
C-TRAIL: A Program Comprehension Approach for
Leveraging Learning Models in Automated Code Trail Generation

Roy Oberhauser
Department of Computer Science, Aalen University, Aalen, Germany

Keywords: Program Code Comprehension, Learning Models, Recommender Systems, Obfuscation.

Abstract: With society's increasing utilization of (embedded) software, the amount of program source code is
proliferating while the skilled human resources to maintain and evolve this code remain limited. Therefore,
software tools are needed that can support and enhance program code comprehension. This paper focuses on
program concept location and cognitive learning models, and contributes an automatic code trail generator
approach called a Code Trail Recommender Agent Incorporating Learning models (C-TRAIL). Initial
empirical results applying the prototype on obfuscated code show promise for improve program
comprehension efficiency and effectiveness.

1 INTRODUCTION

The software industry continues to struggle to meet
society's seemingly insatiable demand for software
production and maintenance. Indicators for the
immensity of the problem include code size, the lack
and turnover of human resources, and costs. It has
been estimated that well over a trillion lines of code
(LOC) exist with 33bn added annually (Booch,
2005). E.g., Google has 2bn LOC accessible by 25K
developers (Metz, 2015). Active open source
projects double in size and number in ~14 months
(Deshpande & Riehle, 2008). Conversely, the pool
of programmers is not growing correspondingly.
E.g., Computer Science degrees in 2011 in USA
were equivalent to 1986 in number (~42K) and
percentage of 23 year olds (~1%) (Schmidt, 2015).
The situation is exacerbated by the typically high
employee turnover rates for software companies,
e.g., 1.1 years at Google (PayScale, 2016). As to
costs, Y2K exacted >$300bn globally (Mitchell,
2009)., while >50% of information systems in the
EU needed modification for Euro support (Jones,
2006).

Given limited resources and such a vast amount
of code, ~75% of technical software workers are
estimated to be doing maintenance (Jones, 2006).
Moreover, program comprehension may consume up
to 70% of the software engineering effort (Minelli,
2015). Activities involving program comprehension

include investigating functionality, internal
structures, dependencies, run-time interactions,
execution patterns, and program utilization; adding
or modifying functionality; assessing the design
quality; and domain understanding of the system
(Pacione et al., 2004).

One key challenge faced by programmers when
presented with an unfamiliar preexisting program
codebase is how to become sufficiently familiar with
relevant areas in a short time. Questions include:
Where should one start? What should one look at
next? What is relevant to know and what is optional?

To improve this program comprehension
situation, the solution approach Code Trail
Recommender Agent Incorporating Learning models
(C-TRAIL) contributes a code trail recommender
approach builds on our prior work (Oberhauser,
2016) by amalgamating diverse cognitive learning
model styles with granular computing, collaborative
filtering, and the traveling salesman paradigm.
Given only the program code, C-TRAIL provides a
web service offering automated code trail guidance
to help the user avoid missing relevant areas, avoid
dead ends, avoid reorientation waste, and avoid
irrelevant areas. Analogous to geographic route
planning via navigation software, it readjusts on-the-
fly to trail deviations and replans the route.

The paper is organized as follows: Section 2
discusses related work. Section 3 describes the
solution concept followed by its realization. Section
5 evaluates the solution, followed by a conclusion.

Oberhauser, R.
C-TRAIL: A Program Comprehension Approach for Leveraging Learning Models in Automated Code Trail Generation.
DOI: 10.5220/0005974901770185
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 177-185
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

177

2 RELATED WORK

(Robillard et al, 2014) provides an overview of
recommendation systems in software engineering.
Mylar (Kersten & Murphy, 2005) utilizes a degree-
of-interest model to filter out irrelevant files from
the File Explorer and other views in the Eclipse
integrated development environment (IDE).
NavTracks (Singer et al., 2005) recommends files
related to the currently selected files based on
previous navigation patterns. For maintenance tasks
in unfamiliar projects, Hipikat (Čubranić et al.,
2005) recommends software artifacts relevant to a
context based on the source code, email discussions,
bug reports, change history, and documentation. The
FEAT tool uses concern graphs either explicitly
created by a programmer or automatically inferred
based on navigation pathways utilizing a stochastic
model, whereby a programmer confirms or rejects
them for the concern graph (Robillard & Murphy,
2003). The Eclipse plugin Suade supports drag-and-
drop of related fields and methods into a view to
specify a context, and Suade utilizes a dependency
graph and heuristics to recommend suggestions for
further investigation (Robillard, 2008). Codetrail
(Goldman & Miller, 2009) connects source code and
hyperlinked web resources via Eclipse and Firefox.
(Yin et al., 2010) propose applying coarse-grained
call graph slicing, intra-procedural coarse-grained
slicing, and a cognitive easiness metric to guide
programmers from the easiest to the hardest non-
understood methods. (Cornelissen et al., 2009)
survey work on program comprehension via
dynamic analysis.

