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Abstract 

Dynamic business process management incorporates the capabilities needed to deal 

with the fast-paced change inherent in today's business processes. While process-aware 

information systems (PAIS) face an increasing challenge to dynamically adapt running 

processes to context changes, support for such dynamic adaptation during process 

enactment remains limited. Furthermore, while the use of web service APIs for enterprise 

application integration (EAI) and cloud accessibility has garnered broad community 

support, current PAIS lack a standardized API and often require use of their proprietary 

clients or APIs. In this paper, we explore the use of hypermedia as the engine of 

application state (HATEOAS) for process enactment and process adaptation. Our 

approach Adapting Processes via Processes using hypermedia (AProProh) situates a 

HATEOAS-based middleware between RESTful clients and heterogeneous PAIS that can 

dynamically guide a PAIS-agnostic process client in the navigation, enactment, and 

adaptation of process instances. Dynamically generated hypermedia enables clients to 

dynamically apply valid adaptations and adjust their process navigation dynamically to a 

changed process model while supporting long-running operational requests. A case study 

based on a prototype realization shows the viability of the approach for supporting 

dynamic process navigation and process adaptation and characterizes its performance. 

 

Keywords: process-aware information systems; PAIS; business process management 

systems; BPMS; workflow management systems; WfMS; dynamic business process 

management; RESTful web services; hypermedia; HATEOAS; enterprise application 
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1. Introduction 

With the increasing automation in business as seen in trends such as Cyber-physical 

systems, Internet-of-things [1], and Industry 4.0 [2], the corresponding business processes 

are being increasingly modeled and enacted in process-aware information systems (PAIS) 

[3]. As our focus here is only on the executable process, which we shall refer to as the 

process or workflow, we will not differentiate here between a PAIS, business process 

management system (BPMS), and a workflow management system (WfMS). 

Any business process is typically unique for the organization in which it is utilized, and 

as such the process modeling and process integration with various information systems 

typically requires a substantial investment in modeling and administrative effort, costs, 

and ongoing management and maintenance. With the increasing popularity and criticality 

of BPMS for businesses, as well as the significant investment in process modeling and 

integration, a corresponding desire for vendor independence and standard enterprise 

application integration (EAI) mechanisms is evident. While integration of software 

systems in general is increasingly cloud-based utilizing web service APIs (application 

programming interfaces), heterogeneous PAIS integration has hitherto been impeded by a 



International Journal of Software Engineering and Its Applications  

Vol. 10, No. 6 (2016) 

 

 

54   Copyright ⓒ 2016 SERSC 

lack of standardization and accessibility. Although apparent standards such as BPMN [4] 

for process modeling notation and BPEL [5] as a process execution language seem 

common, nevertheless interchange issues exist [6]. Actual internal process model formats 

and execution languages, which often preceded the standards, are often PAIS-specific and 

thus exhibit some differences and further possibilities. Moreover, a standardized API to 

simplify the integration of PAIS from various vendors is not evident or widely supported. 

As an alternative for such integration, hypermedia as the engine of application state 

(HATEOAS), a constraint of the Representational State Transfer (REST) application 

architecture [7], supports dynamic navigation of REST APIs by a REST client based on 

hypermedia knowledge. REST can be seen in some ways as a type of runtime workflow, 

yet the application of HATEOAS for EAI in currently available adaptive PAIS for process 

navigation and adaptation has not been adequately explored. 

Since the business environment has become much more dynamic, there is increasing 

pressure for the capability to dynamically and to some extent automatically adapt 

processes for changing contextual conditions, also known as dynamic business process 

management (dBPM). However, currently available PAIS rarely support correctness and 

soundness guarantees for runtime process adaptation [8], and when then the focus is 

typically on supporting manual process changes by a human actor [9]. Any recurring 

process modifications are known as workflow control-flow patterns, change patterns, or 

adaptation patterns [9]. dBPM will necessitate automated process adaptation, and these 

will need a viable process schema and a process enactment adaptation capability as well 

as a way to model the adaptations.  

