
213

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automated Software Engineering Process Assessment:
Supporting Diverse Models using an Ontology

Gregor Grambow and Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

{gregor.grambow, roy.oberhauser}@htw-aalen.de

Manfred Reichert
Institute for Databases and Information Systems

Ulm University
Ulm, Germany

manfred.reichert@uni-ulm.de

Abstract—Current software engineering process assessment
reference models rely primarily on manual acquisition of
evidence of practices. This manually collected data is then
correlated with expected model attributes to assess compliance.
Such manual data acquisition is inefficient and error-prone,
and any assessment feedback is temporally detached from the
original context by months or years. Yet in order to automate
the process data acquisition and assessment, one is confronted
with various challenges that such diverse project-specific
software engineering environments involve. This paper
presents an ontology-based approach for enhancing the degree
of automation in current process assessment while
simultaneously supporting diverse process assessment
reference models (CMMI, ISO/IEC 15504, ISO 9001). It also
provides an in-the-loop automated process assessment
capability that can help software engineers receive immediate
feedback on process issues. The evaluation showed the
approach’s technical feasibility, model diversifiability across
various process assessment models (CMMI, ISO/IEC 15504,
ISO 9001), and suitable performance and scalability. The
approach can reduce the effort required to determine process
compliance, maturity, or improvement, and can provide more
timely and precise feedback compared to current manual
process assessment methods and tools.

Keywords-software engineering process assessment tooling;
semantic technology; Capability Maturity Model Integration;
ISO/IEC 15504; ISO 9000

I. INTRODUCTION
This article extends our previous work in [1]. Processes -

be they technical, managerial, or quality processes, are an
inherent part of software engineering (SE), and subsequently
so is process assessment and process improvement [2].
Software process improvement typically involves some
assessment, and common reference model assessment
standards utilize external audits (CMMI [3], ISO 15504 [4],
and ISO 9001 [5]) that are performed manually to gather
compliance evidence. Often the maturity of software
organizations is assessed based primarily on their process-
orientation and correlation of processes to a reference model.

If SE processes were supported or enacted by process-
aware information systems (PAIS), then the efficiency of
data acquisition and analysis for process assessment could
also be improved. One prerequisite - the adoption and use of

automated process enactment support is relatively rare in SE
projects. This can be attributed to a number of factors: (1)
software development projects face a high degree of new and
changing technological dependencies (typically impacting
project tool environments, knowledge management, process
integration, and process data acquisition); (2) significant
process modeling effort is necessary and PAIS usage has
been somewhat restrictive [6]; (3) SE processes are
knowledge processes [7], so that the exact operational
determination and sequencing of tasks and activities is not
readily foreknown; and (4) most current process models are
too inflexible to mirror such detailed operational dynamics.

We developed the Context-aware Software Engineering
Environment Event-driven frameworK (CoSEEEK) [8] to
improve SE process support and guidance in an automated
fashion. That way, enhanced support features are possible,
such as automatically gathering information from the
environment and users, uniting it with information from a
knowledge base, and utilizing this information for on-the-fly
process optimization (Section IIIC provides more
information on CoSEEEK). Given such a context-aware
event-driven automated process guidance system, we
investigated the feasibility of enabling in-the-loop automated
process assessment support. Our ontology-based approach
semantically enhances a PAIS for SE operational process
enactment and assessment support.

The paper is organized as follows: Section II describes
the attributes of three common SE process reference models
used in later sections. Section III describes general
requirements and the solution approach for automated
process assessment. An evaluation of this approach is
described in Section IV. Section V positions related work
relative to the solution approach. Section VII concludes the
paper.

II. PROCESS ASSESSMENT MODELS
Three of the most mature and prevalent process

assessment approaches used in software projects (CMMI,
ISO/IEC 15504 / SPICE, and ISO 9001) are described in
order to later show how automation was achieved. Despite
the differences, with ISO 9000 being more of a requirement
model and CMMI and SPICE meta-process models, they are
similarly used for assessing process compliance or maturity.
All three models have several basic concepts in common:

214

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

They define basic activities to be executed in a project such
as ‘Identify Configuration Items’ for configuration
management. (These will be mapped by a concept called
base practice in our approach.) These activities are grouped
together (e.g., ‘Establish Baselines’ in the configuration
management example, with these groupings being mapped
by a concept called process in our approach.) In turn, the
latter are further grouped (e.g., ‘Configuration
Management’) to allow further structuring. (This will be
mapped by a concept called process category in our
approach.) To be able to rate these practices and processes,
the assessment models feature a performance scale to
quantify the assessment. Finally, most models use the
quantified assessments to assign capability levels to
processes.

A. CMMI
CMMI (Capability Maturity Model Integration) [3] is one

of the most widely used assessment models. It exists in
different constellations, from which CMMI-DEV (CMMI for
Development) is utilized in our context. The CMMI staged
representation model comprises five maturity levels (1-
‘Initial’, 2-‘Managed’, 3-‘Defined’, 4-‘Quantitatively
Managed’, 5-‘Optimizing’). The levels indicate ‘Degree of
process improvement across a predefined set of process
areas, in which all goals within the set are attained’ (cf. [3]).
To implement this, each of the levels has subordinate
activities that are organized as follows: A maturity level
(e.g., ‘2’) has process categories (e.g., ‘Support’) that have
process areas (e.g., ‘Configuration Management’) that have
specific goals (e.g., ‘Establish Baselines’) that finally have
specific practices (e.g., ‘Identify Configuration Items’). To
illustrate the CMMI, the maturity levels, categories, and
areas are shown in the following table:

To quantify the assessment, CMMI has a performance
scale (1-‘unrated’, 2-‘not applicable’, 3-‘unsatisfied’, 4-
‘satisfied’). Using these concepts, process assessment is
applied as follows:

• Rate each generic and specific goal of a process area
using the introduced performance scale.

• A maturity level is achieved if all process areas
within the level and within each lower level are
either 2 or 4 (cf. the performance scale introduced).

