
Knowledge Provisioning 
A Context-sensitive Process-oriented Approach Applied 

 to Software Engineering Environments  

Gregor Grambow1, Roy Oberhauser1 and Manfred Reichert2 
1Computer Science Dept., Aalen University, Aalen, Germany 

2Institute for Databases and Information Systems, Ulm University, Ulm, Germany 

Keywords: Context-sensitive Applications, Context-aware Systems, Semantic Technology, Knowledge-based Systems, 
Process-aware Information Systems, Software Engineering Environments. 

Abstract: Software development is a complex, dynamic, and highly intellectual process that provides automation 
challenges in the areas of process and knowledge management. Moreover, the ability to support the context-
sensitive provisioning of knowledge is further exacerbated by the rapidly changing technologies, processes, 
knowledge, practices, methods, and tool chains that software engineering involves. Thus, the effective and 
timely provisioning of knowledge and its concrete utilization in the software development process remains 
problematic. Reasons for this include the need to ascertain the context, to be aware of the process, and to 
reason and select the appropriate knowledge to provision while abiding by human and other constraints. For 
such dynamic knowledge and process environments, this paper describes an approach for realizing a 
knowledge-based system that automatically provisions knowledge aligned with both the actual context 
(user, process, and project) and with automated workflow governance. To demonstrate the feasibility of the 
approach, a scenario-based application of the implementation to the software engineering domain is shown. 

1 INTRODUCTION 

Software engineering (SE) projects continue to face 
challenges and struggle with unique difficulties 
(Brooks, 1986); (Yourdon, 2004); (Jones, 2010). 
Today, software development is typically 
projectized, involves a dynamic and complicated 
collaborative team process, and faces numerous 
challenges including process governance and 
knowledge support. In support of software 
development, SE environments (SEEs) consist of an 
ever-changing milieu of technologies, processes, 
knowledge, practices, methods, and tools.  

Process management can foster project 
efficiency (Gibson et al., 2006) and product quality 
(Heravizadeh, 2009). For example, (Müller, 2006) 
and (Lenz and Reichert, 2007) demonstrate that 
process automation is beneficial in industries that 
exhibit repeatable and standardized processes, which 
current business process management systems 
(BPMS) support. Yet SE is characterized by 
multiform and divergent process models, unique 
projects, a creative and intellectual process, and 
collaborative team interactions, all of which impact 

workflow models (Cugola et al., 1995), (Dellen and 
Maurer, 1996). These challenges have hitherto 
hindered automated concrete SE process guidance 
and often relegated SE processes to generalized and 
rather abstract process models (e.g., VM-XT 
(Rausch et al., 2005)) that are operationally vague, 
consisting of inanimate documentation-centric 
process guidance.  

We have previously developed an automated 
context-sensitive workflow adaptation approach in 
support of quality assurance (Grambow et al., 
2011b). Yet comprehensive quality assurance 
requires more than automated context-aware process 
support. Any new product development is a 
knowledge-intensive task (Ramesh and Tiwana, 
1999) and software processes are mostly knowledge 
processes (Kess and Haapasalo, 2002). Knowledge 
management and operational knowledge 
provisioning are essential for distributing knowledge 
among actors and retaining and exploiting 
experience. Automated systems can support this by 
capturing, maintaining, reusing, and transferring 
knowledge (Teigland et al., 1998). Because of their 
ability to easily create and access information, Wikis 

506 Grambow G., Oberhauser R. and Reichert M..
Knowledge Provisioning - A Context-sensitive Process-oriented Approach Applied to Software Engineering Environments .
DOI: 10.5220/0004083005060515
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 506-515
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

are frequently used for knowledge management in 
SE, yet the retrieval of contextually relevant 
information remains difficult (Schaffert et al., 2008). 
Information is captured and stored, but its reuse 
remains problematic. If knowledge use were 
connected with the operational SE process execution 
in a context-sensitive manner, effective and efficient 
knowledge utilization could be automated and better 
supported while improving overall product and 
process quality. 

SEEs provide a uniquely challenging domain for 
a comprehensive and viable solution that automates 
the integration of knowledge and process 
management. In this regard, this paper extends our 
previous work (Grambow et al., 2011a), contributing 
a practical approach that elucidates the realization of 
context-sensitive knowledge provisioning in 
conjunction with a process-aware information 
system (PAIS), while supporting additional 
knowledge types and guidance configurability. This 
paper abstracts and generalizes the definition of the 
knowledge the system shall provide. Furthermore, a 
new component is introduced that enables more 
flexible and generalized knowledge management 
and automates the provisioning of that knowledge. 