To address both the dBPM and the integration challenge, this paper, a revised and  

expanded version of [10], elaborates an approach and hypermedia middleware for 

dynamic process enactment and adaptation called Adapting Processes via Processes using 

hypermedia (AProProh). It is a hypermedia extension of the original AProPro (Adapting 

Processes via Processes) [11], which models and enacts adaptations imperatively, 

practically expressing and maintaining adaptations in an intuitive and sustainable manner 

for the dBPM lifecycle. Towards a standardized web API mechanism for PAIS 

integration, this HATEOAS-PAIS middleware includes support for long-running 

activities, processes, or process adaptations. The evaluation is based on a case study that 

shows its viability with a prototype and assesses the middleware's performance 

characteristics with different REST implementations. 

The paper is organized as follows: Section 2 discusses related work, which is followed 

by a description of the solution approach. In Section 4, details of the prototype realization 

are provided. An evaluation based on a case study is given in Section 5, followed by the 

conclusion.  

 

2. Related Work 

As to process adaptation, various approaches support the manual or automated 

adaptation of processes. Case handling approaches [12] utilize a case metaphor, 

deemphasize activities, and are data-driven [9]. Declarative approaches, such as 

DECLARE [13] support the constraint-based composition, execution, and adaptation of 

workflows. Agent-based approaches include Agentwork [14], which applies predefined 

change operations using rules, and [15], where a belief-desire-intention agent utilizes a 

goal-oriented BPMN modeling language extension. Aspect-oriented approaches include 

AO4BPMN [16], which requires a language extension. Variant approaches include: 

Provop [17], which supports schema variants with pre-configured adaptations to a base 

process schema; and vBPMN [18], which extends BPMN with fragment-based 

adaptations via the R2ML rule language. rBPMN [19] also interweaves BPMN and 

R2ML. Automated planning and exception-driven adaptation approaches include 

SmartPM [20], which utilizes artificial intelligence, procedural, and declarative elements. 
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In contrast, the AProPro adaptation approach supports runtime adaptation and is 

imperative without utilizing a case metaphor. It does not require language extensions or 

paradigms such as rules, declarative elements, or intelligent agents.  

Work related to hypermedia in combination with processes includes HATEOAS in 

combination with BPMS or PAIS. [21] involves combining RESTful with BPM, but does 

not mention of HATEOAS constraints or hypermedia, nor are changes to process models 

undertaken or performance impacts discussed. RESTful and BPEL work includes [22], 

which focused primarily on the composition and integration of services. Similarly, 

BPMashup [23] focuses on process-centric compositions of RESTful web services 

without addressing hypermedia. RESTfulBP [24] and CPEE [25] do not mention 

HATEOAS or hypermedia. RESTful with BPMN [26] extends BPMN notation with 

graphical syntax and semantics for REST support, but without directly addressing 

hypermedia or HATEOAS. Various commercial BPMS vendors support REST interfaces, 

yet to our knowledge HATEOAS is not explicitly mentioned. 

 

3. Solution Concept 

Since the AProProh extension is based on AProPro, we will first briefly describe the 

AProPro approach. 

 

3.1. Background on the AProPro Solution Approach 

As described in [11], AProPro uses an imperative process style, and process models are 

kept as simple and modular as reasonable in alignment with the orthogonal modularity 

pattern [27]. To reduce model complexity, special cases can either be separated out or 

handled as adaptations via adaptation processes. A guiding principle is that adaptations to 

processes should themselves be modeled as processes, remaining consistent with the 

process paradigm and mindset.  

Adaptation 
Process 

Schema (APS)

Process 
Instance 
(PI1..n)

Adaptation Process 
Instance (API1..m)

Process 
Schema 

(PS)

Schema 
Adaptations (SA)

Adaptation 
Information (AI)

Information (I)

Monitoring Info 
(MI)

Adaptation Agent(s) (AA)

2

Adaptation 
Events (AE)

Adaptations (A)

Adaptation Schema 
Adaptations (ASA)

Adaptation Instance 
Adaptations (AIA)

Instance 
Adaptation 

Agent 
(IAA)

Schema Adaptation 
Agent (SAA)

3

4 1

Adaptation Process 
Schema Adaptation 

Agent (APSAA)