In contrast, C-TRAIL automatically generates a
code-centric time-limited trail of relevant areas via a
web service, ordered based on the selected learning
model while not requiring a project history or
visualization paradigm. Visualization also has the
potential issue of information overload versus
relevance, and auto-generated diagrams face ideal
element placement issues. Human-generated
diagrams may not remain consistent, and may reflect
abstractions but still leave a user unfamiliar with the
code. Furthermore, the user internal cognitive model
may not adhere to a presented visual model, while
visual-text paradigm switching may distract or be
cognitively burdensome. Support for not navigating
class relationships includes the empirical eye-
tracking study finding that "software engineers do
not seem to follow binary class relationships, such as
inheritance and composition" (Guéhéneuc, 2006).

3 SOLUTION APPROACH

Concepts are the fundamental building blocks of
knowledge and human learning, and are processable
by the human mind, exhibit some perceived
regularity, and can be designated by a label (Rajlich
& Wilde, 2002). Hence, we designate concept
location as the understanding about where a concept
is implemented in code relative to other concepts,
which is the primary focus of this paper within the
larger sphere of program comprehension. While the
exact identification of concepts and their locations in
a program remains an open problem, our solution
takes a pragmatic approach utilizing the existing
modularization within the program, especially
method to class and class to package relationships.

We assume a program comprehension activity is
time constrained, and that it is unrealistic to
understand a sufficiently large codebase in its
entirety (Rajlich & Wilde, 2002), nor is it necessary
or always possible (Lakhotia, 1993). Thus, an
inherent trade-off is assumed between sufficient
coverage (ensuring that at least the most essential
program areas were presented) and relevance
(minimizing irrelevant or optional program areas).

Given the diversity of individuals,
comprehension activities and intentions (Pacione et
al., 2004), programming languages, tooling, and
environments, we chose to support comprehension
via an automated approach that: 1) recommends a
code-centric navigation, 2) supports a spectrum of
learning models, 3) utilizes individual profiles and
collaborative filtering, and 4) can be readily
integrated in various tools and environments.

3.1 Cognitive Learning Models

In the constructivist theory of human learning,
humans actively construct their knowledge (Novak,
1998). We thus view program comprehension as
individualistic for aspects such as capacity, speed,
motivation, and how mental models are constructed.
Additionally, programmers possess different
application-independent general and application-
specific domain knowledge. Information processing
habits of an individual are known as cognitive
learning styles. C-TRAIL provides individual and
automated support for various learning model (M:)
styles, primarily ordering or adjusting concept
location (code area) visitation scope.

M:Bottom-Up: in this learning model, chunking
(Letovsky, 1986) is used with the program model
being correlated with a situation model (Pennington,
1987). Microstructures are mentally chunked into

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

178

larger macrostructures as comprehension increases.
C-TRAIL assumes a package hierarchy.

M:Top-Down: this model (Soloway et al., 1988)
is typically applicable when familiarity with the
code, system, domain, or similar system structures
already exists. Beacons and rules of discourse are
used to hierarchically decompose goals and plans.
To automate support, C-TRAIL assumes a cluster
hierarchy and starts trails from the highest hierarchy.

M:Topics/Goal: when programmers are given a
specific task, they tend to utilize an as-needed
strategy to comprehend only those portions relevant
for the task (Koenemann & Robertson, 1991). To
support this simply, C-TRAIL supports investigating
a limited code subset via topic filtering. Topic filters
(positive and negative) can be shared and support a
goal (e.g., optimize memory) or apply to a specific
topic (e.g., security, database access, user interface).

M:DynamicPath: in this model, ordering is
oriented on actual invocation execution traces
(Cornelissen et al., 2009).

M:Exploratory: this model supports either
discovery or analysis to confirm a hypothesis, with
the learner actively deciding and controlling the
navigation. It is supported by default, since a user
can deviate at any time.