In addition to these concrete activities and maturity
levels, CMMI features generic goals (e.g., ‘Institutionalize a
Managed Process’) with generic practices (e.g., ‘Control
Work Products’). These are subordinate to capability levels
(0-‘Incomplete’, 1-‘Performed’, 2-‘Managed’, 3-‘Defined’,
4-‘Quantitatively Managed’, 5-‘Optimizing’). The latter
indicate ‘Achievement of process improvement within an
individual process area’ (cf. [3]). SCAMPI (Standard CMMI
Appraisal Method for Process Improvement) [9] is the
official CMMI appraisal method. It collects and characterizes
findings in a Practice Implementation Indicator Database.
According to SCAMPI, there is a direct relationship between
specific and generic goals (SG and GG), which are required
model components, and the specific and generic practices
(SP and GP), which are expected model components.
Satisfaction of the goals is determined by a detailed

investigation, and alternative practices could be implemented
that are equally effective in achieving the intent of the goals.

TABLE I. CMMI

Mat.
Level Category Process Area

2 Support Configuration Management (CM/SCM)
2 Support Measurement and Analysis (MA)
2 Project Man. Project Monitoring and Control (PMC)
2 Project Man. Project Planning (PP)

2 Support
Process and Product Quality
Assurance (PPQA)

2 Project Man. Requirements Management (REQM)
2 Project Man. Supplier Agreement Management (SAM)
3 Support Decision Analysis and Resolution (DAR)
3 Project Man. Integrated Project Management (IPM)

3
Process
Man. Organizational Process Definition (OPD)

3
Process
Man. Organizational Process Focus (OPF)

3
Process
Man. Organizational Training (OT)

3 Engineering Product Integration (PI)
3 Engineering Requirements Development (RD)
3 Project Man. Risk Management (RSKM)
3 Engineering Technical Solution (TS)
3 Engineering Validation (VAL)
3 Engineering Verification (VER)

4
Process
Man. Organizational Process Performance (OPP)

4 Project Man. Quantitative Project Management (QPM)
5 Support Causal Analysis and Resolution (CAR)

5
Process
Man.

Organizational Performance
Management (OPM)

B. ISO/IEC 15504 (SPICE)
The SPICE (Software Process Improvement and

Capability Determination) [4][10] model is an international
standard for measuring process performance. It originated
from the process lifecycle standard ISO/IEC 12207 [11] and
maturity models such as CMM (the predecessor of CMMI).
SPICE comprises six capability levels (0-‘Incomplete
process’, 1-‘Performed process’, 2-‘Managed process’, 3-
‘Established process’, 4-‘Predictable process’, 5-‘Optimizing
process’). Each of the latter has one or multiple process
attributes (e.g., ‘2.1 Performance Management’). In the
following table, the capability levels and process attributes
are shown:

A process reference model was included in the initial
version of the standard. This was later removed to support
different process models (or the ISO/IEC 12207). Thus,
mappings to various process models are possible. In this
paper, the examples use the initial process model
specifications for illustration. These comprised process
categories (e.g., ‘Organization’) with processes (e.g.,
‘Improve the process’) that contained base practices (e.g.,
‘Identify reusable components’). SPICEs measurement
model applies the following performance scale for

215

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

assessment: 1-‘not achieved’ (0-15%), 2-‘partially achieved’
(16% - 50%), 3-‘largely achieved’ (51% - 85%), and 4-‘fully
achieved’ (86% - 100%).

TABLE II. SPICE

Cap.
Level Name Process Attribute

0 Incomplete process -
1 Performed process Process Performance
2 Managed process Performance Management
 Work Product Management
3 Established process Process Definition
 Process Deployment
4 Predictable process Process Measurement
 Process Control
5 Optimizing process Process Innovation
 Process Optimization.

SPICE does not use assessments of practices to directly

determine whether an overall capability level is achieved, but
uses them to assign to each process one or more capability
levels and to use them to recursively calculate assessments
for projects and organizations. The assessment comprises the
following steps:

• Assess every base practice with respect to each of
the process attributes.

• Determine the percentage of base practices of one
process that have the same performance scale with
respect to one process attribute.

• Assessment of the processes: Assign the capability
level for process attributes where all base practices
of the process have performance scale 3 or 4 and for
all lower capability levels, the same applies with
performance scale 4.

• Assessment of a project is done by using the
mathematical mean of the ratings of all of its
processes.

• Assessment of an organization is done by using the
mathematical mean of the ratings of all of its
projects.

C. ISO 9001
ISO 9000 comprises a family of standards relating to

quality management systems. ISO 9001 [5] deals with the
requirements organizations must fulfill to meet the standard.
Formal ISO 9001 certifications have gained great importance
for organizations worldwide. The ISO 9001 assessment
model uses no capability scale; it only determines whether a
certain practice is in place. Therefore, a simple performance
scale suffices: 0-‘not satisfied’, 1-‘satisfied'. The assessed
practices are structured by process sub-systems (e.g.,
‘Organization Management’) that contain main topic areas
(e.g., ‘Management responsibility’). In turn, the latter contain
management issues (e.g., ‘Define organization structure’).
Based on these concepts, a recursive assessment can be
applied rating an organization by its process sub-systems and
the contained management issues with a pass threshold of
100%. Our approach is targeted at creating more quality

awareness in companies, not at replacing or conducting
formal reviews. Therefore, the standard ISO 19001:2011
(Guidelines for auditing management systems) [12] is not
taken into account here.

D. Summary
As shown by these three assessment models, the

approaches to process assessment differ significantly. This
applies for the concepts utilized as well as for the applied
procedures: For example, CMMI knows two different types
of levels that have subordinate activities. For ISO/IEC
15504, the levels have certain attributes that serve to assess
all existing practices. As opposed to the two other models,
ISO 9001 does not apply levels or different performance
scales. These differences hamper convergence to a unified
model or approach and present the primary technical
challenge.

III. AUTOMATED PROCESS ASSESSMENT
This section describes the approach taken to provide

automated process assessment including the requirements
elicited for such an approach, application concept,
conceptual framework, and procedure applied. The approach
extends and annotates process management concepts,
enhancing them with additional information required for
assessment. The aim of our approach is not to replace
manual ratings of processes conducted by humans or to be
used in formal process audits. It shall rather contribute to the
quality awareness of a company and provide information on
the current state of the process as it is executed. Therefore,
our approach, despite adding automated rating facilities, still
integrates and relies on manual ratings or confirmations for
ratings.

A. Requirements
This sub-section briefly elicits basic requirements for

providing automated integration of process assessment and
process execution facilities into SE project environments.
These requirements are:
- R:Proc: If a system aims at automatically integrating

assessments with the executed process, the first basic
requirements is that the system must be aware of the
process and be able to govern the latter.

