
From Software Engineering Process Models
to Operationally Relevant Context-aware Workflows:

A Model-Driven Method

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@htw-aalen.de

Abstract - Software engineering (SE)-specific process models
and their notation, such as the Software & Systems Process
Engineering Metamodel, are typically not specified or available
in an executable form that can provide automated guidance in
human-centric software engineering workflows. These SE
process models generally remain abstract in order to be
broadly applicable, and when any are concretized, they often
exist only in the form of documentation. Thus, they are not
actually relevant operationally, affecting process utilization
and governance. On the other hand, common business process
modeling notation such as BPMN is generalized and not
conducive for providing the context-aware support needed for
executable SE workflows. Thus, a practical method is needed
that supports comprehensive SE process documentation, yet
also provides an SE workflow modeling capability that can
transform documented SE workflows into an enactable form
executable in today's workflow management systems. The
method presented in this paper can utilize an available
comprehensive SE process documentation meta-model and
automatically extract incorporated SE concepts and workflow
concepts to a workflow model, specifically the Software
Engineering Workflow Language (SEWL). From this the
following are supported: 1) graphical-based workflow
modeling, 2) model-based transformation of workflow concepts
to diverse workflow management systems (WfMS), and 3) the
semantic transformation of SE concepts to contextually-aware
process-centered software engineering environments. The
results show the viability and practicality of such a method to
document, extract, graphically model, transform, and enact SE
workflows in support of contextual guidance capabilities for
software engineers.

Keywords - process-centered software engineering
environments; software engineering environments; software
engineering process modeling; software engineering process
model transformation; SPEM; UMA; Unified Method
Architecture; model-driven software development.

I. INTRODUCTION
This article extends our previous work in [1]. In order to

be generally applicable to various software development
projects, most software engineering (SE) process models
remain abstract and require tailoring to the specific project,
team, and tool environment. Examples of SE process models
include the V-Model XT [2] (specified for all public-sector
IT development in Germany) and the Open Unified Process

(OpenUP) [3]. Typical SE process models are documented to
a great extent in natural languages, and are thus not easily
executable in an automated form. The technical
implementation of an executable process, whose sequence
can be modeled with and automatically enacted in a
workflow management system (WfMS), is called a
workflow. SE workflows, many of which are human-centric,
can cover some sequence of activities and steps related to
requirements, design, testing, etc., for instance Activity
Flows in VM-XT [4] or workflows in OpenUP [5].

Because they integrate SE concepts, SE process meta-
models can be useful in the modeling and comprehensive
documentation of such SE processes. For instance, the
Eclipse Process Framework (EPF) [6] is an open source
project for software process engineering that provides a
framework and supporting tools, one being the EPF
Composer (EPFC) [7] for method and process authoring and
publishing. It utilizes a process meta-model, the Unified
Method Architecture (UMA), a large extent of which was
adopted into the Software & Systems Process Engineering
Metamodel (SPEM) 2.0 [8].

Additionally, process-centered software engineering
environments (PCSEEs) have attempted to investigate and
address automated guidance and assistance mechanisms for
SE processes [9]. Yet they remain intrusive, rigid, and
inflexible [10], and fail to adequately support the human,
creative, and dynamic aspects of software development.
While more generalized automated process assistance and
guidance for humans has been available in the form of
process-aware information systems (PAIS) [11], this area has
lacked satisfactory standards and SE support and often lacks
the integration of the project and human context. Thus, such
systems and capabilities have not been readily leveraged by
software engineers.

A. Our Previous Work
To address these challenges for such human-centric SE

processes, we created a PCSEE that we call the Context-
aware Software Engineering Environment Event-driven
Framework (CoSEEEK) [12]. Beyond SE tool sensors and
other contextual knowledge, it utilizes workflows to
understand the process context. That includes knowing
which activities a software engineer performed, which
activity is likely currently being worked on, which activity is
next, and associating these with SE-specific concepts such as

167

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

projects, teams, persons, roles, tools, and artifacts via an
ontology and reasoner. While various facets were
investigated, including collaboration [13], quality integration
[14], and others, we still faced the problem of providing an
easy way for software engineers to access, model, and
transform SE workflows and integrate SE concepts without
vendor lock-in to a specific WfMS. Considering possible SE
workflow modeling notation, the SPEM is aimed primarily at
defining a domain-specific notation for the documentation of
SE processes, and does not completely address issues related
to executable SE processes so that automatic support and
guidance for software engineers in operational activities can
occur. On the other hand, a general workflow language
notation such as the Business Process Model and Notation
(BPMN) 2.0 [15], while executable, lacks the inclusion and
semantic meaning of various SE domain-specific concepts
and thus becomes cumbersome.

Thus, to address the executable SE workflow language
gap, our team created the text-based language SEWL [16]
and previously targeted the adaptive WfMS AristaFlow [17]
and YAWL [18] to evaluate its portability. Our previous
work in [1] contributed various extensions to the original
workflow concepts, including: a new graphical
representation for SE-specific workflows blending BPMN
and SPEM notation; a graphical editor for SE workflows;
details on the model-driven generation of tailored artifacts
that target the ontology and heterogeneous WfMS support,
specifically the common of-the-shelf (COTS) WfMS jBPM
[19] and Activiti [20]; and the workflow ontology generator,
which addresses the aspect of contextual-awareness support
for workflows in conjunction with CoSEEEK.

B. Contribution
This article extends our work in in [1] by expanding the

scope of the original solution approach. It contributes an
automated model-driven method for SE process modelers
that incorporates a standard SE process meta-model, namely
the UMA, thus supporting comprehensive SE process
documentation capabilities while generating concrete
enactable workflows that can be used in automated SE
guidance support. Based on the information gleaned from the
SE model, workflow concepts are transformed into an
intermediate workflows language SEWL, from which further
workflow transformations to specific WfMS can occur. An
evaluation utilizes the EPF Composer with both existing and
new SE process models and with Activiti and jBPM WfMS,
the results showing the viability and practicality of the
method for documenting an SE model with existing tooling,
extracting SE concepts, graphically modeling SE workflows,
transforming SE workflows to specific WfMS formats, and
enacting SE workflows in support of contextual guidance
capabilities for software engineers.