Adaptation Process 
Instance Adaptation 

Agent (APIAA)

Adaptation 
Commands (AC)

5

6

 

Figure 1. Conceptual Solution Architecture of AProPro [11] 

As shown in Figure 1, Process Instances (PI1..n) are typically instantiated (1) based on 

some Process Schema (S) within a given PAIS (filled with diagonal hatching). In adaptive 

PAISs, Adaptation Agents (AA) (shown on the left with a solid fill), utilizing Information 

(I) (e.g., context or system information such as planning heuristics) or Monitoring 

Information (MI), trigger modifications to various process structures. A Schema 

Adaptation Agent (SAA) makes Schema Adaptions (SA) to one or more Process Schema 
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(PS). An Instance Adaptation Agent (IAA) may perform Adaptations (A) on some 

Process Instance (PI). Support for such manual adaptations has been available in adaptive 

PAISs, e.g., the ADEPT2-based AristaFlow BPM Suite [9]. 

The approach supports process-driven adaptations of processes, adaptation patterns as 

processes, aspect-oriented adaptations, variation points, adapting adaptation processes, 

recursive adaptation, exception-based adaptations, reactive and proactive adaptations, 

push-or-pull adaptations, reusability, composability, process compliance and governance, 

cloud-based provisioning of adaptation processes, and service-oriented adaptation 

services. The following capabilities are elaborated: 

Process-driven adaptations of processes: adaptations, such as adaptation patterns, are 

specified in the form of processes that will operate on another process. For this (see 

Figure 1 dotted fill), an Adaptation Process Schema (AS) is created or modified from 

which one or more Adaptation Process Instances (API1..m) are instantiated (2) in the 

same or a different PAIS. The (API) to target (PI) relation may be one-to-one, one-to-

many, many-to-one, or many-to-many. Utilizing Adaptation Information (AI) such as 

events, triggers, or state, automated instructions denoted as Adaptation Commands (AC) 

can be sent to an Instance Adaptation Agent (IAA) that executes Adaptations (A) on one 

or more (PI). Note that in certain PAIS architectures, a direct adaptation mechanism (3) 

that avoids the (IAA) intermediary may exist, with (API) acting as an (IAA). (API) may 

provide Adaptation Events (AE), e.g., so that an (AA) can be aware of the current state of 

an (API).  

Adaptation patterns as processes: Various common adaptation patterns (insert, delete, 

move, replace, swap, inline, extract, parallelize, etc.) can be modeled a a sequence of 

actions in an enactable process and applied conditionally based on Adaptation 

Information (AI), e.g., in the form of process variables or events. 

Aspect-oriented adaptations: Aspect-oriented adaptations are supported by 

modularizing and constraining an adaptive process to operate on only one aspect (such as 

authorization). Other adaptation processes can be used to address other aspects. The 

many-to-many relations between (API) and (PI) or Schemas (PS) was previously 

mentioned. Congruent with the chain-of-responsibility design pattern, adaptations can be 

modularized and chained. 

Variation points: Variation points can be intentionally incorporated via process 

markers for explicit adaptation support during process modeling, e.g., given insufficient 

modeling information. Adaptation processes can then dynamically "fill in" these areas 

during process configuration or enactment. 

Adapting adaptation processes: The concept supports a further degree of flexibility by 

supporting adaptation processes operating on (other) adaptation processes. Adaptation 

Process Instances (API) send Adaptation Commands (AC) resulting in Schema 

Adaptations (SA) to a Process Schema (PS), either via a Schema Adaptation Agent (SAA) 

or directly via (4). In a similar fashion, Adaptation Schema Adaptations (ASA) can be 

applied to an Adaptation Process Schema (APS) via an Adaptation Process Schema 

Adaptation Agent (APSAA) or directly via (5). Note that in this case, an (API) can change 

its own schema (APS) or those of others, and potentially change itself (API) or other 

instances (API), possibly even directly via (6). 

Recursive adaptation: instead of separating the (API) from its target (PI), if preferable 

(for instance, to access contextual data), a (PI) can include its own (APS) fragments and 

thus become self-modifying. 