The remainder of this paper is structured as 
follows: Section 2 discusses the requirements, 
Section 3 describes the solution concept, and Section 
4 uses an application scenario to demonstrate the 
solution approach. Section 5 details the technical 
realization. Related work is discussed in Section 6, 
and Section 7 draws conclusions. 

2 REQUIREMENTS 

This section elicits detailed requirements for a 
system seeking to provision context-sensitive and 
process-aware knowledge. Note that for the scope of 
this paper, our knowledge-based system considers 
knowledge to be represented by information that can 
be utilized dynamically by the system. We do not 
differentiate between knowledge and information. 
Furthermore, a user workflow is a defined sequence 
of operational activities a user performs to reach a 
certain goal (e.g., coding to develop new 
functionality). 

A system that actively and automatically 
supports knowledge provisioning should fulfill the 
following requirements:  

R:KnowStor. To be able to use and disseminate 
knowledge in a project, the presence of some facility 
to store knowledge is required. The storage and 
management of knowledge for users shall not be 

cumbersome. Additionally, to enable an automated 
system to access and use this information, machine-
readable semantic annotation shall be supported. 

R:CntxProc. SE projects are highly dynamic 
with a multitude of events (relating to processes, 
artifacts, users) occurring at run time. A system that 
aims at providing situational information support 
must have facilities to acquire and process context 
information and to use it for information provision. 

R:ExtKnow. Since not all the information users 
require is stored locally in the system, a facility to 
integrate external information sources is required. 
Examples of such information include process 
documentation or external web pages. 

R:ProcMgmt. To achieve automated knowledge 
support in a user process, a means of automatically 
governing user process models is required. That 
way, concrete workflows can be executed for the 
users that govern their operational activities in 
conjunction with the abstract process. Otherwise, 
these activities could quickly diverge from the plan, 
and a system to provide automated information 
support could fail, due to its lack of awareness of the 
current process activities of the user. 

R:AutoKnowProv. To realize automated 
knowledge provisioning for processes, both 
automated retrieval of stored information and 
automated process support are essential. To support 
their convergence, a facility that enables the context-
sensitive provisioning of information at the 
appropriate points in a process is required. 

R:CfgKnowDist. Certain process information 
may be specialized and not generally applicable. 
Furthermore, the amount of information provided 
must not exceed certain thresholds, so that users are 
not subjected to information overload and thus 
overlook important information. Therefore, the 
information provision should be configurable, e.g., 
based on the needs or preferences of projects, 
processes, or users. 

3 KNOWLEDGE PROVISIONING 
INTEGRATION CONCEPT 

This section presents the concept behind our solution 
approach. The first subsection provides an overview 
of how the component collaborations address 
different problem areas to achieve the desired 
capabilities, with succeeding subsections further 
elaborating various aspects of the approach. The last 
subsection concretely describes how information is 
used within the process to support users. 

Knowledge�Provisioning�-�A�Context-sensitive�Process-oriented�Approach�Applied�to�Software�Engineering�Environments

507



 

3.1 Component Collaboration 

Our solution approach aims to provide the user with 
a consistent knowledge provisioning system (KPS) 
that realizes holistic information support for the SE 
process. The Context-aware Software Engineering  
Environment Event-driven frameworK (CoSEEEK) 
(Oberhauser, 2010) was used as a basis. Various 
components in the CoSEEEK KPS collaborate. This 
is illustrated in Figure 1 and explained in the 
following. 

 
Figure 1: The CoSEEEK System. 

The central component of the KPS is the Context 
Management component, which stores, aggregates, 
and processes all high-level information relevant to 
the KPS. It incorporates context information about 
users, artifacts, and various events as well as 
information from process execution. It receives 
context information from the Event Management 
component (1), whose responsibility is the 
acquisition and aggregation of events from the SE 
environment (2) (cf. R:CntxProc). This is realized 
by a set of sensors integrated in external tools, such 
as IDEs (Integrated Development Environments) or 
source control systems used within a SE project. 

The Process Management component enables a 
SE process model implementation as well as 
operational process support. This is done by means 
of automated workflows actively governed by that 
component. The Context and Process Management 
components work together to enable the usage of 
context information in the process and to better align 
process execution with reality (cf. R:ProcMgmt). 