The summary of the paper is as follows: the following
section discusses related work, and Section III describes the
solution method. Section IV then describes our realization of
the method. Section V presents an evaluation, followed by a
discussion and then the conclusion.

II. RELATED WORK
With regard to related work, SPEM 2.0 [21] was

approved without supporting full process enactment. It
proposes two possible approaches for enactment: One
proposes a mapping to project planning tools. However, this
does not support automated adaptation to changing project
contexts during project execution. The other proposal is to
use the Process Behavior package to relate SPEM process
elements to external behavior models using proxy classes.
Both approaches lack full workflow modeling and
executability at the level of BPMN.

Other work related to enactment of SPEM includes
eXecutable SPEM (xSPEM) [21]. Process execution is
addressed via transformation to the Business Process
Execution Language (BPEL), while process validation is
addressed via transformation to a Petri net in combination
with a model checker. [22] maps SPEM to the Unified
Modeling Language Extended Workflow Metamodel (UML-
EWM) in order to create a concretely executable workflow.
[23] and [24] investigate transforming SPEM to BPMN,
while [25] maps SPEM to the XML Process Definition
Language (XPDL). xSPIDER ML [26] is an extension
profile of SPEM 2.0 to enable process enactment.

The novelty of our solution method is that, in contrast to
the above approaches, it targets a simple graphical as well as
textual SE process language and notation for modeling,
blending the strengths of BPMN and SPEM; it concretely
generates executable workflows on different WfMS targets;
and it generates an Web Ontology Language (OWL)-
compliant ontology of SE concepts for context-aware
PCSEE tooling support. This addresses prior hindrances and
challenges for modeling and contextually integrating SE
workflows in SEE. Furthermore, the model-driven
integration of SE process meta-models provides a way to
support comprehensive SE process documentation while
providing an automated method to extract enactable SE
workflows and contextual concepts.

III. SOLUTION
This section describes our model-driven solution method

(refer to Figure 1). The description below will refer to the
four phases in the method shown at the top of Figure 1,
namely model, transform, deploy, and operate.

The basis of the solution concept is an SE workflow
model, such as SEWL workflows which we had previously
developed. While the method supports the use of any SE
workflow format, SEWL was used as an intermediate
workflow model in our realization of this method. A SEWL
workflow is modeled, either with the graphical SEWL editor
or a textual editor, and provided as input for our Generator.
To transform the input, our Generator utilizes various
adapters we created that generate appropriate workflow
templates tailored for a specific WfMS, while concurrently
providing OWL-DL [27] output of the semantic concept
instances. These templates are then deployed. During
operations, a Process Manager Service we created abstracts,
via an interface, the WfMS-specific integration and
interaction details for our CoSEEEK (thus CoSEEEK does

168

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

not need to be a PAIS but only extend one) and the ontology
is referenced internally during operations by CoSEEEK.
Ontologies and semantic technology are advantageous in
providing a taxonomy for modeled entities and their
relations, a vocabulary, and supporting logical statements
about entities [28]. Automated consistency checking and
interoperability between different applications and agents
also support SE environment concept reuse.

A. The Model Phase
In the model phase (see Figure 1), an SE process is

modeled and documented based on an SE meta-model, such
as a UMA model created using the EPF Composer. This
model serves as an input to our Generator during the
transform phase, which automatically generates a SE
workflow model that maps all the correlating SE concepts to
an intermediate SE workflow format such as SEWL.
Alternatively, one could model or adapt the workflows
directly in SEWL. In the process modeling phase, a graphical
SEWL Editor assists the process modeler in creating the
textual SEWL workflows, which maintain the essence of
workflow concepts. Supplemental graphical diagram
information (position, font, color, etc.) is retained in
separately maintained diagram files, which are kept in sync
with the SEWL workflows. Direct editing of the XML-based
SEWL format is also possible; however, the Generator will
remove all non-applicable elements from the graphical
SEWL diagrams since the SEWL template XML file is
considered the primary model source. Further details are
provided in the next section.

B. The Transform Phase
As shown in Figure 1, in the transform phase SE

workflow model inputs in a format such as SEWL are
transformed by a Generator with a plug-in transformation
adapter architecture to the executable workflow template
format of a given WfMS target. An OWL adapter in the
Generator also semantically transforms SE concepts in the
workflow to produce an OWL-DL compliant ontology that it
utilized for process contextual awareness by CoSEEEK.

To exemplify what the transform phase of our method
does, Table I shows the mapping of common SE workflow
concepts. Here WU stands for Work Unit and WUC for

Work Unit Container. The primary difference between jBPM
and Activiti concept mapping is that in Activiti loops are
typically expressed via inclusive gateways and in jBPM via
exclusive gateways. E.g., any concurrent tasks in an SE
workflow would be modeled with the BPMN
parallelGateway, which activates all branches
simultaneously and, when merging, waits for all branches to
complete. Most WfMS support such basic features.

TABLE I. MAPPING OF SE AND WORKFLOW CONCEPTS

SEWL Activiti jBPM Ontology
Phase Service Task +

inclusiveGateway
Service Task +
exclusiveGateway

WUC + WU

Activity Service Task Service Task WUC + WU
Iteration Service Task +

inclusiveGateway
Service Task +
exclusiveGateway

WUC + WU

Task Service Task Service Task WU
Sequence - - -
Parallel parallelGateway parallelGateway -
Loop inclusiveGateway exclusiveGateway -
XOR exclusiveGateway exclusiveGateway -
Roles - - Role Template
Artifacts - - Artifact Template
Variables - - Workflow Variables

Template

To address and abstract the integration, communication,

and coordination details of the specific WfMS, each Activity
or Task is represented as a Service Task and, during
generation, wrapped with code that supports the tracking or
triggering of the start and finish of an activity or task via
event sources and event listeners. This is done since a
Process Manager Service abstracts the integration specifics
of a WfMS for CoSEEEK, and a Space (a tuple space [29])
we developed is used to handle loosely-coupled
communication during operation with CoSEEEK. Details on
this are provided later in this and the next section.