Exception-based adaptations: (un)anticipated exceptions can be used to trigger the 

enactment of adaptation processes within exception handlers. 
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Reactive and proactive adaptations: in support of dBPM, event- and context-driven 

changes can automatically trigger and cause automated predictive or reactive runtime 

adaptations to be incorporated on an as-needed basis, rather than taking all possibilities 

into process models a priori. 

Push-or-pull adaptations: for push, the adaptive process is triggered first and applies 

its changes to the target; for pull, the target process triggers the adaptive process to initiate 

its adaptations. 

Reusability: shared modeled/tested adaptation processes support the wider reuse of 

adaptation patterns in the community, e.g., via repositories like APROMORE [28].  

Composability: more complex adaptations can be addressed by composing multiple 

adaptation processes, e.g., via sub-processes into larger ones. 

Process Compliance and Governance: the (AP) can be used to verify expected 

structural and state conditions (no changes applied), or to additionally apply adaptations 

when these are not in compliance. 

Cloud-based provisioning of adaptation processes: the concept supports operating in a 

distributed and PAIS-independent (heterogeneous) manner on other processes in other 

clouds, making these adaptation processes readily available to operate on others as 

needed. Shared tenancy and pay for use could reduce infrastructural costs. 

Service-oriented adaptation services:  the approach supports the ability to provision 

and support adaptations-as-a-service (AaaS) in the cloud. 

In support of dBPM, AProPro enables automated or semi-automated adaptations, yet 

process modelers and users can remain in their current imperative process paradigm and 

process modeling language without necessitating language extensions. Empirical findings 

that can be interpreted to support an approach such as ours include: La Rosa et al. [29], an 

empirical investigation of understandability issues with declarative modeling, finding that 

subjects tended to model sequentially and had difficulty with combinations of constraints; 

in Pichler et al. [30], imperative models had better understandability and 

comprehensibility than declarative ones; Reijers et al. [31] suggests that process 

modularity via information hiding enhances understandability; and Döhring et al. in [32] 

found that process complexity affected maintenance task efficiency for process variant 

construction - subjects hereby preferred high-level change patterns to process 

configuration.  

 

3.2. The AProProh HATEOAS-PAIS Integration Middleware 

The AProProh solution concept provides a HATEOAS-PAIS integration middleware to 

extend the AProPro approach described above. Initially described in [10], AProProh now 

includes a task queueing layer to support long-running task requests.  

The middleware solution concept is shown in Figure 2. The dbpm.pais_supplier 

package serves as a PAIS abstraction layer containing PAIS-specific supplier plugins. It 

abstracts the use PAIS-specific APIs in the connection, enactment, adaptation, and 

actions subpackages. In this way, the REST-based middleware client can be decoupled 

from the actual PAIS supplier.  
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Figure 2. The AProProh HATEOAS-PAIS middleware solution concept 

To allow client requests to be independent of the backend invocation durations, the 

dbpm.task package includes the listener, interfaces, and the executionManager packages 

for queueing and monitoring process task requests made by a client. REST requests to the 

web server are forwarded to a ProcessController, which invokes the task request 

functionality, which in turn invokes the pais_supplier functionality as a plugin. 

 

4. Realization 

To determine the viability of our approach, we realized a prototype of the middleware. 

In this section, the more general realization aspects are discussed. Since specific 

responses depend on the actual state of a process, these details are shown in the following 

Section 5.  

 

4.1. Process-aware information system integration 

The AristaFlow BPM Suite was used as an adaptive PAIS due to its support for 

dynamic adaptations with structural correctness checks. The solution approach required 

no internal changes to this PAIS, relying exclusively on its available extension 

mechanisms via its generic Java method execution environment. To support 

heterogeneity, both the communication and the change requests are PAIS agnostic. They 

could thus be invoked and sent by any PAIS activity in any adaptation process located 

anywhere. Only the actual process change operations in the PAIS supplier plugin use a 

PAIS-specific API. Other PAIS implementations can be integrated relatively easily via 

plug-in adapters. Adaptation process activity nodes utilize a StaticJavaCall to invoke the 

AristaFlow extension code contained in a Java ARchive (JAR) file, which sends change 

requests to a REST server (which could be remote or local), which in turn invokes the 

PAIS supplier plugin that utilizes PAIS-specific APIs. 

