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Abstract: Dynamic business process management (dBPM) is dependent on automated adaptation techniques. While 
various approaches to support process adaptation have been explored, they typically involve another or 
some combination of modeling paradigms or language extensions. Moreover, cross-cutting concerns and a 
distributed and cloud-based process adaptation capability have not been adequately addressed. This paper 
introduces AProPro (Adapting Processes via Processes), a flexible and cloud-capable approach towards 
dBPM that supports adapting target processes using adaptation processes while retaining an intuitive and 
consistent imperative process paradigm. Based on a case study using a REST-based Web Service prototype 
realization invoking process adaptation patterns in a distributed of Adaptation-as-a-Service cloud setting, 
the initial evaluation results show the feasibility of the approach and gauge its performance in the cloud. 

1 INTRODUCTION 

Dynamic business process management (dBPM) 
seeks to support the reactive or evolutionary 
modification or transformation of business processes 
based on environmental conditions or changes. The 
technical realization of business processes, known as 
executable processes or workflows, are implemented 
in what is known as either a business process 
management system (BPMS), workflow 
management system (WfMS), or process-aware 
information system (PAIS).  

However, many PAISs today lack dynamic 
runtime adaptation with correctness and soundness 
guarantees (Reichert et al., 2009). And when such 
adaptation is supported, it is typically limited to 
support for manual change interaction by a process 
actor (Reichert & Weber, 2012). Typical types of 
recurring modifications to workflows are known as 
workflow control-flow patterns (Russell, van der 
Aalst & ter Hofstede, 2006), change patterns 
(Weber, Reichert & Rinderle-Ma, 2008) or 
adaptation patterns (Reichert & Weber, 2012). 

In light of the dBPM vision, as the degree of 
automation and workflow usage increases, there is a 

corresponding need to support adaptation by agents, 
be they human or software. Our previous work on an 
adaptable context-aware and semantically-enhanced 
PAIS in the software engineering domain 
(Grambow, Oberhauser & Reichert, 2010, 2011a, 
2011b) included automated adaptation work and 
work on supporting the user-centric intentional 
adaptation of workflows (Grambow et al., 2012). 
However, an open challenge remains towards 
practically expressing and maintaining adaptations 
in an intuitive manner for process modelers and 
process actors for a sustainable dBPM lifecycle. 

This paper introduces and contributes a practical 
and flexible cloud-capable approach called Adapting 
Processes via adaptation Processes (AProPro) for 
supporting dBPM in a generalized way that can be 
readily implemented and integrated with current 
adaptive PAIS technology. It supports the ease and 
accessibility of process adaptations in an intuitive 
imperative PAIS paradigm for process modelers and 
process actors or users. It can further the 
maintenance, reuse, portability, and sharing of 
adaptations, including cloud-based provisioning of 
adaptation processes within the community, thus 
supporting sustainable adaptability by extending an 
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adaptation process's lifecycle. A case-study 
demonstrates its feasibility and its cloud-based 
performance.  

The paper is organized as follows: section 2 
describes related work, followed by a description of 
the solution approach. A technical realization is 
described in section 4, followed by  an evaluation. 
Section 6 concludes the paper. Larger figures are 
placed in the appendix. Since this paper focuses on 
the technical implementation of a process, the terms 
workflow and process are used interchangeably. 

2 RELATED WORK 

Various approaches exist that can support the 
manual or automated adaption of workflows. The 
survey by (Rinderle, Reichert & Dadam, 2004) 
provides an overview from the perspective of 
support for correctness criteria. (Weber, Reichert & 
Rinderle-Ma, 2008) provide an overview based on 
the perspective of change patterns and support 
features. 