C. The Deploy Phase
In the process deployment phase shown in Figure 1,

workflows in a WfMS-specific format are deployed into
their respective WfMS engine (e.g., jBPM or Activiti) and
the workflow ontology deployed into CoSEEEK. Typically
this implies transferring the workflow files to the expected
locations for a given configuration.

Figure 1. Solution method for SE process model transformation to executable and contextually-aware workflows.

169

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. The Operate Phase
In the operate phase, a specific WfMS instantiates and

executes workflow instances as prescribed by a Process
Manager Service, which integrates a WfMS and abstracts its
details and peculiarities. In our method, to support
heterogeneous WfMS a Process Manager acts as an
intermediary to support indirect and loosely-coupled event-
based interaction between a Service Task and the context-
aware PCSEE. In our method implementation, CoSEEEK
uses our Space for this. Note that the transform phase needs
to incorporate the expected operational semantics in order to
generate the appropriate workflows for the operational phase.

Figure 2 provides an example of the operational
interactions in our implementation of the method. The
Process Manager has registered as a listener for certain
events. CoSEEEK writes a Start Process Event into the
Space. The Space notifies the Process Manager of this event,
which in turn instantiates and starts a given process in the
WfMS. For each Service Task in the workflow, a Service
Task Start Event is sent to the Process Manager and the task
waits until further notice. When CoSEEEK becomes aware
of a context state change via tool sensors (e.g., a commit of
source code was done, a test was started, or the software
engineer manually chose a new activity) that affects this
workflow and indicates that the current task is completed,
CoSEEEK writes a Task Finish Event to the Space. The
Space notifies the registered Process Manager of this event,
and it in turn notifies the WfMS. The Service Task sends an
End Event when it completes, and the Process Manager write
a Node End Event in the Space. The Space notifies
CoSEEEK of the event, which updates its state. When the
final Service Task completes, the workflow completes, and
the Process Manager writes an End Process Event to the
Space, which notifies CoSEEEK, which in turn updates its
state. As an aside, because all event history is kept in the
Space, any CoSEEEK components or a Process Manager
coming online after some absence (e.g., restart) can
determine the context or catch up on any missed events.

IV. REALIZATION
This section provides details on the implementation of

our method, the current contribution being primarily the
integration of UMA support. To support loose-coupling with
CoSEEEK, a service-oriented event-driven architecture was

used in conjunction with a tuple space [29] composed on top
of a native XML database eXist [30], and provides a Web
Service for remote access. A Process Manager Service
manages and abstracts the peculiarities of a WfMS,
interacting indirectly with CoSEEEK via events in the Space.

The Eclipse Graphical Modeling Framework (GMF) [31]
and Eclipse Modeling Framework (EMF) [32], which
includes ecore, were utilized by the SEWL editor. Figure 3
shows a simplified snippet of the ecore-based metamodel.

Figure 3. Simplified portion of the metamodel used with ecore.

Transformation Adapters. The Generator and associated
pluggable transformation adapters (SEWL, UMA, OWL,
jBPM, Activiti, AristaFlow, YAWL) were realized primarily
in Scala. Unique IDs were generated for every element
transformed and its target transformed element. This permits
a clear mapping association, which is also useful for logging.
The ontology adapter uses the Jena framework for
programmatic ontology access [33] to generate the ontology
instances for phases, activities, roles, artifacts, etc.

Figure 4 shows an example workflow snippet generated
for a jBPM Service Task, while Figure 5 shows one for
Activiti. For details on XML grammar of inputs or outputs,
refer to the respective WfMS or UMA documentation.

WfMS Process Manager Space CoSEEEK
Start Process EventStart Process Event

Start Process

End Process End Process Event End Process Event

Service Task Start Event Wait for Task Finish Event

Task Finish Event
Task Finish Event

Service Task End Event
Node End Event

Node End Event

For each
Service Task

Figure 2. Primary runtime component interaction.

170

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<task id='2'name='RequestChange'tns:taskName='SEWL Task'>
 <extensionElements>
 <tns:onEntry-script
scriptFormat='http://www.java.com/java'>
 <script>StartEventListener listener = new
StartEventListener();
 kcontext=listener.writeNodeStart(kcontext);</script>
 </tns:onEntry-script>
<tns:onExit-script
scriptFormat='http://www.java.com/java'>
 <script>EndEventListener listener = new
EndEventListener();
 listener.writeNodeEnd(kcontext);</script>
 </tns:onExit-script>
 </extensionElements>
</task>

Figure 4. Listing snippet of generated jBPM Service Task.

<serviceTask id='RequestChange' name='Request Change'
activity:class='Service'>
 <extensionElements>
 <activity:executionListener event='start'
class='StartEventListener'/>
 <activity:executionListener event='end'
class='EndEventListener'/>
 </extensionElements>
</serviceTask>

Figure 5. Listing snippet of generated Activiti Service Task.

Generated OWL output was loaded into the Protégé
ontology editor [34] and is shown for a work unit activity in
Figure 7. Because the entire XML is very verbose, it is not
shown. Figure 8 shows a small portion of the CoSEEEK
software engineering environment ontology in graphical
form to give an impression of how software engineering
environment concepts, properties, and relations, such as
work units and activities are tied into the larger project and
environment, which is then utilized to provide contextual
awareness.

These workflows and the associated ontology concepts
serve as input to CoSEEEK, which then can provide
contextual guidance for a software engineer during SE

process execution, as can be seen in the screenshot of the
HTML- and JavaScript-based CoSEEEK GUI (Graphical
User Interface) shown in Figure 6. Context notifications are
shown in the upper region, and process context guidance is
in the bottom region, showing the current workflow activity
(here 'Test Solution') and the next possible follow-on activity
choices for guidance and/or manual selection by the user
[35]. Details on CoSEEEK's holistic approach to support
contextual guidance [12] and collaboration [13] during the
SE process are published in other papers and beyond this
paper's scope. For example, [14][36][37][38] provide details
on the automated integration of software quality measures
into executing SE workflows.