For simplicity, the prototype implementation used synchronous communication with 

the supplier PAIS, although the PAIS-specific plugin can be implemented to handle 

asynchronous interaction if supported by the PAIS. 

 

4.2. REST stack 

Multipart/form-data was in the JSON format. To show that the middleware solution 

concept can utilize different REST stacks, we chose two variants:  

- Variant A: Spring 1.2.7, Spring HATEOAS 0.16, Apache Tomcat 8.0.28, and 

Jackson 2.4.6 for JSON.  

- Variant B: Dropwizard 0.9.1, Jersey 2.22.1, Jetty 9.2.13, and Jackson 2.6.3.  

 

4.1. Process adaptation patterns 

As described in [11], the fundamental insert, delete, and move process fragment 

patterns were implemented with REST with expected general parameters needed by a 

PAIS passed as JSON parameters, and the replace pattern was realized as a subprocess 
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that uses the insert and delete patterns. The invocation syntax is shown here, with 

{command} being one of either "insert", "delete", "move", or "replace". 

- POST /procID/{procID}/{command} 

 

A B

A BX

A BX

A B

A BC

(a) (b) (c)

A CB

 

Figure 3. (a) insert, (b) delete, and (c) move process fragment patterns 

The insert process fragment pattern, shown in Figure 3a, expects the following input 

parameters: 

- procID: ID of the target process instance;  

- pre: ID of the predecessor node; 

- suc: ID of the successor node; 

- activityID: ID of activity assigned to node; 

- newNodeName: name of the new node; 

- staffAssignmentRule: of this node; 

- description: of this node; 

- readParameter: input parameters for the new node; 

- writeParameter: output parameters of the new node.  

The delete process fragment pattern, shown in Figure 3b, takes the following input 

parameters: 

- procID: ID of the target process instance; 

- nodeID: ID of the node to be deleted. 

The move process fragment pattern, shown in Figure 3c, takes the following input 

parameters:  

- procID: ID of the target process instance; 

- pre: ID of the new predecessor node; 

- suc: ID of the new successor node; 

- nodeID: ID of the node to be moved. 

 

4.2. Task Queueing 

To support long duration requests, any adaptation or execution POST request is queued 

by the ProcessController for the ExecutionManager with some default expiration time and 

assigned a task ID using a generated UUID that is passed back in the response to the 

client as a token. This allows a client to check on the status of its request at any time 

independent of when it is executed. A GET /task/{taskID} can be used to check on the 

state of a given operational request. DELETE /task/{taskID} removes the task from the 

execution queue if the task has not been executed yet or if it has completed and the client 

no longer needs it. Otherwise, the task status and its ID are automatically removed at its 
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expiration timepoint. A GET /procID/{procID} can also be used by the client to check on 

the state of any given process instance and to see all the undeleted and unexpired tasks 

related to that process instance. 

 

 

Figure 4. Middleware Internal Interaction 

If the ProcessController is invoked with a new task request, it creates a new Task and 

invokes the static method enqueue() on the ExecutionManager. As shown in Figure 4, an 

ExecutionManager, running in one or more separate threads, determines in a loop if there 

are any Tasks to be dequeued. For a given Task that is dequeued, a Listener is registered 

to monitor the Task. The ExecutionManager then invokes execute() on the Task, which 

then utilizes the PAIS supplier plugin implementation to perform an operation on the 

process via enactment, adaptation, or actions and thus affect its state.  

 

4.3. Determining Possible Next Actions for the Client 

To support HATEOAS, client should be informed of the valid possible next actions. 