- R:Cntx: To be able to not only be aware of the planned
process, but also integrate with the real operational
process as it is enacted by SE project members,
facilities must be in place the provide usable context
information to the system.

- R:MultModel: To be able to provide flexible support
for diverse projects and organizations, the assessment
approach should not be tied to a single assessment
model. It should support implementation and
customization of various models.

- R:Integrate: An automated assessment approach should
not produce much additional effort or disturb users in
their normal work. Therefore, the assessment facilities
should integrate seamlessly with normal process
execution.

216

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Application concept for automated process assessment.

- R:Auto: To avoid unnecessarily burdening users, an
automated assessment approach should enable
automate ratings to the degree feasible . However, it
must also incorporate facilities for humans to interfere
or override automated ratings.

B. Concept for Application
As aforementioned, to be able to integrate process
assessment tightly into the software developments process
and everyday work in SE projects, our approach is realized
within the CoSEEEK framework [8]. The latter provides
holistic process and project support by integrating various
technologies for context awareness and management as well
as dynamic and adaptive process management. The different
components of the framework and the contextual integration
capabilities are illustrated in Figure 1.

The different components of the framework are loosely
coupled and feature reactive event-based communication via
the central Data Storage component. As the framework shall
be context-aware, a way of acquiring context data is
necessary. In an SE project, context consists mostly of
different actors that use SE tools to manipulate a variety of
SE artifacts. To gain an awareness of these, the following
approach is taken: The Event Extraction component of the

framework features a set of sensors that are integrated into
various SE tools. These sensors generate events as users
change the states of various artifacts. As these events are of
rather atomic nature, the Event Processing component
aggregates them to derive higher-level events that contain
more semantic value.

To be able to utilize contextual knowledge directly for
process guidance, the Process Management and Context
Management components work tightly together: The former
enables the dynamic implementation and execution of
processes (cf. requirement R:Proc) while the latter stores,
processes and evaluates the context information (cf.
requirement R:Cntx) using an ontology and reasoning.
Furthermore, it encapsulates the Process Management from
the other components. Thus, all process communication is
routed over the Context Management component, which
enhances it with context information and utilizes it to adjust
the process execution.

To enable a reasonable level of dynamicity and
automation, CoSEEEK also features to further components:
The Rules Processing component enables the flexible and
simple definition and execution of certain automatisms as
rules. The Agent System component enables CoSEEEK to
react to different dynamic situations in which different
conflicting goals have to be evaluated and decisions made.

217

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Based on these components, CoSEEEK provides a
variety of different functionalities that support different
aspects of automated process and project support for SE
projects:
- Quality Management: CoSEEEK enhances the

automated detection of quality problems in the source
code by facilitating the automated assignment of
software quality measures to counteract these
problems. The measures are seamlessly integrated into
users’ workflows to minimize user disturbance and
maximize efficiency. For further reading on this topic,
see [13].

- Knowledge Management: CoSEEEK enables the
collection and management of knowledge in SE
projects. This information is semantically enhanced,
and thus CoSEEEK can automatically provide the
appropriate knowledge to the users at the appropriate
point in the process. For further reading on this topic,
see [14].

- Exception Handling: CoSEEEK enables a flexible and
generic exception handling approach that is capable of
detecting various exceptions related to activities as
well as artifacts. Furthermore, the appropriate
exception handling, the responsible person for applying
that handling, and the appropriate point in the process
to apply it can be automatically determined. For further
reading on this topic, see [15].

- Task Coordination: CoSEEEK features the ability to
automatically coordinate activities of different areas of
a SE project. This comprises the automatic notification
of users in case of certain changes to artifacts or
activities as well as the automatic issuing of follow-up
actions required by other actions or changes. For
further reading on this topic, see [16].

- Extended process support: CoSEEEK incorporates
facilities to implement a greater coverage of activities
carried out in SE projects as SE process models. Many
dynamic activities and workflows that are not covered
by the models can be modeled and executed, featuring
a suitable simple modeling and transformation facility.
For further reading on this topic, see [17].

C. Conceptual Framework
To achieve extended assessment functionality, process

management concepts were enhanced. These are defined in
the Context Management component and are associated with
a Process Management component that manages process
execution. Thus, assessment concepts can be tightly and
seamlessly integrated with process execution (cf.
requirement R:Integrate). Figure 2 shows a simple workflow
in the Process Management component: This workflow is
defined by ‘Workflow Template 1’ that contains four activity
templates. Both of these concepts are mirrored in the Context
Management component by the Work Unit Container
Template that contains Work Unit Templates. When the
workflow is to be executed, it is instantiated in the Process
Management component and then represented by a workflow

instance (‘Workflow Instance 1’) containing the activities to
be processed. These two concepts are again mirrored in the
Context Management component by the Work Unit
Container that contains Work Units. These have explicitly
defined states that are automatically synchronized with the
states in the Process Management component. That way, the
Context Management component is aware of the current
execution state of workflows and activities.

Figure 2. Conceptual framework for automating process assessment.

Similar to the Work Unit Containers and their templates,
the concepts for process assessment are separated into
template concepts for definition and individual concepts
holding the actual values of one execution. These concepts
are abstract and generic to be applicable to various models
(cf. requirement R:MultModel). The Assessment Process
Template defines one process assessment model. In
alignment to the aforementioned assessment approaches, it
features templates for Process Categories, Processes, and
Base Practices as well as Capability Levels. The latter are
general level concepts used to model various capability or
maturity levels that can be calculated for other concepts such
as Base Practices or Assessment Processes. To explicitly
configure how the capability level achievement will be
determined, Capability Determinator Templates are used.
The Assessment Process Template also defines a number of
Performance Scales that are used for the assessment later.
For all these concepts, there are individual counterparts used
for each concrete assessment that are based on the template
concepts. Table 1 depicts their relevant properties including
a short description.