Knowledge management is realized by the 
Knowledge Store and Knowledge Provider. The 
former is utilized to store user-relevant information 
and make it available to the KPS via machine-
readable semantics. The Knowledge Provider 
coordinates that information (4) and provides it to 
the Context Management component (5) to be 
injected into the users’ workflows (3) in the 

appropriate context (cf. R:AutoKnowProv). The 
Knowledge Provider is also responsible for the 
abstract definition of user relevant information 
within the KPS (called Guidance Items), which is 
referenced by the Context Management component, 
as well as for the integration of external information 
resources (6) (cf. R:ExtKnow). 

The user can enter relevant project or SE 
information (e.g., best practices) using the 
Knowledge Collection GUI (7). That information is 
stored in the Knowledge Store (8) (cf. R:KnowStor). 
The Knowledge Management GUI (9) allows users 
to integrate external information (e.g., external 
process documentation) or configure the way the 
information is provided (e.g., ‘This guidance is 
applicable to this role at that point in the process’) 
(cf. R:CfgKnowDist). The configuration for 
information provisioning is stored directly in the 
Knowledge Provider (10). All guidance is then 
distributed to the user by the Process Support GUI 
(11). That GUI receives its information from the 
Context Management component (12), which unites 
information on the activity from the Process 
Management component (3) with additional SE 
information from the Knowledge Provider (5). 

3.2 Context and Process 

The Context and Process Management components 
collaborate. While the latter is responsible for 
operational workflow guidance, the former requires 
direct access to all concepts related to process 
management, since it unites these with context data 
from Event Management and Knowledge Provider. 
To enable Context Management to be process-aware 
and directly intervene in workflow execution, 
process concepts are modeled in the Context 
Management component as well, and are connected 
with their equivalents in the Process Management 
component. This is illustrated in Figure 2 and 
explained in the following. 

Figure 2 shows the Context and Process 
Management components containing various 
concepts: In Process Management, there is a 
workflow instance containing the four activities 
‘A1’ – ‘A4’. In Context Management, there are 
mappings and extensions of these concepts. A Work 
Unit Container maps the workflow and Work Units 
map the activities. Via these mappings, the Context 
Management component controls workflow 
execution, is in charge of controlling activity 
termination, enabling various factors to be 
incorporated in the activity termination procedure. 
This can be used for injecting information into the 

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

508



 

users’ workflow. For example, a checklist can be 
incorporated that is automatically provided to the 
user and that must be processed. In that case, the 
KPS can require both the completion of the current 
user activity and the completion of the related 
checklist.  

Process ManagementContext Management

A1 A4A3A2

A1

A2

A3

A4

Activity

Workflow Instance / 
Work Unit Container

Work
Unit

Mapping

AND-Gate Semantic
Annotation Link

As1

Aa1 Aa2

At1 At2 At3

Aa2Aa2

Semantic
Extension Link

Dependency 
Link

Assignment Assignment
Activity

Atomic 
Task

 
Figure 2: Context and process management. 

There are also user and context-related 
extensions shown in Figure 2: The Assignment 
represents the activity the user performs utilizing the 
Work Unit Container to which it is associated. An 
example of this distinction would be an Assignment 
called ‘Development of new Feature xy’ that would 
use the Work Unit Container called ‘Standard 
development workflow’. That way the KPS governs 
not only how something should be done, but also 
what will be done. A concrete example of the 
application of this to an SE workflow will be shown 
when all concepts are applied in a scenario in 
Section 4. The same kind of extension is utilized for 
the activities of a workflow. The Work Unit, which 
maps the activity, is used to create an awareness of 
workflow execution in the Context Management 
component. It is used only for workflow governance, 
while the user task associated to that activity is 
explicitly represented by the Assignment Activity.  

The final extension to the activities is Atomic 
Tasks. They represent basic low-level tasks like 
checking-in source code or executing unit tests. To 
support the automatic detection of the actual 
execution of these operational tasks, Atomic Tasks 
are associated to a tool, like a version control 
system, which can be monitored by Event 
Management sensors. That way, a direct connection 
to the operational actions of the user is established. 
This is further described in the following section. 

3.3 Event Management 

The Event Management component provides the 
Context Management component with information 
about the environment including tools, users, or 

artifacts. All data processed in the Event 
Management component is organized as events. 
These events are automatically acquired by sensors. 
These are integrated into various tools used in a SE 
project like IDEs or bug trackers. That way, they 
automatically produce events and send them to the 
KPS. Typical examples of such events are saving a 
file in an editor, creating an analysis report with a 
static code analysis tool, or creating a bug in a defect 
database. Based on these atomic events, the Event 
Management component applies further steps: 
Events are aggregated to higher-level events like 
‘User X is applying a Bug Fix on Artifact Y’.  