Declarative approaches, such as DECLARE 
(Pesic, Schonenberg & van der Aalst, 2007) support 
the constraint-based composition, execution, and 
adaptation of workflows. Case handling approaches, 
such as FLOWer (Van der Aalst, Weske & 
Grünbauer, 2005), typically attempt to anticipate 
change. They utilize a case metaphor rather than 
require process changes, deemphasize activities, and 
are data-driven (Reichert & Weber, 2012) (Weske, 
2012). (de Man, 2009) provides a review of case 
modeling approaches. Case-based approaches 
towards adapting workflows include (Minor, 
Bergmann, Görg & Walter, 2010). Agent-based 
approaches support automated process adaptations 
applied by autonomous software agents. Agentwork 
(Müller, Greiner & Rahm, 2004) applies predefined 
change operations to process instances using rules. 
(Burmeister,  Arnold, Copaciu & Rimassa, 2008) 
applies a belief-desire-intention (BDI) agent using a 
goal-oriented BPMN modeling language extension. 
Aspect-oriented approaches include AO4BPEL 
(Charfi & Mezini, 2007) and AO4BPMN (Charfi, 
Müller & Mezini, 2010), both of which require 
language extensions. Variant approaches include: 
Provop (Hallerbach, Bauer & Reichert, 2010), which 
supports schema variants with pre-configured 
adaptations to a base process schema; and vBPMN 
(Döhring & Zimmermann, 2011) that extends 
BPMN with fragment-based adaptations via the 
R2ML rule language. rBPMN (Milanovic, Gasevic 
& Rocha, 2011) also interweaves BPMN and R2ML. 

Automated planning and exception-driven 
adaptation approaches include SmartPM (Marrella, 
Mecella & Sardina, 2014), which utilizes artificial 
intelligence, procedural, and declarative elements.   

AProPro differs in that it is an imperative 
workflow-based adaptation approach that does not 
require a case metaphor and is activity-, service-, 
and process-centric with regard to runtime 
adaptation. Additionally, no language extensions or 
other paradigms such as rules, declarative elements, 
or intelligent agents are required. Further, distributed 
and cloud-based adaptations to either instances or 
schemas are supported. 

3 SOLUTION APPROACH 

The AProPro approach follows an imperative style, 
and process models are kept as simple and modular 
as reasonable for typical usage scenarios. This is in 
alignment with the orthogonal modularity pattern 
(La Rosa, Wohed, et al., 2011). Special cases can 
either be separated out or handled as adaptations via 
adaptation processes. A guiding principle of the 
AProPro approach is that adaptations to processes 
should themselves be modeled as processes, 
remaining consistent with the process paradigm and 
mindset. The solution scope focuses primarily on 
adapting process control structures, and not 
necessarily all adaptations to processes can be 
accomplished with this approach. In particular, 
internal activity changes, non-control and (internal) 
data structure changes, and implicit dependencies 
are beyond the scope of this paper.  

The following description of the solution 
approach will highlight certain perspectives. As 
shown in Figure 1, Process Instances (PI1..n) are 
typically instantiated (1) based on some Process 
Schema (S) within a given PAIS (filled with 
diagonal hatching). In adaptive PAISs, Adaptation 
Agents (AA) (shown on the left with a solid fill), be 
they human or software agents, utilizing or reacting 
to Information (I) (e.g., external information such as 
context or other internal system information such as 
planning heuristics) or Monitoring Information (MI), 
trigger modifications to various process structures. A 
Schema Adaptation Agent (SAA), such as a process 
designer or modeler, makes Schema Adaptions (SA) 
to one or more Process Schema (PS). An Instance 
Adaptation Agent (IAA), such as a process actor or 
user, may perform Adaptations (A) on some Process 
Instance (PI). Support for such adaptation has been 
available in adaptive PAISs, e.g., the ADEPT2-
based AristaFlow (Reichert & Weber, 2012, Ch. 15).  
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Figure 1: Conceptual solution architecture. 

Workflow-driven adaptations of workflows: 
adaptations, such as adaptation patterns, are 
specified in the form of workflows that will operate 
on another workflow. For this (see Figure 1 dotted 
fill), an Adaptation Process Schema (AS) is created 
or modified from which one or more Adaptation 
Process Instances (API1..m) are instantiated (2) in 
the same or a different PAIS. The (API) to target 
(PI) relation may be one-to-one, one-to-many, 
many-to-one, or many-to-many. Utilizing 
Adaptation Information (AI) such as events, triggers, 
or state, automated instructions denoted as 
Adaptation Commands (AC) can be sent to an 
Instance Adaptation Agent (IAA) that executes 
Adaptations (A) on one or more (PI). Note that in 
certain PAIS architectures, a direct adaptation 
mechanism (3) that avoids the (IAA) intermediary 
may exist, with (API) acting as an (IAA). (API) may 
provide Adaptation Events (AE), e.g., so that an (AA) 
can be aware of the current state of an (API).  