218

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. CONCEPTS PROPERTIES

Property Description
Assessment Process Template
capabilityLevels all defined capability levels templates
procCatTempls all defined process category templates
Capability Level Template
calcFor concept, for which the level is calculated
capDet attached capability determinator templates
perfScale required performance scale for achievement

scaleRatio
ratio of capability determinators that must meet
required performance scale

subCL subordinate capability level template
subCLPerfScale required performance scale of subordinate level
Level number indicating the level
Capability Determinator Template
Source base practice to be assessed
Target capability level, for which this determinator is used

For flexibility in the assessment calculation, the

Capability Level Templates have a property ‘calcFor’ that is
used to attach them to the target concept to be calculated
(e.g., the whole assessment process when calculated for a
project of a single process). As proposed by the three
introduced models, level achievement calculation can rely on
the assessment of the designated practices (be they required
or expected) or subordinate levels. Therefore, the
achievement of a capability level is determined by the
following properties: ‘perfScale’ defines which Performance
Scale the attached Capability Determinators has, and via
‘scaleRatio’ a ratio of Capability Determinators can be
defined as required for the Performance Scale. Additionally,
as the Capability Levels are connected to other subordinate
levels, the Performance Scale of their determinators can also
be used (cf. SPICE, required by the ‘subCLPerfScale’
property).

The assessment of the concrete individual concepts is
then applied via the explicit Rating concept, which connects
a Performance Scale with a Base Practice and a Capability
Determinator. It can also be connected to a concrete Person
who will then be asked to do the assessment. To support
automation in the assessment procedure and unburden the
users, it is also possible to automate ratings with Automated
Rating. It can be connected to an Event Template concept
that, in turn, is connected to the States of Artifacts or Work
Unit Containers. That way, it can be configured so that when
the Concept Management component receives certain status
change events, a certain Performance Scale is assigned to a
certain rating. Examples of such a definition include: ‘Assign
Performance Scale 1 if workflow x is present (created)’ or
‘Assign Performance Scale 2 if workflow x is completed’ or
‘Assign Performance Scale 3 if Artifact y is in state z’.

D. Assessment Procedure
The concrete assessment procedure applied to rate

process performance is shown in Listing 1. The following
algorithm describes how a concrete Assessment Process is
created from its template, how the ratings are applied to the

different Base Practices contained in the process, and how
achievement of maturity/capability levels is determined.

Listing 1. The Rate Process Performance algorithm in pseudocode.

Require: Project P, AssessmentProcessTemplate APT,
Person Pers
01: AssessmentProcess AP ← createConcept(APT)
02: linkConcepts(P, AP)
03: for all APT.processCategoryTemplates PCT do
04: ProcessCategory PC ← createConcept(PCT)
05: linkConcepts(AP, PC)
06: for all PCT.processTemplates PT do
07: Process PR ← createConcept(PRT)
08: linkConcepts(PC, PR)
09: for all PRT.basePracticesTemplates BPT do
10: BasePractice BP ← createConcept(BPT)
11: linkConcepts(PR, BP)
12: end for
13: end for
14: end for
15: for all APT.capabilityLevelTemplates CLT do
16: CapabilityLevel CL ← createConcept(CLT)
17: linkConcepts(AP, CL)
18: linkConcepts(CL, CLT.calculatedFor)
19: for all CLT.capabilityDeterminatorTemplates
 CDT do
20: CapabilityDeterminator CD ←
 createConcept(CDT)
21: linkConcepts(CL, CD)
22: List relatedBPs ← getRelatedBasePracts(CD,
 AP)
23: for all relatedBPs BP do
24: new rating(CD, BP,
 AP.getStandardPerformanceScale,Pers)
25: end for
26: end for
27: end for
28: automatedRating(AP)
29: manualRating(AP)
30: for all AP.capabilityLevels CL do
31: checkAchievement(CL)
32: end for

The algorithm requires a concrete project and an
Assessment Process Template to be used for that project. The
first part of the algorithm (lines 01-14) then creates a
structure comprising Process Categories, Processes, and
Base Practices for the new Assessment Process. For this
paper, the following two functions are used: ‘createConcept’
creates an individual concept from a given template and
‘linkConcepts’ links two individual concepts together.

The second part of the algorithm (line 15-27) creates the
Capability Level structure. Therefore, the Capability Levels
and their attached Determinators are created first. Thereafter
the Determinators are linked to the Base Practices they use
for determining capability. This is done using the function
‘getRelatedBasePractices’ that gets all Base Practices in the
current Assessment Process that are configured to be
connected to a certain Capability Determinator via their
templates. For each of these Base Practices, a new Rating is
created linking them to the Capability Determinator. To this
Rating, a standard Performance Scale (usually the one equal
to ‘not achieved’) and a responsible person are attached.

The third part of the algorithm (lines 28-32) deals with
the concrete assessment. During the whole project, an

219

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

automated rating is applied whenever a matching event or
status change happens. At the end of a project (or anytime an
assessment is desired), the manual rating is applied,
distributing the rating information to the responsible person
(cf. requirement R:Auto). The latter can then check the
automated rating, rate practices that have not yet been rated,
or distribute certain parts of the assessment to others who can
provide the missing information needed to rate the practices.
The final action applied is to check the achievement for each
Capability Level of an Assessment Process.

E. Technical Realization
This section gives insights on the technical realization of

our process assessment concept and the CoSEEEK
framework. The technical implementation of each of
CoSEEEK's components is shown in Figure 3.

Figure 3. Technical Realization.

As mentioned before, CoSEEEK's context awareness
builds primarily on sensors that are integrated into various
applications. Applications with sensor support include, as
shown in the figure, the version control management system
Subversion, the integrated development environment
Eclipse, or the quality measurement tool PMD. Artifacts
whose state can be monitored this way include source or test
code, requirements, or various reports.

The Event Extraction component is implemented with
the Hackystat [18] framework. The latter provides a rich set
of sensors for the aforementioned applications. Furthermore,
it features an open architecture for the implementation of
new sensors. The aggregation of these events is done via

complex event processing (CEP) [19] enabled by the tool
esper [20]. The latter provides easy facilities to define and
execute CEP patterns. This, together with the sensors,
enables the recording of various activities people really
execute using SE tools like IDEs (Integrated Development
Environments). Thus, the execution of several activities
relating to the assessment of the process can be automatically
detected and their achievement level can be adjusted.

The communication of the different components is
realized via the tuple space paradigm [21]. The latter, in turn,
is implemented via a tuple space that has been built on top of
the XML database eXist [22]. The Agent System component
is implemented via the FIPA [23] compliant JADE
framework [24] and the Rules Processing component with
JBoss Drools [25].

The Process Management component is implemented
with AristaFlow [26]. The latter was chosen due to its
capabilities concerning correctness and flexibility. It enables
the correct adaptation even of running workflows. In
particular, during run-time, selected workflow instances can
be dynamically and individually adapted in a correct and
secure way; e.g., to deal with exceptional situations or
evolving business needs. Examples of workflow instance
changes supported by AristaFlow include the dynamic
insertion, deletion, or movement of single workflow
activities or entire workflow fragments respectively.