Figure 7. Generated OWL ontology for CoSEEEK shown in Protégé.

Figure 6. CoSEEEK guidance GUI.

171

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Screenshot of a portion of the CoSEEEK's software engineering environment ontology.

Figure 9. SEWL Editor showing the OpenUP Inception Phase in the SEWL graphical format.

172

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SEWL Editor. The SEWL textual language described in
[16] supports the modeling of SE workflow concepts that a
SE process may have. Multi-lingual support for referencing
the same SE concept instance in various natural languages
(e.g., German and English) was also implemented
previously, supporting global software development (GSD)
processes and their documentation in multiple languages.

The graphical notation used in the editor is extensible and
can be adapted or "skinned" with icons to suit the
preferences of the user, which can minimize notation
confrontations between different user "tribes", e.g., BPMN
purists or SPEM purists. In order to get the "best of both
worlds", the SEWL Editor currently applied a mix of
graphical notation as follows:
- SPEM icons for all SE concepts (e.g., phase, activity,

iteration, task, role, artifact),
- BPMN icons for process notation, e.g., events, gateways,

and connections.
As an example, an OpenUP Inception phase workflow

modeled in the SEWL Editor is shown in its graphical
(Figure 9) and textual (Figure 10) notation. One can see that
various SE concepts such as roles, phases, artifacts,
activities, inputs, and outputs can be modeled and sequenced.

<process base="default_process.xml" xmlns=...>
 <resources>
 <roles>
 <role id="1" name="Analyst" />
 <role id="2" name="Project Manager" />
...

 <elements>
 <element name="phase" base="container">
 <structure>
 <attribute name="repeatable">true</attribute>
 <rules>
 <contains element="activity" />
 <contains element="iteration" />
...

 <artifacts>
 <types/>
 <instances>
 <artifact type="Artifact">Project Plan</artifact>
...

 <tools/>
 <element type="sequence" name="OpenUP Process"
resource="6">
 <element type="phase" name="Inception"
milestone="Lifecycle Objectives">
 <element type="sequence">
 <element type="activity" name="Initiate Project">
 <element type="task" name="Develop Technical
Vision" resource="1">
 <output>
 <parameter name="vision"
tailoring="true">Vision</parameter>
 <parameter name="glossary"
tailoring="true">Glossary</parameter>
...

 <element type="parallel">
 <element type="activity" name="Identify and
Refine Requirements">
 <element type="sequence" resource="1">
...

 <element type="activity" name="Agree on
Technical Approach" resource="4">
...

 <element type="activity" name="Plan and Manage
Iteration" resource="2">
 <element type="sequence">
 <output>...
 </output>

Figure 10. Example OpenUP SEWL workflow snippets (end-tags omitted).

To retain the graphical details of the layout of nodes and
edges, a separate file in XMI [39] notation was used. Figure
11 gives an example.

<graphicsystem:Graphicsystem
xmi:id='WUC_Phase_1_Inception'
parentDiagram='WUC_Process_OpenUPProcess.sewl_diagram' >
 <newObjects xmi:type='graphicsystem:Start'
xmi:id='startevent1' ObjectToObjects='sequenceStart1' />
 <newObjects xmi:type='graphicsystem:Sequenz'
xmi:id='sequenceStart1'
ObjectToObjects='WU_Activity_1_InitiateProject' />
 <newObjects xmi:type='graphicsystem:Activity'
xmi:id='WU_Activity_1_InitiateProject' Name='Initiate
Project'
Reference='WUC_Activity_1_InitiateProject.sewl_diagram'
ObjectToObjects='parallelGatewayStart1' />
...
 </graphicsystem:Graphicsystem>
 <notation:Diagram xmi:id='id_WUC_Phase_1_Inception'
type='SEWL' element='WUC_Phase_1_Inception'
name='Inception.sewl_diagram' measurementUnit='Pixel'>
 <children xmi:type='notation:Shape'
xmi:id='shape_startevent1' type='2043'
element='startevent1'>
...
 </children>
 <children xmi:type='notation:Node'
xmi:id='shape_WU_Activity_1_InitiateProject' type='2034'
element='WU_Activity_1_InitiateProject'>
 <children xmi:type='notation:DecorationNode'
xmi:id='4e841147-2f14-445a-b0b4-30e714be504e'
type='5039'/>
 <children xmi:type='notation:BasicCompartment'
xmi:id='0b62527e-b592-4e3d-a367-541f17843fb9'
type='7011'/>
 <styles xmi:type='notation:DescriptionStyle'
xmi:id='1b9fea72-5856-4be5-9203-1ef5cc58d000'/>
 <styles xmi:type='notation:FontStyle'
xmi:id='3051a516-b9f4-42c6-9698-8072fbe9a301'/>
 <styles xmi:type='notation:LineStyle'
xmi:id='7ea4d238-14fc-4068-a4ce-ed6bb08820af'/>
 <layoutConstraint xmi:type='notation:Bounds'
xmi:id='11135191-6e30-4c7a-a803-dfd437a058bc' x='440'
y='185' />
 </children>
...
 <styles xmi:type='notation:DiagramStyle'
xmi:id='_avAfkaznEeGl_a7M295XCw'/>
 <edges xmi:type='notation:Connector' xmi:id='flow23'
type='4020' source='shape_startevent1'
target='shape_sequenceStart1'>
 <styles xmi:type='notation:FontStyle'
xmi:id='8712763c-8e17-4285-948b-0b78f41f90af' />
 <element xsi:nil='true' />
 <bendpoints xmi:type='notation:RelativeBendpoints'
xmi:id='71805553-c9c1-46ff-8d13-56c6a3ab24fc'
points='[20, 0, -125, 10]$[130, -14, -15, -4]'/>
 <sourceAnchor xmi:type='notation:IdentityAnchor'
xmi:id='63f1b22c-d2fd-408e-9b8a-99044df18ce6' id='EAST'
/>
 <targetAnchor xmi:type='notation:IdentityAnchor'
xmi:id='0fd5db1f-daac-468a-a457-2dcf6bf1ee43' />
 </edges>

Figure 11. Example SEWL diagram XMI code snippet.