3.2 Solution Principles

C-TRAIL includes these solution principles (P:):
P:POI: code locations, currently at the

granularity of functions or methods, are considered
concept locations identified and viewed as Points-
of-Interest (POI), a knowledge concept in a
knowledge landscape (the codebase) or a granule
(here a cluster of code lines) in granular computing
paradigm (Bargiela & Pedrycz, 2012), analogous to
geographical locations in navigational systems. A
POI is identified by a unique identifier, such as a
fully qualified name (FQN) in the Java programming
language (concatenating its package name, class
name, colon, and its method name).

P:POILocality: conceptually, POIs can be
viewed from the perspective of knowledge distance
(Qian et al., 2007) or closeness (locality). To reduce
the cognitive burden of code context switches, POI
visitations are ordered and clustered by locality to
reduce unnecessary switches. The T:POI Distance
technique (Section 3.4) is currently used.

P:POIRanking: a POI's relative importance for
comprehension is ranked in accord with a learning
model. Statically, the T:MethodRank technique
(Section 3.4) or a dynamic analysis can be applied.

P:POIFiltering: topic or named goal selection

supports a positive/negative POI filtering, currently
via FQN pattern matching.

P:POIVisitTime: given no initial data, visitation
times can be estimated using static code metrics like
LOC and complexity. When the historical visitation
times of similar users are available, T:UserBased-
CollaborativeFiltering (Section 3.4) can be used.

P:Timeboxing: comprehension is usually time-
bound, so a subset of priority ordered POIs that can
likely be visited in the given timebox is selected, and
may be reordered to accommodate POI locality.

P:CodeTrails: the recommendation service agent
provides code trails (in a format such as XML)
consisting of a navigation and visitation order for the
POIs while considering locality. A mapping of the
traveling salesman problem and related traveling
salesman planning (TSP) algorithms (Lawler et al.,
1985) are applied to these granules (the POIs) and
the associated knowledge distance between them.
While the recommended path may not necessarily be
optimal, it provides an efficient path nonetheless
through the knowledge landscape (source code).
Two modes are supported: initial mode generates a
trail from scratch, while adapt mode dynamically
reoptimizes it based on the actually visited POIs and
session time left. Visited POIs (including deviations)
are detected via events and automatically removed
from the adapted trail. Via events, the POI visitation
history is tracked and can be replayed later.

P:UserProfile: a user's individual knowledge
level (e.g., familiar vs. unfamiliar) and competency
level (junior vs. senior) are taken into consideration.

3.3 Solution Architecture

The conceptual architecture (Figure 1) consists of
four modules: Cognitive Learning, Knowledge
Processing, a Database Repository, and Integration.

Figure 1: C-TRAIL conceptual architecture.

The Cognitive Learning module supports various
program code learning Models, Goals, Topics,
execution Traces, and visitation History. The

C-TRAIL: A Program Comprehension Approach for Leveraging Learning Models in Automated Code Trail Generation

179

Knowledge Processing module includes the
components POI Prioritizer for ranking POIs, a POI
Filter that filters based on visitations or topics, a
Trail Estimator for visitation times, and a Trail
Planner. The Database Repository utilizes
appropriate database types to retain metadata,
knowledge, or data. The Integration module
includes a REST Web Service API (application
programming interface) for development tool
integration, an Input Processor to process inputs,
transformations, and events (such as a POI visit)
including analysis and tracing inputs, and a Trail
Generator for generating a planned trail into a
desired format.

3.4 Solution Techniques

The solution incorporates these techniques (T:):
T:MethodRank: absent other indicators, it is

assumed that frequently utilized domain methods
should be comprehended before others. Thus to
prioritize POIs, a variation of the PageRank
algorithm (Page et al., 1999) we call MethodRank is
applied. Here, webpages correspond to methods
(code locations) and hyperlinks to invocations.
Methods with more static references (invocations) in
the code set are ranked higher. While runtime
invocations (such as loops) are not considered, it can
indicate methods with broader relative utilization
and thus likely of greater comprehension relevance.

T:POIDistance: granules (functions/methods) are
assumed to be grouped in classes/files and
packages/directories are ordered hierarchically.
(Sub)package depth is mapped to a vertical axis,
while classes group methods horizontally. Loosely
analogous to geographical distance, a distance
POIdist between any two POIs (3) A and B is
determined by the vertical vdist (1) and horizontal
hdist (2) distance.

vdist = | depth(A) − depth(B) | (1)

 = 0 if class A = class(B)			1 otherwise
 (2)

POIdist = vdist + hdist (3)
For example, the POIdist between methods in the

same class is thus 0, between classes in the same
package 1, etc. Although a higher cluster may
represent a greater abstraction (e.g., only interfaces)
and not necessarily be cognitively distant, any
clusters between them should still be cognitively
"closer". For instance, while the Java programming
language has no concept of subpackages (each
package is a separate entity), we assume a

convention with additional dots implying further
depth, and initial matching names implying a
common cluster up to the first mismatch.