3.4 Information and Knowledge 

The management of user-related information is 
realized using the Knowledge Provider and 
Knowledge Store and the two knowledge 
management GUIs. Information can be collected and 
stored within the KPS (internal information) and can 
be integrated from other sources (external 
information). Internal information is collected via 
the Knowledge Collection GUI that enables users to 
annotate that information with tags. Examples for 
tags are ‘junior engineer’, ‘front end development’, 
or ‘high risk’ that can then be used to automatically 
select the information to support the users in their 
context. This is accomplished by the Knowledge 
Provider that also manages the integration of 
external information. For the organization of 
information in the KPS, the concept of a Guidance 
Item (GI) is utilized. All guidance the KPS can 
distribute to users is defined by the GIs created with 
the Knowledge Management GUI and stored within 
the Knowledge Provider. To enable contextually 
relevant information, the GI has several parameters 
defined as follows:  
 
Definition 1. A guidance item is tuple GI = (id, 
type, origin, compilation, tagSet, frequency, rank, 
active, link, language) where 

a) id ∈ Identifiers, Identifiers denotes all valid 
identifiers over a given alphabet. 

b) type ∈ {Checklist, Information, Best Practice, 
Notice, Tutorial} denotes the type of the information 
defined by the GI. 

c) origin ∈ {internal, external} denotes the origin 
of the information defined by the GI. 

d) compilation ∈ {static, dynamic} denotes the 
way the information defined by the GI is compiled. 

e) tagSet is a finite set of tags with tag ∈ STRING 
used to classify the information defined by the GI. 

Knowledge�Provisioning�-�A�Context-sensitive�Process-oriented�Approach�Applied�to�Software�Engineering�Environments

509



 

f) interval ∈ {hour, day, week, month, year, 
assignment, activity, task} denotes the maximum 
frequency with which GI is to be shown to a user. 

g) rank ∈ {1, …, 10} denotes the quality of GI 
collected by users to whom it was shown. 

h) active ∈ BOOLEAN indicates if GI is to be 
used by the system (activated). 

i) link ∈ STRING ∪ NULL denotes the location 
of the information defined by the GI if it is static. 

j) language ∈ STRING denotes the language of 
the information defined by the GI. 
 
Each GI has a set of tags used to describe the 
information for the KPS as well as for the users 
entering and managing it. Tags can be any type of 
identifying property indicating to what the GI 
applies, like ‘Activity’, ‘Junior Engineer’, or ‘High 
Risk Artifact’. A GI is an abstract unit of guidance 
information that may contain an arbitrary number of 
positions or sub-items. The information defined by it 
can be static or dynamically compiled by the 
Knowledge Provider. The latter is only possible for 
internal information. If a GI is internal and dynamic, 
the Knowledge Provider will use the tags of the GI 
to query the Knowledge Store for items that are 
tagged in the same way, creating the GI out of these. 
Based on its type, a GI will be treated differently by 
the KPS. For example, a checklist will have a check 
mark for each sub-item, while plain information will 
just be shown to the user. To avoid bothering the 
users repeatedly with the same information, an 
interval can be defined for which the GI will be 
shown maximally once. Finally, to improve the 
quality of the shown information, users can rate it, 
which impacts the ranking of the GIs. 

3.5 Process-Centered Information 
Support 

Automatic knowledge support must be aligned to a 
person’s context; otherwise, it is likely to be 
irrelevant. Therefore, the activities performed by the 
users and governed by the Context Management 
component are the initiators for GI provisioning. For 
these activities, three properties decide how the 
Context Management component presents GIs to the 
user: These properties are called GI alignment, 
target obligation, and GI usage. GI alignment 
governs when a GI is shown to the user in relation to 
the activity that is the target of the GI. There are 
three options: ‘Pre’ GIs are shown at the beginning 
of the activity. ‘Post’ GIs are shown at the end of an 
activity. ‘Pre/Post’ GIs incorporate both of the 

aforementioned, allowing, e.g., a checklist to be 
updated with additional items. 

Target obligation associates the connection to 
the target activity. Some GIs like checklists may be 
directly tied to a target activity. These are called 
‘Synchronous’ and their lifecycle depends directly 
on the target activity. Other GIs may be shown 
based on certain events (including, activity 
termination). These are called ‘Asynchronous’ and 
can have a pre-defined lifetime. 

GI usage distinguishes between ‘Required’ and 
‘Optional’ GIs. Using ‘Required’ GIs, the target 
activity will not be marked complete without also 
acknowledging the GI.  

Table 1 shows how these three properties can be 
combined for the introduced activity concepts 
(Assignment, Assignment Activity, and Atomic Task). 