Our algorithm dynamically determines the possible next actions for a request based on the 

current process state in the PAIS and programmed rules. The process state for a specific 

process instance in a PAIS is determined by the currently active node id, the state of the 

currently active node, and the output parameters of the currently active node. This 

typically includes the directly subsequent node(s), allowed adaptations, and a self-

reference. However, determining possible adaptations is more involved, since an 

adaptation process could attempt to change the currently active node. Thus, when an 

adaptation affects the active node, or if the active node is beyond the nodes adapted by an 

adaptation process (useless adaptation), then the adaptations are not provided as possible 

next actions in that interaction. Future work may incorporate a more generalized rule 

engine. 

As an example of the concrete steps involved to determine the possible next actions for 

a given PAIS, our PAIS supplier implementation for AristaFlow connects to the 

AristaFlow server's AdministrationService, retrieves an InstanceManager, gets and locks 

the target process instance to determine what states the nodes are currently in, and then 

gets the id, state, and parameters of the node and returns the process state. 
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5. Evaluation 

To evaluate the solution concept, this initial case study focused on demonstrating key 

process navigation and adaptation capabilities and determining if performance 

degradations are significant, since the server dynamically provides client options.  

 

5.1. Case study 

The case study explores navigating a running process instance and adapting it via two 

adaptation processes using only the RESTful interface to our AProProh prototype. While 

software engineering (SE) processes were used to concretely represent and convey the 

concepts and validate its practicality, the approach is domain independent. 

 

5.1.1. Waterfall process (WP): We loosely follow this simple software engineering (SE) 

process consisting of common SE activities, making minor modifications (modeled in 

AristaFlow in Figure 5). A branch was inserted to demonstrate branch navigability, and 

start and end nodes were cropped from the screen shot due to space constraints. 

 

Figure 5. WP with Branch 

5.1.2. Test-driven development adaptation process (TDDAP): TDDAP serves as an 

example of an aspect-oriented adaptation process. In test-driven development (TDD), test 

preparation activities precede corresponding software development activities. To support 

the TDD aspect in the WP, Unit Test is placed before Implement and Integration Test 

before Integrate utilizing two Moves (see Figure 6). 

 

 

Figure 6. TDDAP 

5.1.3. Quality assurance adaptation process (QAAP): This process (see Figure 7) 

demonstrates process governance and variants, adapting a target process based on 

situational factors. Since the organizational policy expects a source code peer review 

before promotion into the source code version control system, WP already includes this 

activity. However, a "Code Review" is required instead if it is 'NOT urgent AND (high 

risk OR junior engineer)', hence the "Peer Review" node is deleted and a "Code Review" 

node is inserted. Only if the situation is 'urgent AND NOT high risk AND NOT junior 

engineer', then "Peer Review" is deleted. Such contextual parameters could be 

automatically determined and applied. If desired, QAAP could also check for compliance 

and remediate by inserting some missing activity. 
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Figure 7. QAAP 

5.1.4. REST interaction: An example of the contents of the response body for a typical 

GET /procID/{procID} where  {procID} was the process ID and {ip} was the IP address 

is shown here:  

 

{ 

  "content": "PossibleActions", 

  "procID": "1e936b99-3392-48ec-9ad0-8aede188180b", 

  "active_node": 11, 

  "node_state": "NS_RUNNING", 

  "parameters": { 

    "Junior": "BOOLEAN", 

    "High Risk": "BOOLEAN", 

    "Urgent": "BOOLEAN" 

  }, 

  "_links": { 

    "QA": { 

      "href":"http://{ip}/procID/1e936b99-3392-48ec-9ad0-8aede188180b/adaptation/qa? 

urgent=false&high%20risk=false&junior%20engineer=true&targetIP={ip}" }, 

    "TDD": { 

      "href":"http://{ip}/procID/1e936b99-3392-48ec-9ad0-8aede188180b/adaptation/tdd? 

testDriven=false&targetIP={ip}" }, 

    "execute": { 

      "href": "http://{ip}/procID/1e936b99-3392-48ec-9ad0-8aede188180b/execute" }, 

    "current-tasks": [ 

      { "href": "http://{ip}/task/06521ed8-8146-4037-91af-070fb572f309" }, 

      { "href": "http://{ip}/task/45894ecf-bf55-4d47-96b2-4fa13e6029d3" }, 

      { "href": "http://{ip}/task/a7996c6f-5c02-4766-8742-d01cd96d54bf" } 

    ], 

    "self": { "href": "http://{ip}/procID/1e936b99-3392-48ec-9ad0-8aede188180b" } 

  } 

}  

where "content" is the action invoked, "procID" is the process ID, "active_node" is the 

node number to be executed next, "node_state" is the current state of the node, 

"parameters" are the output parameters (data elements) the activities depend on, and 

"_links" include the next possible actions. The response to a POST provides a link to the 

task-status for the task just requested as well as a link to the process to provide an 

overview of the process state.  