The Context Management component applies semantic
web technology. This comprises an OWL-DL [27] ontology
for knowledge organization and Pellet [28] as reasoner for
inferences and logical classifications. The usage of
ontologies reduces portability, flexibility, and information
sharing problems that are often coupled to technologies like
relational databases. Furthermore, ontologies support
extensibility since they are, in contrast to relational
databases, based on an open world assumption and thus
allow the modeling of incomplete knowledge.

IV. EVALUATION
This section evaluates our approach by applying it to the

three different process assessment models introduced in
Section II, and further elucidates technical realization details.
A selection of the applied concepts is shown in Figure 4 for
all of the three models.

A. CMMI
An excerpt of the implementation of the CMMI model is

shown in Figure 4(a). On the upper half, the templates for
defining the CMMI concepts are shown: The assessment of
the process is carried out in a slightly different way than the
reference model of the CMMI, since our concept does not
feature explicit goal concepts. Moreover, the assessment for
the maturity levels is done directly with the specific and
generic practices and not by using the latter for the goals and
these, in turn, for the maturity levels.

220

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Process
Category
Template

Capability
Level

Template

Process
Template

Base
Practice
Template

Process
Category Process

Perfor
mance
Scale

Base
Practice

Assessment
Process

Assessment
Process
Template

Capability
Determinator

Template

Capability
Level

Capability
Determin

ator
Rating

CMMI
Template

SPICE
Template

ISO 9001
Template

CMMI

ISO 9001

SPICE

Process
Category
Template

Process
Area

Template

Process
Subsystem
Template

Generic
Goal

Template

Specific
Goal

Template

Process
Template

Main Topic Area
Template

Generic
Practice
Template

Base
Practice
Template

Specific
Practice
Template

Specific
Practice
Template

Base
Practice
Template

Management
Issue Template

Capability
Level 2

Maturity
Level 2 Maturity

Level 1

Capability
Level 2

Capability
Level 1

Achievement

Cap
Det

Cap
Det

Cap
Det

Cap
Det

Process
Area 1

Process
Area 2

Process
Area 3

4 – Fully
Achieved

0 – Not
satisfied

1 –
Satisfied

Configuration
Management

Organization

Configuration
Management

Establish
Baselines

Institutionalize
a Managed

Process

Improve the
process

Establish
Baselines

Establish an
Organizational

Policy
Identify

Configuration
Items

Identify
reusable

components

Identify
Configuration

Items

Capability
Level 2

Maturity
Level 2

Capability
Level 2

Achievement

Capability
Determinator

Capability
Determinator

Performance
Management

Work Product
Management

Capability
Determinator

Rating

Rating

Rating

Rating

RatingRating

Rating

2

1

4

2

4
4

2

(a)
CMMI

(b)
ISO

15504

(c)
ISO
9001

Individual ConceptsTemplate Concepts

4 –
Satisfied

Cap
Det

Figure 4. Realization for specific reference models: (a) CMMI (b) ISO 15504 (c) ISO 9001.

The structure of the process is built by the Process
Category Template (used for the process areas CMMI), the
Process Template (used for the specific goals CMMI), and
the Base Practice Template (used for the specific practice of
CMMI). Connected to the ‘CMMI Template’ (implemented
by the Assessment Process Template) are also the ‘Maturity
Levels’ (implemented by the Capability Level Template
concept). In addition to this structure with the specific goals
and maturity levels, the applied concepts can also be used to
implement the generic goals of CMMI with their generic
practices and the relating capability levels as illustrated. For
the Assessment Process Template, the maturity levels are
connected to the Capability Determinators of all specific
practices that belong to the relating maturity level. The

Capability Determinators also realize connections to Base
Practices that implement CMMIs generic practices applied
to the respective process area (implemented by a connection
from the Base Practice, the Process, and the Process
Category, cf. ‘Establish an Organizational Policy’,
‘Institutionalize a Managed Process’, and ‘Configuration
Management’ in Figure 4). Similar connections can be
established for the capability levels, so that the staged or the
continuous representation of CMMI to assess respectively
the maturity of a whole organization or its capabilities
concerning the different process areas. For the capability
determination, the Assessment Process Template is also
connected to the Performance Scales that will be used for it.
The figure shows one example of them (4 – Satisfied).

221

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the lower part of Figure 4(a), the individual concepts
for the assessment of one concrete project with CMMI are
illustrated. It shows one exemplary maturity level and one
process area with one specific goal with one specific
practice. The Capability Determinators of the maturity level
are connected to the specific practices that shall be rated via
the Rating that has an assigned Performance Scale. A similar
excerpt of the structure is shown for the capability levels and
generic goals in the figure.

The achievement calculation for the maturity levels is
done with the ‘perfScale’ and ‘scaleRatio’ properties of the
Capability Level Template: That way it can be defined that
100% of the Capability Determinators must have the
Performance Scale ‘4’ or ‘2’ as defined in the CMMI model.
If calculations for all of the projects of an organization were
in place, maturity indicators for the entire organization could
use the lowest maturity level achieved by all projects.

B. ISO/IEC 15504 (SPICE)
An excerpt of the implementation of the SPICE model is

shown in Figure 4(b). In this case the names of the concepts
match with the names used in SPICE (e.g., for capability
levels or base practices). The Performance Scales are
defined for the Assessment Process Template similar to the
CMMI implementation, e.g., 4 – Fully Achieved (86%-
100%) as shown in the figure. The process areas that are
subordinate to the capability levels in SPICE are
implemented using the Capability Determinator Templates.
Each of the latter is connected to all Base Practice Templates
to enable their rating concerning all process attributes as
required by SPICE.

The lower part of Figure 4(b) again shows an excerpt of
the individual concepts used for the assessment of a concrete
project. It comprises an exemplary capability level with its
two process attributes and an exemplary process category
with one process and one base practice.

The SPICE assessment works as follows: All base
practices are rated according to all process attributes, and
capability levels are determined for the processes. A level is
achieved if all its related process areas have only ratings with
Performance Scales ‘3’ or ‘4’, and the process areas of the
subordinate levels all have Performance Scale ‘4’. The
assessment of the project is the mathematical mean of the
assessments of the processes, and can thus be easily
computed without explicit modeling. The same applies to the
assessment of a whole organization.