T:HamiltonianCycle: For P:CodeTrails it is
assumed that proper modularity and hierarchy are
followed, implying a greater POIdist is equivalent to
a larger mental jump. To reduce the cognitive
burden, the shortest trail is sought that provides a
POI visitation order such that each POI is visited
exactly once (except the start is also the end, i.e. a
Hamiltonian cycle). This calculation problem is a
special case of the well-known TSP, so a constraint-
satisfaction solver can be utilized to calculate this.

T:UserBasedCollaborativeFiltering: predicting
POI visitation duration is difficult. Thus, analogous
to allotting sufficient visitation time for geographical
tourist destinations, user-based collaborative
filtering is used to detect profile similarities and then
recommend visitation times based on similar users.

3.5 Data Processing

Figure 2 shows the various data processing stages.

Figure 2: C-TRAIL data processing stages.

1) Input Processing: source code is imported
and analyzed, resulting in a list of all POIs as FQNs.
Each POI's cluster depth is determined by counting
FQN subpackage depth, used to apply the
T:POIDistance calculation. For M:DynamicPath,
dynamic runtime traces are also required as input.

2) POI Filtering: Any topic filters are applied,
and POIs visited by this user (either in the expected
order or out-of-order) are removed from the set.

3) POI Prioritization: An ordered list of POIs is
created. T:MethodRank is utilized when appropriate.

4) POI Time Planning: actual per-user POI
visitation times are tracked via events and stored.
T:UserBasedCollaborativeFiltering is used to
estimate visitation times. For a cold start, it can be
estimated based on factors such as the user's profile,
a configured default time per LOC, cyclomatic
complexity. Starting at the top, the POI prioritized
list is trimmed at the point where the cumulative
time exceeds the timeboxed session.

5) POI Locality Planning: POIs are reordered
using a T:HamiltonianCycle planner accounting for
locality (nearby POIs visited before distant POIs).

6) Trail Generation: the trail in the
recommended POI visitation order is then generated.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

180

4 REALIZATION

The C-TRAIL approach is independent of any
realization or specific programming language. To
determine its viability, a Java prototype was created
that generates XML code trails for Java codebases,
with a Neo4J graph and a H2 relational database.

4.1 Input Processing

T:MethodRank requires a static analysis of methods
(as FQNs) and their target invocation relationships
and counts. For Java code, jQAssistant 1.0.0 and the
GraphAware Neo4j NodeRank plugin (with a
damping factor of 0.85) were used. A Cypher query
selects all method FQNs and their invoked method
FQNs and the result exported to a CSV file, which is
imported to the C-TRAIL Neo4J server. A separate
simplified graph is created of FQN(Method)-
>INVOKES->FQN(TargetMethod) relationships.
Then, NodeRanks for every node (i.e., Method) are
calculated based on the number of invocations, with
the NodeRank stored in each node's property (see
Figure 3). Via the Neo4J REST API, the result is
retrieved in JSON (see Figure 4), parsed, converted
to FQNs, and stored in an H2 MethodRank table.
For simplification, the prototype only considers class
methods and ignores method overloading.

Figure 3: Partial Neo4J graph for T:MethodRank.

Figure 4: Example JSON NodeRank request result.

For M:DynamicPath, we wrote a parser for
Intrace-Agent trace output (timestamp, ThreadID,
method FQN, and entering/leaving file line),
following the ThreadID via a hashtable containing
stacks of method FQN strings (multi-threading was
excluded). Each graph (calling method-INVOKES-

>called method) is stored in Neo4J. H2 tables store
per method FQN:

TraceSessionsBreadth (b): number of traces
using this method (maximum of one per trace).
Thus, methods used in multiple scenarios (involved
in more trace sessions) have a higher value.

TraceHits (h): frequency a method was invoked.
TraceOrderPerSession: a sequential numbering.

4.2 C-TRAIL Service

The C-TRAIL service is accessed via REST
(Representational State Transfer) implemented with
Restlet. It runs locally or in the cloud and be readily
integrated in IDEs or other tooling. To support tool
integration, XML was chosen as the trail format (see
Figure 5). All learning models were supported.

Figure 5: Trail output snippet (simplified for space).