In the case of a POST, only the taskID and procID are provided as links to determine the 

possible next actions. An example of the response of a POST 

/procID/{procID}/adaptation/tdd is shown here: 

{ 
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  "content": "TDD", 

  "procID": "1e936b99-3392-48ec-9ad0-8aede188180b", 

  "active_node": 11, 

  "node_state": "NS_RUNNING", 

  "parameters": { 

    "High Risk": "BOOLEAN", 

    "Junior": "BOOLEAN", 

    "Urgent": "BOOLEAN" 

  }, 

  "_links": { 

    "overview": { "href": "http://{ip}/procID/1e936b99-3392-48ec-9ad0-8aede188180b" }, 

    "task-status": { "href": "http://{ip}/task/6156a3b2-6086-4e9e-a9e5-c7d40eff87d5" } 

  } 

} 

As to parameters, for the WP activity "Error Found", the output parameter "Decision" 

is used to control the return loop to "Unit Test" or continue to "Code Review". The 

TDDAP POST input parameter included "testDriven" = true. The QAAP POST input 

parameters included "urgent" and "high risk" as false and "junior engineer" as true. 

Figure 8 shows an example interaction. After each POST response, a GET can be 

invoked to determine the new process state (not shown). After the TDDAP POST and the 

following execute POST, the GET no longer lists "TDD" as a possible next action, since 

the currently active node is then "Unit Test". In addition, once "Code Review" is entered, 

"QA" is no longer listed since it is also no longer valid. 
 

 

Figure 8. REST Client Server Interaction 

5.1.5. Resulting process adaptations: The resulting process state can be seen in Figure 9. 

The numbers above the activities in Figure 8 indicate the number of visits to that activity 

node. Contextually-driven structural adaptations by the TDDAP invocation caused the 

unit and integration tests to be swapped with their corresponding activity. The QAAP also 

demonstrated process governance and compliance, determining that "Peer Review" 

should be replaced with "Code Review". Moreover, navigation at "Error Found" caused a 
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return loop to "Unit Test" based on the contextual situation transmitted via the "Decision" 

parameter.  

 

Figure 9. Resulting WP after Adaptations were Applied and Looped Once 

The result shows that it is possible for a RESTful client, utilizing HATEOAS 

principles, to use the AProProh middleware to enact and adapt a process, with available 

next actions dynamically and contextually provided without a direct coupling to the PAIS. 

 

4.2. Measurements 

To characterize the performance implications of the HATEOAS-PAIS middleware, the 

collocated server-side overhead (without involving remote network latencies) was 

measured on a PC with the following configuration:  i5-4460 CPU@3.2GHz, 8GB RAM, 

Win10 Pro, Java JRE 1.8, and AristaFlow 1.0.92. The Spring REST stack (variant A) 

consisted of Spring HATEOAS 0.16, Spring plugin core 1.1.0, Jackson 2.4.6, and Apache 

Tomcat 8. The Dropwizard REST stack (variant B) consisted of Dropwizard 0.9.1, 

Jackson 2.6.3, and Jetty 9.2.13. The REST client consisted of the Postman extension for 

the Chrome browser. For averages, the succeeding four operations after an uninitialized 

measurement were used. Note that no optimization or tuning was performed with our 

configuration, including the REST stacks or the PAIS, as these measurements are 

intended to evaluate support of our concept and not for benchmarking. 