C. ISO 9001
As ISO 9001 is a requirement and not a process model, it

must be mapped to the organization’s process. This can be
applied by connecting automated ratings to events occurring
in the execution of work unit containers representing the real
execution of a related workflow or be applied manually by a
person doing a manual rating. An excerpt of the
implementation of the ISO 9001 assessment model is shown
in Figure 4(c). In this case, the upper part of the figure again
shows the template concepts for defining the model.
Compared to the other two models, ISO 9001 is simpler: It
knows no capability levels and only two performance scales

(as shown in the figure). Therefore, there is only one
Capability Level Template defined that is used to determine
achievement for the whole ISO 9001 assessment. That
template has one Capability Determinator Template for each
management issue.

The lower part of Figure 4(c) again shows the individual
concepts used for a concrete assessment using a concrete
example for a process subsystem, a main topic area, and a
management issue. The assessment is applied by the
‘perfScale’ and ‘scaleRatio’ properties of the single
Capability Level, specifying that all Capability
Determinators must have the Performance Scale ‘1’. As ISO
9001 knows no project level, this can be added by using a
separate Assessment Process for each project, and
cumulating the assessment over the whole organization (if all
projects have achieved, the whole organization has
achieved).

D. Performance and Scalability
Process assessment approaches often comprise dozens or

even hundreds of concepts (e.g., SPICE has over 200 base
practices), which implies the creation of an even higher
number of concepts in the ontology to enable automated
assessment. Therefore, the utilization of a separate ontology
for process assessment is considered to keep the operational
ontology of the CoSEEEK framework clean. Furthermore, to
support stability and performance, the CoSEEEK ontologies
are not managed as plain files but stored in a database (using
Protégé functionality). The test configuration consisted of a
PC with an AMD Dual Core Opteron 2.4 GHz processor and
3.2GB RAM with Windows XP Pro (SP3) and the Java
Runtime Environment 1.5.0_20, on which CoSEEEK was
running networked via Gigabit Ethernet to a virtual machine
(cluster with VMware ESX server 4.0, 2 GB RAM allocated
to the VM, dynamic CPU power allocation) where the
AristaFlow process server is installed.

The approach supports model diversity, and thus the
ontology size can vary based on various reference models.
Scalability of the approach was assessed, since a large
number of concepts can be required with complicated
models such as SPICE - which has over 200 Base Practices
that require linking to all process areas and calculation of all
Capability Levels for the Processes. The most resource
intensive point is when the entire Assessment Process for a
project is created, thus performance and scalability tests were
conducted for the automatic creation of linked ontology
concepts, scaling the number of concepts to account for
smaller to larger models.

The results obtained were: 1.7 seconds for the creation
and linking of 100 concepts, 14.2 seconds for the creation
and linking of 1000 concepts, and 131.4 seconds for the
creation and linking of 10000 concepts. The results show
that the computation time is acceptable with approximately
linear scaling. The slight reduction in average creation time
for a single concept is perhaps explainable by reduced
initialization percentages and caching effects. At this stage,
the performance of the Rate Process Performance algorithm
(Listing 1) was not assessed since it is fragmented across a
project timescale (at the beginning the concepts are created

222

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and later the ratings are applied), it is dependent on human
responses (manual ratings), and live project data has not as
yet been collected.

V. RELATED WORK
This section reviews different areas of related work: At

first, approaches covering the basic requirements for
implementing automated process assessment support are
reviewed. This includes automated process and project
support as well as the contextual integration of process
management. After that, approaches enabling semantic
extensions to process management concepts are examined.
Finally, approaches aiming at directly supporting automated
assessments are discussed.

A. Automated Process Support
To integrate automated assessments with operational

process execution, holistic process support should be enabled
by that system. In related work, many approaches target that
topic. However, many of them focus strongly on governing
activities and their dependencies. One of them is the
framework CASDE [29]. It utilizes activity theory to provide
a role-based awareness module managing mutual awareness
of different roles in the project. The collaborative SE
framework CAISE [30] enables the integration of SE tools
and the development of new SE tools based on collaboration
patterns. Caramba [31] provides coordination capabilities for
virtual teams. It features support for ad-hoc workflows
utilizing connections between different artifacts, resources,
and processes. For pre-modeled workflows, UML activity
diagram notation is used. For ad-hoc workflows not
matching a template, an empty process is instantiated. In that
case, work between different project members is coordinated
via so-called Organizational Objects. The process-centered
SE environment EPOS [32] applies planning techniques to
automatically adapt a process instance if certain goals are
violated. All of these approaches have capabilities for
supporting and automating process execution in SE projects,
yet none enacted an entire SE process model and thus failed
to provide holistic project support.

B. Contextual Process Integration
As discussed in the requirements section, to be integrated

with the real operational process of SE projects, a system
providing process support must also take into account
contextual data. In related work, numerous approaches for
context modeling exist, including frameworks like Context
Management [33], CASS [34], SOCAM [35], and CORTEX
[36]. These provide support for gathering, storing, and
processing context data, but leave the reaction to context
changes to the application, or use rule-based approaches that
are hard to maintain. There are only few approaches
combining context-awareness with workflows. One of these
is inContext [37] that makes heavy use of context knowledge
for supporting teamwork. However, inContext does not offer
the necessary capabilities to implement whole SE process
models.

C. Semantic Process Extensions
As aforementioned, the assessment concepts elaborated

in this work are implemented as semantic extensions of
process management concepts. This enables tight integration
with process execution. In related work, there are various
approaches implementing such extensions to process
management for different purposes: COBRA [38] focuses
business process analysis and, for that purpose, presents a
core ontology. With the latter, it supports better and easier
analysis of processes to comply with standards or laws like
the Sarbanes-Oxley act. [39] presents a semantic business
process repository that fosters automation of the business
process lifecycle and offers capabilities for checking in and
out, as well as locking and options for simple querying and
complex reasoning. The approach presented in [40] features
multiple levels of semantic annotations: a meta-model
annotation, a model content annotation, and a model profile
annotation as well as a process template modeling language.
With these annotations, it aims at facilitating process models
across various model representations and languages. A
concept for machine-readable process models is presented by
[41]. It targets achieving better integration and automation
and utilizes a combination of Petri Nets and an ontology,
whereby direct mappings of Petri Net concepts in the
ontology are established. [42] describes an approach that
proposes an effective method for managing and evaluating
business processes via the combination of semantic and
agent technology to monitor business processes. None of
these approaches provides a general semantic extension that
allows direct interaction with and management of process
execution as well as extensibility to achieve an integration
between the latter and process assessment approaches.

