements.  

Future work includes a comprehensive empirical 
study with a diverse population and code 
repositories, an empirical comparison to other 
comprehension approaches, support for additional 
learning models and programming languages, a 
study of C-TRAIL in an industrial setting, and 
optimizations to address the TSP solver latency. 
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