An exemplary subset of the included constraints used to
validate the model is listed here, i.e., audit rules. These were
implemented in Java to allow usage outside of the GMF:
- verify phase/activity element has an output and a

submodel,
- verify end element has no output,
- verify task does not target iteration/activity/phase,
- verify Loop has LoopEnd, Sequence has SequenceEnd,

XOR has XOREnd, And has AndEnd.

173

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. EVALUATION
The evaluation of the solution method focuses on its

practicality and viability. Three usage scenarios were
evaluated, namely: a) the ability to use the method without
utilizing any UMA model (SEWL only), b) starting with a
new customized UMA model that represents an
organization's own tailored SE process, and c) using an
existing publicized UMA model. Furthermore, the
performance of the method realization should be evaluated to
determine if a model-driven XML-centric approach is
adequate.

As to supporting a broad modeling spectrum, the Eclipse
Process Framework (EPF) was used as a reference for
modeling Scrum and OpenUP. These models were
successfully modeled and transformed. Although the entire
OpenUP process was modeled, only portions of the Inception
Phase are shown below due to space constraints.

A. SEWL Non-UMA Process Model Example
The entire OpenUP process was modeled using the

SEWL Editor as a starting point as was seen in Figure 9, and
the generator was executed and jBPM and Activiti outputs
were generated. Figure 12 was rearranged by hand. A snippet
of the corresponding generated output is shown in Figure 14
for Activiti and in Figure 15 for jBPM. Thus processes that

do not have or wish to use UMA can still utilize the method
and SEWL for SE workflows.

B. New UMA Process Model Case Study
For this case, we started with a new EPF Composer

project and modeled a portion of the Waterfall model based
on Royce's original paper [40] as shown in Figure 13.

Figure 13. Screenshot of a Waterfall process modeled in EPF.

Figure 12. jBPM generated output (rearranged by hand).

174

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<<process id='WUC_Phase_1_Inception' name='Inception'>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.Proces
sStartEndListener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.Proces
sStartEndListener'></activiti:executionListener>
 </extensionElements>
 <startEvent id='startevent1' name='Start'></startEvent>
 <endEvent id='endevent1' name='End'></endEvent>
 <serviceTask id='WU_Activity_1_InitiateProject'
name='Initiate Project'
activiti:class='coseeek.workflow.process.activiti.extensi
on.DummyService '>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>
 </extensionElements>
 </serviceTask>
 <parallelGateway id='parallelGatewayFork1' />
 <serviceTask
id='WU_Activity_2_IdentifyandRefineRequirements'
name='Identify and Refine Requirements'
activiti:class='coseeek.workflow.process.activiti.extensi
on.DummyService'>
 <extensionElements>
 <activiti:executionListener event='start'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>
 <activiti:executionListener event='end'
class='coseeek.workflow.process.activiti.extension.EventL
istener'></activiti:executionListener>

Figure 14. Example Activiti XML snippet.

<process processType='Private' isExecutable='true'
id='WUC_Phase_1_Inception' name='Inception'>
 <extensionElements>
 <tns:import name='coseeek.workflow.process
.jbpm.extension.JBPMEventListener'/>
 </extensionElements>
 <startEvent id='_1' name='Start'></startEvent>
...
 <parallelGateway id='_3' gatewayDirection='Diverging'
/>
 <parallelGateway id='_4' gatewayDirection='Converging'
/>
 <task id='_5'
name='WU_Activity_2_IdentifyandRefineRequirements'
tns:taskName='SEWL Task' >
 <extensionElements>
 <tns:onEntry-script
scriptFormat='http://www.java.com/java'>
 <script>JBPMEventListener listener =
 new JBPMEventListener();
 kcontext=listener.writeNodeStart(kcontext);</script>
 </tns:onEntry-script>
 <tns:onExit-script
 scriptFormat='http://www.java.com/java'>
 <script>JBPMEventListener listener = new
JBPMEventListener();
 listener.writeNodeEnd(kcontext);</script>
 </tns:onExit-script>
 </extensionElements>
 <ioSpecification>
 <inputSet/>
 <outputSet/>
 </ioSpecification>
 </task>
<task id='_6' name='WU_Activity_3_AgreeonTechnicalApp...

Figure 15. Example jBPM workflow snippet.

This demonstrates that an organization's model can be
used conveyed to UMA, and that as long as phases,

activities, and/or tasks are modeled, default sequential
workflows can be automatically generated from this in
SEWL as shown in Figure 17. Here, the phases are shown as
a sequential workflow. The Testing Phase is shown as a
workflow of activities as shown in Figure 18. In Figure 19,
tasks within the activity related to product assurance
techniques specified by the Waterfall model are shown. If
desired, workflows can then modified in the SEWL, e.g., for
more complex non-sequential workflow models. The SEWL
workflows were automatically transformed by the Generator
into corresponding jBPM workflows (shown in Figures 20-
22) and Activiti workflows (shown in Figures 23-25).

C. Existing UMA Process Model Case Study
The published UMA process model OpenUP, shown in

Figure 16, was modified to simulate a customization scenario
for an organization. Here a "Review Solution" task was
added to the "Develop Solution Increment" activity.

Figure 16. OpenUP screenshot showing Review Solution customization.

175

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. SEWL diagram of the Waterfall phases.

Figure 18. SEWL workflow diagram of Waterfall's Testing Phase.

Figure 19. SEWL workflow diagram showing tasks of the Waterfall's activity Use Product Assurance Techniques.

Figure 20. jBPM diagram of the Waterfall phases workflow.

176

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 21. jBPM diagram of Waterfall's Testing Phase Workflow.

Figure 22. jBPM diagram of Waterfall's activity Use Product Assurance Techniques.

Figure 23. Activiti diagram of Waterfall's phases workflow.

Figure 24. Activiti diagram of Waterfall's Test Phase workflow.

Figure 25. Activiti diagram of the tasks in the Waterfall's activity Use Product Assurance Techniques.

177

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 26. SEWL diagram of the OpenUP phases workflow.