Table 1 shows that the initial GET /procID/{procID} request has a significant overhead, 

presumably related to initialization overhead, which dropped considerably for the 

subsequent requests, also possibly due to caching effects. The "REST overhead" related to 

the REST stack (including JSON) contributed on average approximately 3% of the overall 

latency for both variant A and B. The "Other overhead" can be attributed to the 

determination of the current process instance state and the possible next steps, as 

described in Section 4.3 on the realization. 

Table 1. GET Latencies (in millisecs) 

 

GET 

Initial Average 

Spring Dropwizard Spring Dropwizard 

Total latency 2632 2345 312 259 

Other overhead 2428 2195 256 251 

REST overhead 204 150 9.0 8.0 

REST overhead 7.8% 6.4% 2.9% 3.1% 

 

Table 2 shows measurement results for POST /procID/{procID}/execute. Since a GET 

had already been invoked by this point, the initial POST latency is not so dramatically 

different from the average latencies. Likely, the difference is related to caching effects. 

For the average case, the REST overhead contributed 5% latency overhead. Compare to 

GET, for POST we observe on average a reduced latency under "Other overhead" of 

between 125-147 ms. This can be attributed to the decision not to have the POST 

response include the current process state nor calculate the possible next actions, as 

previously described in Section 5.1.4. 
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Table 2. POST Execute Latencies (in millisecs) 

 

POST 

Initial Average 

Spring Dropwizard Spring Dropwizard 

Total latency 188 145 137 110 

Other overhead 175 132 131 104 

REST overhead 13 13 6.5 5.8 

REST overhead 6.9% 9.0% 4.7% 5.3% 

 

In our configuration with these processes, the average latency for the PAIS operations 

measured at the PAIS supplier plugin was 166 ms for execute, 207 ms for TDD 

adaptation, and 205 ms for QA adaptation. When these durations are included in the 

overall response time without the queueing layer, for the Spring variant the average total 

latency for a POST execute was then 371 ms. With the queueing layer, the response 

latency was 137 ms. Thus, task queuing improved the POST response time towards the 

clients and kept them from waiting for the task completion. However, since the GET adds 

additional overhead to determine the current state and next possible actions, for short 

duration tasks the total delay can be longer with a POST followed by a GET combination 

than with a pure POST and wait, if the client were only interested in determining when 

the task completed. 

In summary, both REST stacks did not significantly affect the latency overhead for the 

middleware approach. Rather, the performance characterization shows that supporting 

HATEOAS adds latency overhead to determine the current process state and the possible 

next actions with PAIS-specific calls. As the number of possible actions increases, each 

interaction is affected. While direct access of PAIS APIs may be a consideration when 

performance is critical, the tradeoff is losing a generic HATEOAS interaction and 

adaptation middleware to heterogeneous PAIS. Future work can investigate optimizations 

in this area. 

 

6. Conclusion 

A HATEOAS-PAIS middleware approach for enacting and adapting processes in a 

process-aware information system was described. While the original AProPro solution 

approach enables one process to adapt another process dynamically in the cloud utilizing 

REST services that apply change patterns, AProProh extends this to support PAIS-

agnostic hypermedia-driven process enactment, adaptation, and navigation.  

The evaluation consisted of a case study and measurements based on a sequential 

process from software engineering domain and two dynamically applied adaptation 

processes (quality assurance and test-driven development). It demonstrated the viability of 

enhancing a PAIS with an HATEOAS integration layer without necessitating PAIS 

modifications. Furthermore, RESTful clients having no prior knowledge of the process 

model could enact and adapt these models dynamically.   

A deeper integration of REST middleware into the PAIS could reduce the overheads 

involved in determining the current state and possible next actions. If this were pursued, 

then the PAIS vendors should agree on a common standard for the web API interface. 

Otherwise, an approach similar to that advocated in this paper could provide a common 

web API interface to various PAIS implementations while encapsulating their PAIS APIs 

and differences. The shared PAIS supplier plugin concept can reduce the integration 

investment cost and PAIS vendor lock-in, allowing greater freedom to utilize different 

PAIS implementations for different purposes while unified behind a common interface. 

Future work includes the integration of various other PAIS into the middleware, 

incorporation of a generalized rule engine to assist in determining the possible next 

actions for a client, and optimizations to reduce latencies. 
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