Adaptation patterns as workflows: Adaptation 
patterns (insert, delete, move, replace, swap, inline, 
extract, parallelize, etc.) can be integrated in 
workflows and applied conditionally based on 
Adaptation Information (AI), e.g., in the form of 
process variables or events.  

Aspect-oriented adaptations: this is supported by 
modularizing and constraining an adaptive workflow 
to operate on one aspect (such as authorization), 
while having other adaptation workflows address 
others. The many-to-many relations between (API) 
and (PI) or Schemas (PS) was previously mentioned. 
Congruent with the chain-of-responsibility design 
pattern, adaptations can be modularized and chained. 

Variation points: these can be intentionally 
incorporated via markers for explicit adaptation 
support during process modeling, e.g., given 
insufficient modeling information. Adaptation 
workflows can then dynamically "fill in" these areas 
during process configuration or enactment. 

Adapting adaptation workflows: This concept 
supports a further degree of flexibility by supporting 
adaptation workflows operating on (other) 
adaptation workflows. Adaptation Process Instances 
(API) send Adaptation Commands (AC) resulting in 
Schema Adaptations (SA) to a Process Schema (PS), 
either via a Schema Adaptation Agent (SAA) or 
directly via (4). In a similar fashion, Adaptation 
Schema Adaptations (ASA) can be applied to an 
Adaptation Process Schema (APS) via an Adaptation 
Process Schema Adaptation Agent (APSAA) or 
directly via (5). Note that in this case, an (API) can 
change its own schema (APS) or those of others, and 
potentially change itself (API) or other instances 
(API), possibly even directly via (6). 

Recursive adaptation: instead of separating the 
(API) from its target (PI), if preferable (for instance, 
to access contextual data), a (PI) can include its own 
(APS) fragments and thus become self-modifying. 

Exception-based adaptations: (un)anticipated 
exceptions can be used to trigger the enactment of 
adaptation workflows within exception handlers. 

Reactive and proactive adaptations: in support of 
dBPM, event- and context-driven changes can 
automatically trigger and cause automated predictive 
or reactive runtime adaptations to be incorporated on 
an as-needed basis, rather than taking all 
possibilities into process models a priori. 

Push-or-pull adaptations: for push, the adaptive 
workflow is triggered first and applies its changes to 
the target; for pull, the target workflow triggers the 
adaptive workflow to initiate its adaptations. 

Reusability: shared modeled/tested adaptation 
workflows support the wider reuse of adaptation 
patterns in the community, e.g., via repositories like 
APROMORE (La Rosa, Reijers, et al., 2011).  

Composability: more complex adaptations can 
be addressed by composing multiple adaptation 
workflows, e.g., via sub-processes into larger ones. 

Process Compliance and Governance: the (AP) 
can be used to verify expected structural and state 
conditions (no changes applied), or to additionally 
apply adaptations when these are not in compliance. 

Cloud-based provisioning of adaptation 
workflows: the concept supports operating in a 
distributed and PAIS-independent (heterogeneous) 
manner on other workflows in other clouds, making 
these adaptation workflows readily available to 
operate on others as needed. Shared tenancy and pay 
for use could reduce infrastructural costs. 

Service-oriented adaptation services:  the 
approach supports the ability to provision and 
support adaptations-as-a-service (AaaS) in the cloud. 

Thus, AProPro supports the goals of dBPM by 
enabling desired automated or semi-automated 
adaptations, while allowing process modelers and 
users to remain in their current process paradigm 
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and modeling language without requiring language 
extensions. Empirical findings that support such an 
approach includes: (Haisjackl et al., 2014) who 
empirically investigated understandability issues 
with declarative modeling, and found that subjects 
tended to model sequentially and had difficulty with 
combinations of constraints; (Pichler et al., 2012) 
determined that imperative models have better 
understandability and comprehensibility than 
declarative ones; (Reijers, Mendling, & Dijkman, 
2011) suggests that process modularity via 
information hiding enhances understandability; and 
(Döhring, Reijers & Smirnov, 2014), which showed 
that process complexity affected maintenance task 
efficiency for process variant construction - here 
subjects preferred high-level change patterns to 
process configuration. 