Figure 27. SEWL diagram of OpenUP's Construction Phase workflow.

Figure 28. SEWL diagram of the OpenUP's Develop Solution Increment workflow.

Figure 29. jBPM diagram of the OpenUP phases workflow.

Figure 30. jBPM diagram of OpenUP's Construction Phase workflow.

Figure 31. jBPM diagram of the OpenUP Develop Solution Increment workflow.

Figure 32. Activiti diagram of the OpenUP phases workflow.

Figure 33. Activiti diagram of OpenUP's Construction Phase workflow.

Figure 34. Activiti diagram of OpenUP's Develop Solution Increment workflow.

This was done to demonstrate that an existing
comprehensive UMA model from the community can be
customized and default sequential workflows automatically
generated in SEWL. In Figure 26, the phases are shown as a
sequential workflow. The Construction Phase was modeled
as a workflow of activities in Figure 27. In Figure 28, the
tasks for the activity related to product assurance techniques

are shown. If necessary, these workflows can then be
modified in the SEWL graphical editor to suit the needs for
more complex non-sequential workflow models.
Nevertheless, a starting basis is automatically provided.
From the SEWL model, we transformed these SEWL
workflows using the Generator into corresponding jBPM
(Figures 29-31) and Activiti (Figures 32-34) workflows.

178

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Performance
We evaluated our model-driven solution to determine if it

exhibits acceptable transformation performance for expected
usage.

1) Performance for provided SE Models: For this
scenario we wanted to determine the performance one can
expect for model transformation of basic and realistic SE
process models that conform to the EPF XML Schema. The
configuration for these measurements consisted of an Intel
Core i7-3740QM CPU @2,70GHz, 16 GB RAM, Windows
7 Ultimate SP1 x64, Java 8, Scala 2.11.5.

The performance results presented in Table II
differentiate the two UMA SE processes Waterfall and
OpenUP, with Waterfall being a new relatively small model
example, and OpenUP being a comprehensive model
example. The second major column shows the resulting file
sizes in bytes, lines, and number of files involved for each
of the generation steps. The major center column then
shows the duration in milliseconds for various
transformations. The EPF input files are the starting point,
with the generation steps being the EPF to SEWL
transformation (EPF->SEWL), the SEWL to diagram
transformation (SEWL->diagram), the SEWL to jBPM
transformation (SEWL->jBPM), and the SEWL to Activiti
transformation (SEWL->Activiti). The maximum time
needed was about 1 second needed to create 83 XMI
diagram files with over 10,0000 XML lines from the input
of 995 lines of SEWL XML. This performance seems
acceptable for such a comprehensive SE model.

TABLE II. EPF MODEL TRANSFORMATION PERFORMANCE

Generation Steps
Duration

(milliseconds)
Generated XML

in bytes [lines] (files)
Waterfall OpenUP Waterfall OpenUP

EPF Input files - - 9,480
[75] (1)

1,671,816
[24109] (1)

EPF -> SEWL 341 505 3,084
[85] (1)

51,695
[995] (1)

SEWL -> diagram 811 1040 32,344
[332] (3)

1,008,362
[10277] (83)

SEWL -> jBPM 646 833 20,929
[442] (12)

222,632
[5438] (83)

SEWL -> Activiti 609 950 17,218
[183] (3)

383,087 [3747]
(83)

2) Plugin Performance: We compared performance of

the various generator plugins for their different types of
output to determine if there are significant differences or
issues with such a plugin concept. For this, a five node
OpenUP process sequence was provided as the input to the
SEWL Editor, and the performance of each of the adapters
in the Generator measured. For each round, a loop of 1000
generations was averaged. For generating the SEWL
template, the SEWL diagram files served as input.
Otherwise the SEWL XML template alone was used as

input. The configuration for these measurements consisted
of an Intel Core 2 Duo CPU 2.26 GHz, 3 GB RAM,
Windows XP Pro SP3, Java JDK 1.6.0-31, Scala 2.9.1,
Activiti 5.8, jBPM 5.2, Jena 2.6.4, and Eclipse EMT
(Helios) SR2. The performance results are presented in
Table III, with the left column indicating the adapter
measured, the center column the average duration, and the
right column the size of the inputs and outputs in bytes,
lines, and files.

TABLE III. GENERATOR ADAPTER PERFORMANCE

Average
Duration
(millisec)

XML File Size
in bytes [lines] (files)

Input Generated
SEWL

template 10.3 212,490 [2255] (22) 19,431
[416] (1)

SEWL-
Diagram 65.1 19,431 [416] (1) 212,490

[2255] (22)

Activiti 23.8 19,431 [416] (1) 79,088
[822] (22)

jBPM 27.5 19,431 [416] (1) 86,169
[1856] (22)

Ontology 6917.8 19,431 [416] (1)
823,020 [12965] (1)

1,469,639
[15750] (1)

Generating a SEWL template from the diagram involves

the least amount of writing, and is thus fastest. The
generation of SEWL diagrams in XMI format is more
verbose in bytes and lines by at least a factor of 2, and its
duration is correspondingly longer compared to the jBPM or
Activiti adapters. With regard to the Ontology adapter, two
files serve as input for generating the OWL ontology; in
addition to the SEWL template input, the Jena Semantic
Web framework is used to parse and create internal objects
from the existing ontology (a comparatively large file with
its additional 12 related remote namespace schema), then
the relevant ontology instances are updated based on the
SEWL file, and finally a complete OWL file that contains
the modifications is generated. Since much more XML is
involved in both the input parsing and generation, and the
use of specialized semantic OWL APIs, here the overall
performance for generating semantic workflow context
concepts is noticeable.

Because the RDF and OWL-DL XML formats are
standardized, possible optimization strategies include
partitioning the ontology to only those areas applicable for
workflow ontology concepts, rather than the total ontology.
Another possibility is the use of solid state disks on the
devices involved in the ontology generation, e.g., by placing
the adapter behind a web service.

In summary, the performance of the generators appears
satisfactory for typical SE process transformation.

179

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. DISCUSSION
While there is potential for further automation of SE

processes and automated guidance support, a number of
practical hindrances remain.