D. Automated Process Assessment Support
The core area of related work for this paper is automated

process assessment. In this area, a number of approaches
exist. One of these constitutes a multi-agent system approach
that is presented in [43], to enable automatic measurements
for the SW-CMM (Software Capability Maturity Model).
The latter is combined with the GQM (Goal-Question-
Metric) [44] method, where Goals of the SW-CMM are used
as a first step for GQM.

An OWL ontology and reasoner approach for CMMI-SW
(CMMI for Software) is presented in [45]. In contrast to our
approach, the size of the ontology caused issues for the
reasoner. A software process ontology in [46] enables the
capturing of software processes on a conceptual level. An
extension includes specific models such as SPICE or CMMI.
Ontological modeling of both CMMI and ISO 9001 as well
as certain process interoperability features is shown in [47].
The authors identify issues in consistently implementing
both models simultaneously. This problem was addressed in
our approach by including concepts abstracted from a single
model. In [48], a Process-Centered Software Engineering
Environment supports process implementation focused on
CMMI and a Brazilian process improvement model. For
CMMI-specific appraisals, multiple supportive tools are
available such as the Appraisal Assistant [49]. However,
these focus only on CMMI / SCAMPI support.

223

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We provide a more general and flexible approach, since
the applied concepts are abstracted from a single model. In
contrast to above related work that focused on one or two
specific models, ours is capable of assessment model
diversity as shown in Section IV. Furthermore, it integrates
automated SE process enactment support and supports a
combination of automated and manual ratings. That way, the
assessment is tightly and automatically integrated with SE
process execution support, providing the option of automatic
on-the-fly assessments while preserving the ability for
humans to manually rate practices and processes. This can
support quality awareness.

VI. CONCLUSION AND FUTURE WORK
This paper has described an ontology-based multi-model

holistic approach for automating the assessment of software
engineering processes. Extending our prior work in [1],
richer technical details were presented and related work was
expanded. Also general requirements for such an approach
were described, those being R:Proc, R:Cntx, R:MultModel,
R:Integrate, and R:Auto. Then the differences between three
common SE process reference models were elucidated.
Thereafter, our conceptual framework with semantic
extensions to a process-aware information system was
presented. It was shown how process reference models such
as CMMI, ISO 15504, and ISO 9001 were unified in the
ontology and the algorithm that performs the assessment was
described. The evaluation demonstrated the technical
feasibility, model diversity, and that performance with
current technology for expected application scenarios is
sufficient.

Our approach is not meant to replace manual ratings or
formal appraisals. In our opinion, this is not possible in an
automated fashion due to the many factors influencing such
ratings in real world process execution. However, our
approach can support automatic data collection, supplement
manual ratings of practices or processes, contribute to the
quality awareness of an organization, and (automatically)
highlight areas for process optimization. Furthermore, it can
help prepare an organization for a formal appraisal.

Future work involves empirical studies to evaluate the
effectiveness of the approach in industrial settings with a
variety of software organizations, with various SE process
lifecycle models in various projects, at various process
capability levels and utilizing different process assessment
standards simultaneously.

ACKNOWLEDGMENT
This work was sponsored by the BMBF (Federal

Ministry of Education and Research) of the Federal Republic
of Germany under Contract No. 17N4809.

REFERENCES
[1] G. Grambow, R. Oberhauser, and M. Reichert, “Towards Automated

Process Assessment in Software Engineering,” 7th Int’l Conf. on
Software Engineering Advances, 2012, pp. 289-295.

[2] P. Bourque and R. Dupuis, (ed.), “Guide to the Software Engineering
Body of Knowledge”, IEEE Computer Society, 2004.

[3] CMMI Product Team, “CMMI for Development, Version 1.3,”
Software Engineering Institute, Carnegie Mellon University, 2010.

[4] ISO, “ISO/IEC 15504-2 -- Part 2: Performing an assessment,” 2003.
[5] R. Bamford, and W. J. Deibler, “ISO 9001: 2000 for software and

systems providers: an engineering approach,” CRC-Press, 2004.
[6] M. Reichert and B. Weber, “Enabling Flexibility in Process-aware

Information Systems – Challenges, Methods, Technologies,”
Springer, 2012.

[7] G. Grambow, R. Oberhauser, and M. Reichert, “Towards Dynamic
Knowledge Support in Software Engineering Processes,” 6th Int’l
Workshop Applications of Semantic Technologies, 2011, pp. 149.

[8] R. Oberhauser and R. Schmidt, “Towards a Holistic Integration of
Software Lifecycle Processes using the Semantic Web,” Proc. 2nd
Int. Conf. on Software and Data Technologies, 3, 2007, pp. 137-144.

[9] SCAMPI Upgrade Team, "Standard CMMI Appraisal Method for
Process Improvement (SCAMPI) A, v. 1.3," Software Engineering
Institute, 2011.

[10] ISO, “ISO/IEC 15504-5:2012 -- Part 5: An exemplar software life
cycle process assessment model,” 2012.

[11] ISO, “ISO/IEC 12207:2008 -- Software life cycle processes,” 2008.
[12] ISO, “ISO 19011 - Guidelines for auditing management systems,”

2011.
[13] G. Grambow, R. Oberhauser, and M. Reichert, “Contextual Injection

of Quality Measures into Software Engineering Processes,” Int'l
Journal on Advances in Software, 4(1 & 2), 2011, pp. 76-99.

[14] G. Grambow, R. Oberhauser, and M. Reichert, “Knowledge
Provisioning: A Context-Sensitive Process-Oriented Approach
Applied to Software Engineering Environments,” Proc. 7th Int’l
Conf. on Software and Data Technologies, 2012.

[15] G. Grambow, R. Oberhauser, and M. Reichert, “Event-driven
Exception Handling for Software Engineering Processes,” 5th Int’l
Workshop on event-driven Business Process Management, LNBIP
99, 2011, pp. 414-426.

[16] G. Grambow, R. Oberhauser, and M. Reichert, “Enabling Automatic
Process-aware Collaboration Support in Software Engineering
Projects,” Selected Papers of the ICSOFT'11 Conference.
Communications in Computer and Information Science (CCIS) 303,
pp. 73-89, 2012.