4 REALIZATION 

To verify the feasibility of the AProPro approach, 
key aspects of the solution concept were 
implemented utilizing the adaptive PAIS 
AristaFlow. The solution approach required no 
internal changes to this PAIS, relying exclusively on 
its available extension mechanisms via its generic 
Java method execution environment. RESTful web 
services were used for cloud interaction. Adaptation 
workflow activity nodes utilize a StaticJavaCall 
to invoke the extension code contained in a Java 
ARchive (JAR) file, which sends change requests to 
a REST server in the same or another PAIS. 

To support heterogeneity, both the 
communication and the change requests are PAIS 
agnostic. They could thus be invoked and sent by 
any PAIS activity in any adaptation workflow 
located anywhere. Only the actual workflow change 
operations require a PAIS-specific API. Other PAIS 
implementations can be relatively easily integrated 
via plug-in adapters. 

4.1 Adaptation Patterns and AaaS 

The initial realization focused on demonstrating key 
AProPro and AaaS capabilities basic to typical 
adaptations: inserting, deleting, and moving process 
fragments. On this basis, more complex adaptation 
workflows can be readily built. For instance, the 
replace change pattern was realized as a subprocess 
consisting of an insert and a delete operation.  

The AristaFlow application programming 
interface (API) expects various method input 
parameters in order to modify a workflow. Thus, 
pattern implementations were designed to include 
these expected values even if some are optional. 

The insert process fragment pattern, shown in 
Figure 2(a), takes the following input parameters: 

 procID: ID of the target process instance;  
 pre: ID of the predecessor node; 
 suc: ID of the successor node; 
 activityID: ID of activity assigned to node; 
 newNodeName: name of the new node; 
 staffAssignmentRule: of this node; 
 description: of this node; 
 readParameter: input parameters for the new 

node; 
 writeParameter: output parameters of the new 

node.  

A B

A BX

A BX

A B

A BC

(a) (b) (c)

A CB

 
Figure 2: (a) insert, (b) delete, and (c) move process 
fragment patterns. 

The delete process fragment pattern, shown in 
Figure 2(b), takes the following input parameters: 

 procID: ID of the target process instance; 
 nodeID: ID of the node to be deleted. 

 
The move process fragment pattern, shown in 

Figure 2(c), takes the following input parameters:  
 procID: ID of the target process instance; 
 pre: ID of the new predecessor node; 
 suc: ID of the new successor node; 
 nodeID: ID of the node to be moved. 

 
The replace pattern was realized as a subprocess 

that uses the insert and delete patterns (see Figure 6).  
RESTful web services were created in Java 

according to JAX-RS using Apache CXF 2.7.7, with 
Java clients using Unirest 1.4.5. For basic pattern 
AaaS services, the following corresponding REST 
operations were provided at the target PAIS 
containing the target workflows to be modified, with 
procID passed in the URI and the rest of the inputs 
described above passed as parameters: 

 PUT /procID/{procID}/insert  
 PUT /procID/{procID}/delete  
 PUT /procID/{procID}/move  
 
The following REST operations provide the 

interface for more advanced AaaS services that 
invoke adaptation workflows which modify a 
separate target workflow instance. These processes 
are explained later in the evaluation section, the 
technical interface parameters of the adaptation 
service implementations are given here:  
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 For quality assurance:  
PUT /procID/{procID}/adapt/qa 
with the string parameters urgent, high risk, 
junior engineer, and targetIP; 

 For test-driven development:  
PUT /procID/{procID}/adapt/tdd 
with the string parameters testDriven and 
targetIP. 