In the past, since SE process documentation lacked
contextually adapted and WfMS supported workflows, it has
often seemed not to be operationally relevant, but rather
something relatively abstract. It might serve to satisfy the
appearance of the existence of a disciplined and professional
method for approaching the software engineering work, with
no real way to monitor actual usage or compliance with it.
Thus, for most of the actors involved in using the
documentation of SE processes, the documented workflows
appear not to add significant value and most of the work is
done without referring to the SE process documentation with
any of its specified abstract workflows. Perhaps the swing in
prior decades to overly documented und irrelevant SE
processes caused an understandable and reactionary agile
movement, as codified in the Agile Manifesto [1], to
minimize tools and documentation.

However, if SE process documentation could include
operationally concrete and WfMS-enactable workflows that
provide contextually relevant guidance, and these workflows
involved the actual tools and artifacts used and were tied in
to the SE process documentation as well, then it would bring
"life" to the relatively "dead" SE process documentation,
since contextually adapted workflows would be mostly
relevant and helpful to the software engineers in their actual
work context. They would no longer have the hurdle of
manually finding their current context in the abstract and
perhaps quite comprehensive SE process documentation, and
then manually determining the workflow portions they are
supposed to follow and keep jumping from their work
context to their process documentation context.

Activities and processes are an inherent part of SE and
will continue to be used to accomplish SE work, be they
explicit and documented or implicit and undocumented. As
automation and intelligence in SE environments increases, a
middle-ground may be found between these two extremes, so
that the benefits that other domains have reaped from WfMS
support for human-centric and hybrid human and automated
workflows can be better integrated and leveraged in the SE
landscape. This will involve documentation and workflow
modeling, and a model-driven approach can automate many
of the aspects in order to minimize the effort involved for
software engineers.

The SE environment, tooling, and process area has seen
relatively little standardization for various reasons. Efforts to
better integrate the heterogeneous SE tooling landscape in a
vendor-neutral manner, such as the semantic services
approach of Open Services for Lifecycle Collaboration
(OSLC) project, seem to have fizzled at the moment for all
practical purposes. As tools continue to change, keeping the
data models and integrations updated seems to involve
significant effort without significant incentives. Future
approaches may move more tooling to the cloud, enabling
better context-aware SE integration.

VII. CONCLUSION AND FUTURE WORK
This article contributed a practical model-driven

methodology that supports the usage and transformation of
software engineering process documentation to workflows
executable in modern workflow management systems. The
method can utilize comprehensive SE process documentation
meta-models and automatically extract incorporated SE
concepts and workflow models to an intermediate SE
workflow format such as the Software Engineering
Workflow Language (SEWL). These workflows can
optionally be edited in a common SE format that is aware of
SE process and environment concepts and can then
transformed into various enactable WfMS formats and
ontological concepts for context-aware support.

Automated workflow guidance for SE projects remains a
challenge, and current SE process meta-models have hitherto
not integrated support for intricate and enactable workflow
modeling capabilities. With our practical model-driven
method we showed that, beginning with only a rudimentary
process documentation of a set of SE concepts conformant to
some SE process meta-model such as the UMA, actually
enactable workflows can be automatically generated for
various common WfMS. Our method enables the utilization
of currently available SE process documentation tooling such
as the EPF Composer, without needing to deal with separate
manual process modeling techniques for a vendor-specific
WfMS due to our model-driven adapters. Such generated
sequential workflows extracted and transformed from some
SE process documentation can provide a starting point for
more intricate operational SE workflow modeling in, for
instance, our SEWL editor, should certain workflows be
more complex or require branches or loops. These can be
readily adjusted either with the SEWL graphical editor or
directly in the SEWL text-based model, and then WfMS-
specific workflows can be automatically generated.

This solution method provides an easy to use graphical
modeling capability for executable SE workflows that can
execute on commonly available WfMS, while retaining SE
semantic information in a separate OWL file for contextually
aware PCSEEs. The evaluation results show that such a
model-based method for transforming SE workflows to
common WfMS is both feasible and practical.

Future work includes case studies with industry partners
in live settings as well as more comprehensive utilization of
the ontological concepts extractable from such UMA-based
models with those of CoSEEEK. Also, bidirectional
workflow transformation support between SEWL and an
engine-specific workflow format would allow editing in the
workflow editor of choice. This entails providing reverse
transformation support for engine-specific workflow
templates, enabling engine-specific usage of features and
editing capabilities via workflow engine-specific editors. For
instance, changes made to jBPM and Activiti workflows
could be automatically reflected in a SEWL template.

180

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT
The author thanks and acknowledges Vitali Koschewoi

and Julian Donauer for their work on the implementation and
diagrams, and Gregor Grambow for his assistance with
CoSEEEK-related concepts, ontology, and adaptations.

REFERENCES
[1] R. Oberhauser, "An Approach for Modeling and

Transforming Contextually-Aware Software Engineering
Workflows," Proceedings of the Ninth International
Conference on Software Engineering Advances (ICSEA
2014), published by IARIA, ISBN: 978-1-61208-367-4
(2014), pp. 117-122.

[2] S. Biffl, D. Winkler, R. Höhn, and H. Wetzel, "Software
process improvement in Europe: potential of the new V-
modell XT and research issues," Software Process:
Improvement and Practice, 11(3), 2006, pp. 229-238.

[3] P. Kroll and B. MacIsaac, Agility and Discipline Made Easy:
Practices from OpenUP and RUP. Pearson Education, 2006.

[4] http://v-modell.iabg.de/v-modell-xt-html-english/ 2015.05.30.
[5] http://epf.eclipse.org/wikis/openup/ 2015.05.30.
[6] http://www.eclipse.org/epf/ 2015.05.30.
[7] P. Haumer, "Eclipse process framework composer," Eclipse

Foundation, 2007.
[8] Object Management Group, "Software & Systems Process

Engineering Metamodel Specification (SPEM) Version 2.0,"
Object Management Group, 2008.