For P:UserProfile, UUIDs (universally unique
identifiers) differentiate users. Based on their
profile, in the absence of similar user historical
visitation times, configurable multiplication factors
(default = .5) are used to adjust visitation times for
senior or familiar users (a senior familiar user being
four times faster). All user sessions are tracked with
GUIDs (globally unique identifiers) and time-boxed
(a configurable setting, default is midnight) for
P:Timeboxing.

P:POIRanking weights various parameters
according to the selected learning model. Also,
WeightingMode provides maximum flexibility (via
wtotal) using configurable parameter weighting inputs
(wn) (4). E.g., this supports deviations from strict
trace session order to weight frequently (f) or
broadly (b) executed or visited (hits) methods more.

wtotal = w1 ⋅ hits + w2 ⋅ b + w3 ⋅ h + ... (4)
The prioritized POI list is trimmed to where the

accumulated expected visitation times exceed the
remaining session time. Actual POI visitation time is
tracked via navigation events received from clients
and stored in H2 with FQN, UUID, and visitation

C-TRAIL: A Program Comprehension Approach for Leveraging Learning Models in Automated Code Trail Generation

181

time (in seconds). Visited POIs (expected or not) are
filtered and removed from the replanned trail.

T:UserBasedCollaborativeFiltering for POI
Time Planning was realized by integrating Apache
Mahout (Schelter & Owen, 2012), mapping the
typical triple (user, item, value) to (user, method,
time). CustomFileModelMahout was used to convert
UUIDs to a compatible Apache Mahout format.
P:POIFiltering was realized via a user-defined
function in H2 that filters using regular expressions.

Applying T:HamiltonianCycle on this set, the C-
TRAIL Trail Planner integrates OptaPlanner and
utilizes its constraint solver for TSP using
T:POIDistance, specifically optimizing the trail with
regard to P:POILocality and P:CodeTrails. For
responsiveness, solving was limited to 5 seconds to
permit finding a (not necessarily optimal) solution,
dependent on POI set size and hardware capability.

4.3 C-TRAIL Client

To demonstrate integratability, an Eclipse IDE
plugin was developed (see Figure 6), providing a
dropdown learning model choice. Selecting a POI in
SERE opens the Eclipse source view to that method.
Eclipse navigation events are monitored and sent via
REST to the C-TRAIL service to reoptimize and
regenerate the client trail based on actual POI visits.

Figure 6: Our Eclipse plugin SERE (a C-TRAIL client).

5 EVALUATION

As the prototype realization showed C-TRAIL's
feasibility, the evaluation focused on a practical
demonstration of key C-TRAIL conceptual features,
performance measurements, and a limited empirical
study with learning models and structural analysis.
A project codebase consisting of 15 POIs was used
(Figure 7a). Package names were abbreviated.

The prototype was run in a VirtualBox VM
(Debian 8 x86, one CPU, 1.7GB RAM) on a W10
x64 T9400 CPU@2.5GHz 4GB RAM notebook
(viewable as an intentionally non-ideal developer
deployment vs. a decent cloud deployment).

Figure 7: a) Original and b) obfuscated project structure.

5.1 Conceptual Features

To demonstrate key conceptual features including
P:POIRanking, P:POILocality, P:CodeTrails,
P:POI, T:HamiltonianCycle, T:MethodRank, and
T:POIDistance, the code trail in Figure 8 was
generated based on Figure 7a code. As the session
timebox was larger than the cumulative estimated
visitation (46 minutes and 4 seconds), no POI was
time-filtered. To demonstrate P:POIVisitTime and
P:Timeboxing, the session timebox was then limited
to 30 minutes. Lower ranked POIs (having fewer
invocations) were removed from the set and the code
trail replanned while preserving locality (Figure 9).
For P:UserProfile, it was verified that changing the
profile changed the expected visitation times
accordingly (not shown due to space constraints).

myapp.Program:main
myapp.f.basic.rounding.Rounding:Ceiling
myapp.f.basic.rounding.Rounding:Floor
myapp.f.basic.rounding.Rounding:Abs
myapp.f.basic.rounding.Rounding:RoundToInt
myapp.f.basic.quadratic.QuadraticOps:Square
myapp.f.trigonometric.Trigonometry:CalculateTan
myapp.f.trigonometric.Trigonometry:CalculateCos
myapp.f.trigonometric.Trigonometry:CalculateSin
myapp.f.trigonometric.Trigonometry:CalculateCoTan
myapp.f.basic.MultiplicationDivide:Divide
myapp.f.basic.MultiplicationDivide:Multiply
myapp.f.basic.MultiplicationDivide:Pow
myapp.f.basic.AdditionSubtraction:Add
myapp.f.basic.AdditionSubtraction:Subtract

Figure 8: Code trail without limiting session timebox.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

182

myapp.Program:main
myapp.f.trigonometric.Trigonometry:CalculateCos
myapp.f.trigonometric.Trigonometry:CalculateSin
myapp.f.trigonometric.Trigonometry:CalculateCoTan
myapp.f.basic.MultiplicationDivide:Divide
myapp.f.basic.MultiplicationDivide:Multiply
myapp.f.basic.MultiplicationDivide:Pow
myapp.f.basic.AdditionSubtraction:Add
myapp.f.basic.AdditionSubtraction:Subtract

Figure 9: Code trail with limited session timebox.