4.2 Implementation Details 

The AaaS client-side adaptation process nodes 
internally invoke static methods in the 
ChangeOperations class for that change pattern 
(doInsertProcessFragment or equivalent). This 
method invokes a REST client that sends the 
corresponding request to a REST server. The service 
determines the type of Request, on which basis a 
corresponding (e.g., InsertProcessFragment-) 
Command object is instantiated and passed to a 
Controller, which determines when and in what 
sequence to execute a given command. Refer to 
Figure 3. To support  heterogeneity, the commands 
utilize the corresponding Supplier classes which 
utilize PAIS-specific APIs for the operations. 

A lock is acquired for the AristaFlow target 
process instance and a ChangeableInstance object is 
generated. All changes are first applied to this 
ChangeableInstance object. When the changes are 
committed, the entire instance is checked by 
AristaFlow for correctness. If the changes are 
correct, the actual process instance is modified 
accordingly. If errors were found, the changes are 
rejected and the actual process instance remains 
unchanged. 

5 EVALUATION 

To evaluate the solution concept and one realization 
thereof, this initial case study focused on 
demonstrating key process adaptation capabilities of 
the concept and assessing its viability with respect to 
performance, especially for a distributed cloud 
scenario. The solution concept envisions provisioned 
adaptation workflows in the cloud that are available 
to operate on other workflows. Since certain reactive 
dBPM scenarios may be sensitive to delays, the 
technical evaluation encompassed cloud 
performance measurements. Workflows operating 
across geographically separate PAISs utilizing a 
basic cloud configuration would represent a worst 
case area of the performance spectrum. 

Figure 4 shows the evaluation setup. System A, 
which ran the adaptation workflows, was an 
Amazon AWS EC2 t2.micro instance eu-central-1b 
in Frankfurt, Germany consisting of an Intel Xeon 
E5-2670 v2@2.50GHz, 1 GB RAM, 1 Gbps 
network, AristaFlow PAIS 1.0.92 - r19, Windows 
2012 R2 Standard x64, and Java 1.8.0_45-b15. 
System B was an equivalent Amazon AWS EC2 
t2.micro instance on the US West Coast (Northern 
California) us-west-1b containing the target 
workflows. A remote configuration means A is 
active and communicates with its target on B. A 
local configuration implies that the Adaptation 
Process is collocated with the Target Process within 
the same PAIS, but commands are still sent via 
REST. 

Figure 3: UML2 class diagram showing key implementation packages and classes. 
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Figure 4: AWS cloud evaluation setup. 

The test procedure was as follows: On system B 
the Apache CXF REST server was started, and then 
the target workflow was manually started via the 
AristaFlow client to bring it into a started initialized 
state. On system A an adaptation workflow was 
triggered by a REST client using Postman 2.0 in a 
Chrome web browser with which the necessary 
adaptation parameters were entered (e.g., procID, 
target workflow IP address, etc.). Activities in the 
adaptation workflow send adaptation requests via 
REST to system B. All latency and processing times 
were measured within systems A and B.  

5.1 Case Study 

While the solution concept is domain independent, 
this case study uses software engineering (SE) 
processes to illustrate the capabilities and adaptation 
effects. The branches and loops involved in realistic 
models are omitted for simplification and space. 

5.1.1 Sequential Waterfall Process 

For a representative target for the application of 
adaptation processes, a sequential workflow was 
chosen, loosely following a waterfall process (WP) 
consisting of common SE activities for an approved 
software change request. It represents any standard 
process in a fictitious organization. The activity 
sequence is shown in Figure 7. 

5.1.2 Quality Assurance Adaptation Process 

To demonstrate process governance and an 
Adaptation Process producing process variants, the 
Quality Assurance Adaptation Process (QAAP) 
variously adapts a target process based on situational 
factors.  

Assume the SE process for a software change 
varies depending on its urgency, risk, and the 
worker's experience. The SE organization's policy 
normally expects at least a peer review before code 
is committed. The WP already includes this activity, 
although the adaptation workflow could also check 
policy compliance and insert such a missing activity.  