[9] V. Gruhn, "Process-Centered Software Engineering
Environments: A Brief History and Future Challenges,"
Annals of Software Engineering, 14(1-4), 2002, pp. 363-382.

[10] A. Fuggetta, "Software process: a roadmap," Proc. Conf. on
the Future of Software Eng., ACM, May 2000, pp. 25-34.

[11] M. Reichert and B. Weber, "Enabling flexibility in process-
aware information systems: challenges, methods,
technologies," Springer Science & Business Media, 2012.

[12] R. Oberhauser, "Leveraging Semantic Web Computing for
Context-Aware Software Engineering Environments,"
Semantic Web, Gang Wu (ed.), In-Tech, Austria, 2010.

[13] G. Grambow, R. Oberhauser, and M. Reichert, "Enabling
Automatic Process-aware Collaboration Support in Software
Engineering Projects," Software and Data Technologies
(Editors: J. Cordeiro, M. Virvou, B. Shishkov), CCIS 303,
Springer Verlag, ISBN 978-3-642-29577-5, 2012, pp. 73-88.

[14] G. Grambow, R. Oberhauser, and M. Reichert, "Contextually
Injecting Quality Measures into Software Engineering
Processes," the International Journal On Advances in
Software, ISSN 1942-2628, vol. 4, no. 1 & 2, 2011, pp. 76-99.

[15] Object Management Group, "Business Process Model and
Notation (BPMN) Version 2.0," 2011.

[16] G. Grambow, R. Oberhauser, and M. Reichert, "Towards a
Workflow Language for Software Engineering," Proc. of the
The Tenth IASTED Int'l Conf. on Software Engineering (SE
2011), ISBN 978-0-88986-880-9, ACTA Press, 2011.

[17] P. Dadam et al., "From ADEPT to AristaFlow BPM suite: a
research vision has become reality," in Business process
management workshops, Springer, Jan. 2010, pp. 529-531.

[18] W. Van Der Aalst and A. Ter Hofstede, "YAWL: yet another
workflow language," Information systems, 30(4), 2005, pp.
245-275.

[19] M. Salatino and E. Aliverti, jBPM5 Developer Guide, ISBN
1849516448, Packt Publishing, 2012.

[20] T. Rademakers, "Activiti in Action: Executable business
processes in BPMN 2.0," Manning Publications Co., 2012.

[21] R. Bendraou, B. Combemale, X. Crégut, and M. Gervais,
"Definition of an Executable SPEM 2.0," In Proc. APSEC
2007, IEEE, 2007, pp. 390-397.

[22] N. Debnath, D. Riesco, M. Cota, J. Garcia Perez-Schofield,
and D. Uva, "Supporting the SPEM with a UML Extended
Workflow Metamodel," Proc. IEEE Conf. on Computer
Systems and Applications, AICCSA, 2006, pp. 1151-1154.

[23] D. Riesco, G. Montejano, N. Debnath, and M. Cota,
"Formalizing the Management Automation with Workflow of
Software Development Process Based on the SPEM Activities
View," Proc. 6th Int’l Conf. on information Technology: New
Generations, 2009, pp. 131-136.

[24] M. Perez Cota, D. Riesco, I. Lee, N. Debnath, and G.
Montejano, "Transformations from SPEM work sequences to
BPMN sequence flows for the automation of software
development process," J. Comp. Methods in Sci. and Eng. 10,
1-2S1, (September 2010), 2010, pp. 61-72.

[25] Y. Feng, L. Mingshu, and W. Zhigang, "SPEM2XPDL:
Towards SPEM Model Enactment," Proc. of SERP, 2006, pp.
240-245.

[26] C. Portela et al. "xSPIDER ML: Proposal of a Software
Processes Enactment Language Compliant with SPEM 2.0,"
J. of SW Eng. & Applications, 5(6), 2012, pp. 375-384.

[27] D. McGuinness and F. Van Harmelen, "OWL web ontology
language overview," W3C recommendation, 2004.

[28] D. Gasevic, D. Djuric, and V. Devedzic, Model driven
architecture and ontology development. Springer, 2006.

[29] D. Gelernter, "Generative communication in Linda," ACM
Transactions on Programming Languages and Systems, 7(1),
1985, pp. 80-112.

[30] W. Meier, "eXist: An open source native XML database.
Web," Web-Services, and Database Systems, LNCS, 2593,
2009, pp. 169-183.

[31] http://www.eclipse.org/modeling/gmp/ 2015.05.30.
[32] http://www.eclipse.org/modeling/emf/ 2015.05.30.
[33] B. McBride, "Jena: a semantic web toolkit," Internet

Computing, Nov. 2002, pp. 55-59.
[34] N. F. Noy et al., "Creating semantic web contents with

protege-2000," IEEE intelligent systems, 16(2), pp. 60-71,
2001.

[35] G. Grambow, R. Oberhauser, and M. Reichert, "User-centric
Abstraction of Workflow Logic Applied to Software
Engineering Processes," Proceedings of the 1st Int'l
Workshop on Human-Centric Process-Aware Information
Systems (HC-PAIS'12), 2012.

[36] G. Grambow and R. Oberhauser, "Towards Automated
Context-Aware Selection of Software Quality Measures,"
Proc. 5th Intl. Conf. on Software Engineering Advances,
2010, pp. 347-352.

[37] G. Grambow, R. Oberhauser, and M. Reichert, "Employing
Semantically Driven Adaptation for Amalgamating Software
Quality Assurance with Process Management," Proc. 2nd
Int’l. Conf. on Adaptive and Self-adaptive Systems and
Applications, 2010, pp. 58-67.

[38] G. Grambow, R. Oberhauser, and M. Reichert, "Contextual
Quality Measure Integration into Software Engineering
Processes," International Journal on Advances in Software,
4(1&2), 2011, pp. 76-99.

[39] Object Management Group, "MOF 2 XMI Mapping Version
2.4," 2010.

[40] W. W. Royce, "Managing the development of large software
systems," Proceedings of IEEE WESCON, Vol. 26, No. 8,
1970, pp. 328-339.

[41] K. Beck et al., "The agile manifesto," 2001.

181

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