5.2 Performance Measurements

Average total latency (of 10 measurements) for trail
generation with 13 POIs and 1504 method visit
entries in Apache Mahout was 5.73 seconds.
Decomposing this latency, approximately 300 ms
was attributed to Apache Mahout, 100 ms to POI
prioritization, and less than 100ms for network
overhead. OptaPlanner TSP optimization (capped at
5 seconds) was the primary latency factor.

5.3 Empirical Study

“A person understands a program when he or she is
able to explain the program, its structure, its
behavior, its effects on its operation context, and its
relationships to its application domain in terms that
are qualitatively different from the tokens used to
construct the source code of the program”
(Biggerstaff et al., 1993). The human factor plays a
significant role in assessing program
comprehension, making it difficult to compare
results and benefits. In the absence of readily
available program comprehension assessment
frameworks, obfuscation was selected as a primary
technique in the empirical assessment method.

Obfuscation transforms or destroys the original
software structure and semantics and negatively
affects the efficiency of attacks while reducing the
gap between a novice and skilled attacker (Ceccato
et al, 2009). Although obfuscation is usually used to
avoid code from being understood by an attacker, we
apply it here to explicitly remove the semantic and
structural points of reference in order to determine if
C-TRAIL actually supports the navigation of
unfamiliar code (few semantic or domain anchors).

Using the convenience sampling technique, two
programmers having Eclipse, Java, and UML skills
were selected. Eclipse and C-TRAIL were used.

5.3.1 Learning Models

M:Top-Down: one programmer was tasked with
drawing the project structure of non-obfuscated code
without class revisitations (to avoid time-consuming

mental sorting techniques or determining POI
relations), but could take notes. Without C-TRAIL,
it took 13 minutes to produce Figure 10, and with C-
TRAIL it took 10 minutes to produce Figure 11 (the
circle is due to the trail ending at the starting POI), a
23 % improvement.

Figure 10: Transposed user diagram without C-TRAIL.

Figure 11: Transposed user diagram using C-TRAIL.

M:Bottom-Up: results similar to M:Top-Down.
M:DynamicPath: given only the source code

without debugging tools, a programmer inspected
the code and reconstructed how the application
executes based on the correct ordering of the first ten
steps of method execution. It took 3.5 minutes
without errors for non-obfuscated code, and 5.8
minutes (66% longer) using obfuscated code. After
inputting traces and utilizing a M:DynamicPath trail
generated by C-TRAIL, the trail distilled the answer.

M:Topics/Goal (utilizing P:POIFiltering) and
M:Exploratory were verified with manual testing.

The learning models support incorporated in C-
TRAIL appears promising for improving code
navigation and comprehension efficiency.

5.3.2 Structural Analysis

Code identifiers (as in Figure 12) were obfuscated
with ProGuard utilizing random dictionaries
containing strings of two-character length generated
by Random.org. Obfuscated .class files were

C-TRAIL: A Program Comprehension Approach for Leveraging Learning Models in Automated Code Trail Generation

183

decompiled to source code files with Java's
decompiler (see Figure 7b and Figure 13).

Two programmers were then asked to sketch
models first without C-TRAIL and then with (each
time with newly obfuscated code and prior
notes/diagrams removed). Diagrams with C-TRAIL
showed significantly less errors. Table 1 shows the
structural analysis time needed for obfuscated code.

package myapp.func.trigonometric;
...
public class Trigonometry {
...
 public static int calculateTan (int x) {
 int numeratorSin = calculateSin(x);
 int denominatorCos = calculateCos(x);
 return multiplicationDivide.divide(
 numeratorSin , denominatorCos);
 }
}

Figure 12: Snippet of original project source code.

package myapp.Ya;
...
public class rY {
 ...
 public static int aE(int paramInt) {
 int i = JY(paramInt);
 int j = hd(paramInt);
 return co.hd(i, j);
 }
}

Figure 13: Obfuscated project source code snippet.