Three configurable boolean parameters were 
utilized for this process in Figure 8: Urgent, High 

Risk, and Junior Engineer (denoting the worker 
experience level, with false implying a more senior 
worker). The 'SetConditions' task allows a user to set 
workflow values, which is skipped when invoked as 
a service. The following cases besides the default 
Peer Review (no change) were supported: 

Code Review Case: A Code Review is required 
if the circumstances are 'NOT urgent AND (high 
risk OR junior engineer).' In this case: 

 The node Peer Review is deleted via the 
Delete Process Fragment 

 A node Code Review is inserted via the 
Insert Process Fragment Pattern 

 
No Review Case: Foregoing a review is only 

tolerated when the situation is 'urgent AND NOT 
high risk AND NOT junior engineer.' In this case: 

 The Peer Review node is removed via the 
Delete Process Fragment Pattern. 

 
Figure 10 shows the result of the application of 
QAAP to WP for 'not urgent and high risk', resulting 
in activity Code Review replacing Peer Review. In a 
context-aware dBPM environment, such input 
values could also be automatically determined. 

5.1.3 TDD Adaptation Process 

In software test-driven development (TDD), test 
preparation activities precede corresponding 
development activities. To support the TDD aspect 
in the WP, Unit Test is placed before Implement and 
Integration Test before Integrate. Thus, the TDD 
Adaptation Process (TDDAP) shown in Figure 9 
utilizes the Move Process Fragment Pattern twice. 
The resulting adaptations are shown in Figure 11. 

5.1.4 Aspect-oriented Adaptations 

Multiple separate Adaptation Processes can be 
advantageous for modularity and maintainability. 
Analogous to aspect-orientation, each aspect and its 
associated adaptations can be modeled in separate 
conditionally dependent Adaptation Processes. In 
Figure 12 both QAAP and TDDAP were applied to 
the target WP, with each Adaptation Process 
representing a different aspect (reviews or testing). 

5.1.5 Self-adaptive Processes 

Self-adaptive processes support the integrative 
modeling of possible adaptations into the target 
processes themselves. As shown in Figure 13, both 
the QAAP and TDDAP adaptations were modeled 
before the WP, with the target process for the 
adaptations being the enacting process instance 
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itself. This demonstrates the feasibility of adapting 
adaptation workflows and of recursive adaptations, 
and in a similar way adaptations could be integrated 
into process exception handlers. 

5.2 Measurements 

To determine the performance of dBPM adaptation 
operations by an adaptation process in a 
geographically distributed cloud scenario, the 
durations for various basic operations (insert, delete, 
move) and adaptation processes (QAAP and 
TDDAP) were measured. In the case that an initial 
measurement was significantly longer than the ones 
following (e.g., due to initialization and caching 
effects), this value was noted separately and not 
included in the average, since a dormant adaptation 
process might exhibit such an effect, whereas an 
active adaptation process would not. Each 
measurement was repeated in accordance with setup 
and test procedure described previously. To gather 
upper bounds, no optimizations or performance 
tuning were attempted. 

Table 1 through Table 3 show the results for the 
execution of the basic adaptation operations insert, 
delete, and move respectively in a local and a remote 
configuration. The average was calculated from the 
4 repeated measurements that followed the initial 
measurement. To see if cloud network delays play a 
significant role, the network latencies and the 
adaptation times are differentiated, which is also 
depicted in Figure 5. 

Table 1: Insert operation duration (in seconds). 

 
Local (B to B) Remote (A to B) 

Initial Average Initial Average 
Adaptation  4.033 3.468 3.588 3.203 

Latency 0.418 0.373 0.686 0.675 
Total 4.451 3.842 4.275 3.878 

Table 2: Delete operation duration (in seconds). 

 
Local (B to B) Remote (A to B) 

Initial Average Initial Average 
Adaptation  3.251 3.295 2.880 3.749 

Latency 0.444 0.448 1.013 0.674 
Total 3.695 3.743 3.893 4.423 

Table 3: Move operation duration (in seconds). 

 
Local (B to B) Remote (A to B) 

Initial Average Initial Average 
Adaptation  6.796 3.311 6.105 4.005 

Latency 0.577 0.347 0.772 0.692 
Total 7.374 3.658 6.877 4.697 

 

Table 4: Average Adaptation Process duration (seconds). 