[17] G. Grambow, R. Oberhauser, and M. Reichert, “Contextual
Generation of Declarative Workflows and their Application to
Software Engineering Processes,” Int'l Journal On Advances in
Intelligent Systems, vol. 4, no. 3 & 4, pp. 158-179, 2012.

[18] P.M. Johnson, “Requirement and design trade-offs in Hackystat: An
in-process software engineering measurement and analysis system,”
Proc. 1st Int. Symp. on Empirical Software Engineering and
Measurement, 2007, pp. 81-90.

[19] D.C. Luckham, “The power of events: an introduction to complex
event processing in distributed enterprise systems,” Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2001

[20] Esper: http://esper.codehaus.org/ [January 2013]
[21] D. Gelernter, “Generative communication in Linda,” ACM

Transactions on Programming Languages and Systems (TOPLAS),
7(1), 1985, pp. 80-112

[22] W. Meier, “eXist: An open source native XML database,” Web, Web-
Services, and Database Systems, LNCS, 2593, 2009, pp. 169-183

[23] P.D. O'Brien and R.C. Nicol, “FIPA — Towards a Standard for
Software Agents,” BT Technology Journal, 16 (3):51-59, 1998.

[24] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - A FIPA-
compliant Agent Framework,” Proc. 4th Int’l Conf. and Exhibition on
the Practical Application of Intelligent Agents and Multi-Agents.
London, 1999.

[25] P. Browne, “JBoss Drools Business Rules,” Packt Publishing, 2009.
[26] P. Dadam and M. Reichert, “The ADEPT project: a decade of

research and development for robust and flexible process support,”
Computer Science-Research & Development, 23(2), 2009, pp. 81-97.

224

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[27] World Wide Web Consortium, “OWL Web Ontology Language
Semantics and Abstract Syntax,” 2004.

[28] E. Sirin, , B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical owl-dl reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2), 2007, pp. 51-53.

[29] T. Jiang, J. Ying, and M, Wu, “CASDE: An Environment for
Collaborative Software Development,” Computer Supported
Cooperative Work in Design III, LNCS, 4402, 2007, pp. 367-376

[30] C. Cook, N. Churcher, and W. Irwin, “Towards synchronous
collaborative software engineering,” Proc. 11th Asia-Pacific Software
Engineering Conference, 2004, pp. 230-239

[31] S. Dustdar, “Caramba—a process-aware collaboration system
supporting ad hoc and collaborative processes in virtual teams,”
Distributed and parallel databases, 15(1), 2004, pp. 45-66

[32] R. Conradi, C. Liu, and M. Hagaseth, “Planning support for
cooperating transactions in EPOS,” Information Systems, 20(4),
1995, pp. 317-336

[33] P. Korpipipää, J. Mantyjarvi, J. Kela, H. Keranen, and E.J. Malm,
“Managing context information in mobile devices,” IEEE Pervasive
Computing 2(3), pp.42-51, 2003

[34] P. Fahy and S. Clarke, “CASS – a middleware for mobile context-
aware applications,” Proc. Workshop on Context-awareness (held in
connection with MobiSys’04), 2004.

[35] T. Gu., H.K. Pung, and D.Q. Zhang, “A middleware for building
context-aware mobile services,” Proc. IEEE Vehicular Technology
Conference (VTC), Milan, Italy, pp. 2656 – 2660, 2004.

[36] G. Biegel. and V. Cahill, “A framework for developing mobile,
context-aware applications,” Proc. 2nd IEEE Conference on
Pervasive Computing and Communication, pp. 361 - 365 , 2004

[37] C. Dorn, S. Dustdar, “Sharing Hierarchical Context for Mobile Web
services,” Distributed and Parallel Databases 21(1), pp. 85-111, 2007.

[38] C. Pedrinaci, J. Domingue, and A. Alves de Medeiros, “A Core
Ontology for Business Process Analysis,” LNCS 5021, pp. 49-64,
2008.

[39] Z. Ma, B. Wetzstein, D. Anicic, S. Heymans, and F. Leymann,
“Semantic Business Process Repository,” Proc. Workshop on
Semantic Business Process and Product Lifecycle Management, pp.
92–100, 2007

[40] Y. Lin and D. Strasunskas, “Ontology-based Semantic Annotation of
Process Templates for Reuse,” Proc.10th Int’l Workshop on
Exploring Modeling Methods for Systems Analysis and Design
(EMMSAD'05), 2005.

[41] A. Koschmider and A. Oberweis, “Ontology based Business Process
Description,” Proc. CAiSE´05 Workshops, pp. 321-333, 2005.

[42] M. Thomas, R. Redmond, V. Yoon, and R. Singh, “A Semantic
Approach to Monitor Business Process Performance,”
Communications of the ACM 48(12), pp. 55-59, 2005

[43] M.A. Seyyedi, M. Teshnehlab, and F. Shams, “Measuring software
processes performance based on the fuzzy multi agent
measurements,” Proc. Intl Conf. on Information Technology: Coding
and Computing (ITCC'05) – Vol. II, IEEE CS, 2005, pp. 410-415.

[44] V.R. Basili, V.R.B.G. Caldiera, and H.D. Rombach, “The goal
question metric approach,” Encycl. of SW Eng., 2, 1994, pp. 528-532.

[45] G.H. Soydan and M. Kokar, “An OWL ontology for representing the
CMMI-SW model,” Proc. 2nd Int'l Workshop on Semantic Web
Enabled Software Engineering, 2006, pp. 1-14.

[46] L. Liao, Y. Qu, and H. Leung, “A software process ontology and its
application,” Proc. ISWC2005 Workshop on Semantic Web Enabled
Software Engineering, 2005, pp. 6–10.

[47] A. Ferchichi, M. Bigand, and H. Lefebvre, “An ontology for quality
standards integration in software collaborative projects,” Proc. 1st
Int'l Workshop on Model Driven Interoperability for Sustainable
Information Systems, 2008, pp. 17-30.

[48] M. Montoni et al., “Taba workstation: Supporting software process
deployment based on CMMI and MR-MPS,” Proc. 7th Int’l Conf. on
Product-Focused Software Process Improvement, 2006, pp. 249-262.

[49] Appraisal Assistant,
http://www.sqi.gu.edu.au/AppraisalAssistant/about.html [June 2013]