Table 1: Structural analysis efficiency for obfuscated code
(in minutes).

 User1 User2
Without C-TRAIL 15.5 11.3

With C-TRAIL 8.3 7.5
Improvement 46% 34%

Some observations: Towards an explanation for
the efficiency benefit of using C-TRAIL in the
obfuscated code setting, the programmers reported
that without C-TRAIL support they intuitively
compared concept locations mentally (analogous to
Bubblesort) to try to somehow determine a concept
grouping and relations. We also observed that the
diagrams created by users using C-TRAIL code trail
guidance exhibited locality order (which C-TRAIL
preserves) and had fewer errors, even in the absence
of domain or meaningful semantic anchors.

With regard to structural analysis, the limited
empirical study indicates that C-TRAIL can
potentially improve the effectiveness and efficiency
in navigating unfamiliar program code. Future work
includes a large-scale empirical study with a diverse
pool of subjects utilizing various learning models
and project sizes.

6 CONCLUSIONS

The program comprehension situation is exacerbated
by a combination of a spiraling amount of program
code, ongoing demand for corrective and adaptive
maintenance and evolution of legacy or existing
codebases, high industry and open source developer
turnover rates, and a limited trained human resource
pool with the associated high labor costs and limited
time. Within the program comprehension sphere,
this paper focused on program code concept location
familiarity and structural understanding.

This paper contributed a practical solution approach
called C-TRAIL that automates the recommendation of
code visitation trails given only code or optionally code
execution traces. By amalgamating cognitive learning
model styles with the traveling salesman, granular
computing, and collaborative filtering paradigms, it
automates the planning of relevant visitation trails for
an available session timebox. Its guidance can help the
user not miss essential areas while avoiding dead ends,
reorientation waste, and irrelevant areas. As a web
service, it can easily be integrated in various tools and
IDEs while leveraging available user profile data and
collaborative filtering to estimate visitation times. It
requires no prior project history inputs and does not
depend on a visualization paradigm. The evaluation
demonstrated its viability with a prototype of various
conceptual features, including integration with an IDE.
The limited empirical study showed improved
navigation efficiency results when comprehending non-
obfuscated and obfuscated code, as well as structural
analysis efficiency and effectiveness improvements.

Future work includes a comprehensive empirical
study with a diverse population and code
repositories, an empirical comparison to other
comprehension approaches, support for additional
learning models and programming languages, a
study of C-TRAIL in an industrial setting, and
optimizations to address the TSP solver latency.

ACKNOWLEDGEMENTS

The author thanks Claudius Eisele for his assistance
with the realization, evaluation, and diagrams.

REFERENCES

Bargiela, A. and Pedrycz, W., 2012. Granular computing:
an introduction (Vol. 717). Springer Science &
Business Media.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

184

Biggerstaff, T.J., Mitbander, B.G. and Webster, D., 1993.
The concept assignment problem in program
understanding. In Proc. 15th Int. Conf. on Software
Engineering (pp. 482-498). IEEE CS Press.

Booch, G., 2005. The complexity of programming models.
Keynote talk at AOSD 2005, Chicago, IL, March 14-
18, 2005.

Ceccato, M., Penta, M.D., Nagra, J., Falcarin, P., Ricca,
F., Torchiano, M. and Tonella, P., 2009. The
effectiveness of source code obfuscation: an
experimental assessment. In IEEE 17th Int. Conf. on
Program Comprehension (pp. 178-187). IEEE.

Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen,
L. and Koschke, R., 2009. A systematic survey of
program comprehension through dynamic analysis.
Softw. Eng., IEEE Trans. on, 35(5), pp.684-702.

Čubranić, D., Murphy, G.C., Singer, J. and Booth, K.S.,
2005. Hipikat: A project memory for software
development. Software Engineering, IEEE
Transactions on, 31(6), pp.446-465.

Deshpande, A. and Riehle, D.. 2008. The total growth of
open source. In Proc. 4th Conf. Open Source Systems
(OSS 2008). Vol. 275, pp. 197–209. Springer Verlag.

Goldman, M. and Miller, R.C., 2009. Codetrail:
Connecting source code and web resources. Journal of
Visual Languages & Computing, 20(4), pp.223-235.

Guéhéneuc, Y.G., 2006. TAUPE: towards understanding
program comprehension. In Proc. 2006 Conf. Center
Adv. Studies on Collab. Research (p. 1). IBM Corp.