 Local (B to B) Remote (A to B)
QAAP (1 replace) 15.748 16.285 
TDDAP (2 swaps) 14.971 14.226 

 

 
Figure 5: Average duration (in seconds) for various remote 
basic adaptation operations. 

Table 4 shows average of 5 repeated execution 
durations for the QAAP and separately for the TDDAP.  

For a self-adaptive process, Figure 13 combines 
the QAAP and TDDAP workflow fragments before 
the WP fragment. When executed 3 times in a local 
configuration, the average duration was 34.321 
seconds. This corresponds closely with the sum of 
the separate QAAP and TDDAP measured times. 
Thus, there appears to be no significant performance 
benefit to integrating adaptation logic in the target 
process when using a communication interface. 
Thus, for the aforementioned benefits of process 
modularization, separating the adaptation logic from 
target processes and supporting aspect-oriented 
processes appears practical.   

Performance results show that the adaptation 
delays are potentially tolerable for non time-critical 
situations in dBPM, such as predictive adaptations. 
When reactive adaptations to executing processes in 
the cloud are involved, or when human actors cause 
adaptations and await responses, the delays may be 
unsatisfactory. Networking had a relatively minor 
effect on the overall operation duration. Available 
RAM may have limited PAIS performance, and 
different configurations and profiling could provide 
further insights. 

In summary, the evaluation demonstrated that the 
solution concept is technically viable for non time-
critical cloud scenarios and can be practically 
realized by extending a currently available adaptive 
PAIS. Further, adaptive process modularization and 
cloud distribution appears to currently have 
relatively little performance impact versus the cost 
of adaptive workflow operations. This could 
however change if optimization and performance 
issues are addressed. 
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6 CONCLUSIONS 

A flexible cloud-capable approach for process 
adaptation called AProPro was introduced. Its 
feasibility was shown with a realization and a case 
study involving cloud-based adaptation workflows 
and measurements. Key adaptation capabilities 
towards dBPM were shown, including workflow-
driven adaptations of workflows, aspect-oriented 
adaptations, self-adapting workflows, composability, 
process governance, and the cloud-based 
provisioning of adaptation processes with an 
Adaptations-as-a-Service (AaaS) paradigm. 
Proactive adaptations were applied in push fashion 
and pulled via self-adaptation. Measurements show 
that pursuing cloud-based distribution and 
adaptation modularization is likely not detrimental 
to performance, since adaptations had more impact. 

The advantages of the AProPro adaptations for 
dBPM could be readily realized and benefit various 
domains such as healthcare, automotive, etc. For 
instance, a healthcare process could view allergies as 
an aspect and utilize an allergy adaptation workflow.  

The solution faces issues analogous to those of 
aspect-oriented approaches, in that it may not be 
readily clear to process modelers which adaptations 
or effects may be applied in what order at any given 
workflow point. Thus, additional PAIS tooling and 
process simulation should support adaptation 
management, version and variant management, 
compatibility checking, and make adaptation effects 
or conflicts visible to process modelers.  

Future work will investigate these issues, and 
involves comprehensive adaptation pattern coverage, 
empirical studies, optimizations, and heterogeneous 
PAIS testing.  To achieve the dBPM vision, further 
work in the process community includes 
standardization work on interchangeable concrete 
process templates, repositories, and AaaS cloud 
APIs, which could further the provisioning, 
exchange, and reuse of workflows, especially 
adaptive workflows such as those of the AProPro 
approach, thus mitigating hindrances for widely 
modeling and supporting dBPM adaptation. 
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APPENDIX

 
Figure 6: The Replace process fragment sub-process. 

 
Figure 7: The unchanged Waterfall Process (WP). 

 
Figure 8: Quality Assurance Adaptation Process (QAAP). 

 
Figure 9: Test-Driven Development Adaptation Process (TDDAP). 

 
Figure 10: Waterfall Process after application of the Quality Assurance Adaptation Process. 

 
Figure 11: Waterfall Process after application of the Test-Driven Development Adaptation Process. 

 
Figure 12: Waterfall Process after application of both Adaptation Processes. 

 
Figure 13: Self-adaptive Waterfall Process screenshot (continues to right as in Figure 7). 
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