Jones, C., 2006. The economics of software maintenance
in the twenty first century. Retrieved from:
http://www.compaid.com/caiinternet/ezine/capersjones
-maintenance.pdf. [4 Feb 2016].

Kersten, M. and Murphy, G.C., 2005. Mylar: a degree-of-
interest model for IDEs. In Proc. 4th Int. Conf. Aspect-
oriented Softw. Development (pp. 159-168). ACM.

Koenemann, J. and Robertson, S.P., 1991. Expert problem
solving strategies for program comprehension. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 125-130). ACM.

Lakhotia, A., 1993. Understanding someone else's code:
analysis of experiences. Journal of Systems and
Software, 23(3), pp.269-275.

Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R. and Shmoys,
D.B., 1985. The traveling salesman problem: a guided
tour of combinatorial optimization. Wiley, New York.

Letovsky, S., 1987. Cognitive processes in program
comprehension. Journal of Systems and software, 7(4),
pp. 325-339.

Metz, C., 2015. Google Is 2 Billion Lines of Code—And
It’s All in One Place. Retrieved from:
http://www.wired.com/2015/09/google-2-billion-lines-
codeand-one-place/. [4 Feb 2016].

Minelli, R., Mocci, A. and Lanza, M., 2015. I know what
you did last summer: an investigation of how
developers spend their time. In Proceedings of the
2015 IEEE 23rd International Conference on
Program Comprehension (pp. 25-35). IEEE Press.

Mitchell, R.L., 2009. Y2K: The good, the bad and the
crazy. ComputerWorld (December 2009).

Novak, J.D., 1998. Learning, creating, and using
knowledge. Lawrence Erlbaum Assoc., Mahwah, NJ.

Oberhauser, R., 2016. ReSCU: A Trail Recommender
Approach to Support Program Code Understanding. In
Proc. 8th Int. Conf. on Information, Process, and
Knowledge Manage. (pp. 112-118). IARIA XPS Press.

Pacione, M.J., Roper, M. and Wood, M., 2004. A novel
software visualisation model to support software
comprehension. In Reverse Engineering, 2004. Proc..
11th Working Conference on (pp. 70-79). IEEE.

Page, L., Brin, S., Motwani, R. and Winograd, T., 1999.
The PageRank citation ranking: bringing order to the
web. Technical Report. Stanford InfoLab.

PayScale. Full List of Most and Least Loyal Employees.
Retrieved from: http://www.payscale.com/data-
packages/employee-loyalty/full-list. [17 Feb 2016].

Pennington, N., 1987. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive psychology, 19(3), pp.295-341.

Qian, Y., Liang, J., Dang, C., Wang, F. and Xu, W., 2007.
Knowledge distance in information systems. J. of
Systems Science and Systems Eng., 16(4), pp.434-449.

Rajlich, V. and Wilde, N., 2002. The Role of Concepts in
Program Comprehension. In Proc. 10th IEEE Int.
Workshop on Program Comprehension, pp. 271-278.

Robillard, M.P. and Murphy, G.C., 2003. Automatically
inferring concern code from program investigation
activities. In Automated Software Engineering, 2003.
Proc.. 18th IEEE Int. Conf. on (pp. 225-234). IEEE.

Robillard, M.P., 2008. Topology analysis of software
dependencies. ACM Transactions on Software
Engineering and Methodology (TOSEM), 17(4), p.18.

Robillard, M.P., Maalej, W., Walker, R.J. and
Zimmermann, T. eds., 2014. Recommendation systems
in software engineering. Berlin: Springer.

Schelter, S. and Owen, S., 2012. Collaborative filtering
with apache mahout. Proc. of ACM RecSys Challenge.

Schmidt, B., 2015. Retrieved from:
http://benschmidt.org/Degrees/. [4 Feb 2016].

Singer, J., Elves, R. and Storey, M.A., 2005. Navtracks:
Supporting navigation in software. In Program
Comprehension, 2005. IWPC 2005. Proceedings. 13th
International Workshop on (pp. 173-175). IEEE.

Soloway, E., Adelson, B. and Ehrlich, K., 1988.
Knowledge and processes in the comprehension of
computer programs. In The Nature of Expertise, A.
Lawrence Erlbaum Associates, pp. 129-152.

Yin, M., Li, B. and Tao, C., 2010. Using cognitive
easiness metric for program comprehension. In 2nd
Int. Conf. on Softw. Eng. and Data Mining (pp. 134-
139). IEEE.

C-TRAIL: A Program Comprehension Approach for Leveraging Learning Models in Automated Code Trail Generation

185