Table 1: Activity Guidance Item properties. 

GI Target Target Properties 

  GI 
Alignment 

Target 
Obligation 

GI 
Usage 

  pre post pre/ 
post sync async req opt 

Assignment        
Pre-GI X    X  X 
Post-GI  X  X  X  
Combined-GI   X X   X 
Assignment 
Activity        

Pre-GI X   X  X  
Post-GI  X   X  X 
Combined-GI   X X  X  
Atomic 
Task        

Pre-GI X    X  X 
Post-GI  X   X  X 

 
As the activity concepts have different 

properties, the types of GI provision for them 
slightly differ. For example, an Atomic Task that is 
executed by a user can be detected by the KPS, but it 
is not governed by a workflow. For such a task, GIs 
cannot be required, as there is no means to prevent 
the user from simply switching to another task. 
There is also no event indicating completion of an 
Atomic Task to the KPS. Post-GIs are nevertheless 
possible, as they can be shown to the user even when 
he switches to another task. The Context 
Management component is in charge of tailoring the 
size of the GIs. It can decide how many GIs will be 
shown to the users at a certain point in the process 
and how many sub-items are allowed. This 
information is stored as part of the process 
information in the Context Management component 
and can thus exploit other c ontext  information: For  

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

510



 
Figure 3: GI Application Example. 

example, a development activity conducted in a 
situation with high schedule pressure could have a 
checklist with fewer items than it would have if 
more time were available. 

The concrete procedure of GI provisioning is as 
follows: The Knowledge Provider receives an event 
from the Context Management component indicating 
some point in the process where guidance could be 
feasible (e.g., user X has started activity Y). If 
needed, the Knowledge Provider requests additional 
context information from the Context Management 
component (e.g., what artifact the user is currently 
working on). After that, the Knowledge Provider 
queries its database for GIs with tags matching the 
context. For external GIs, links are passed back to 
the Context Management component. For internal 
GIs, the Knowledge Store is queried. After having 
received the GIs, the Context Management 
component sends the appropriate number of GIs to 
the Process Support GUI to be displayed to the user. 

4 APPLICATION SCENARIO 

This section presents an application scenario that 
applies the approach to a concrete software 
development workflow. It is based on the Open UP 
process, a derivate of the Unified Process (Scott, 
2002) created by the Eclipse foundation. The 
workflow is called ‘Develop Solution Increment’ 
and is targeted at supporting the creation of new 

software. Figure 3 illustrates the implementation of 
the workflow. It incorporates user-related 
extensions: the Assignment Activities and two 
exemplary artifacts (source code and test code). The 
example presents a sample selection of possible 
guidance for such a workflow. 

As mentioned before, the workflow deals with 
the creation of software functionality. That goal of 
the workflow is represented by the Assignment 
(‘Develop Feature X’). The workflow contains five 
activities that deal with designing, implementing, 
integrating, and creating and executing developer 
tests. Each of these activities is mapped in the 
Context Management component and extended by 
the user-related Assignment Activities. The latter, in 
turn, are extended by the Atomic Tasks representing 
concrete actions executed using a specific SE tool 
and manipulating (a) specific artifact(s) (e.g., 
checking-in source code). 

When a user executes this workflow, the 
Knowledge Provider is automatically notified when 
the execution reaches a point for which a GI is 
defined. This is done via a GI concept in the Context 
Management component indicating what type of GI 
could be shown at that point and how it should be 
shown. A GI could be defined directly for one of the 
activity concepts or indirectly if a GI is defined for 
an artifact that is processed by one of them. Based 
on that information, the Knowledge Provider can 
search for matching GIs. This is realized by the tags 
of the GIs, using the information from the Context 
Management component as tags (e.g., that a GI 

Knowledge�Provisioning�-�A�Context-sensitive�Process-oriented�Approach�Applied�to�Software�Engineering�Environments

511



 

applies to a certain type of activity or artifact). The 
Knowledge Provider can also request additional 
information to find better matching GIs for the 
current situation (e.g., the role of the applying 
person). After having looked up the information, the 
Knowledge Provider sends it to the Context 
Management component that presents it to the user 
as configured in the GI concept. 

The first of four GIs applied to this workflow is 
a tutorial associated to the Assignment, which 
contains introductory information on the specific 
properties of software development in that 
organization. This could be tagged as applicable to 
junior engineers that recently joined the 
organization. The second GI is a link to external 
information from the Open UP website containing a 
guideline for developer testing. The third GI is 
associated to source code artifacts and contains a 
specific checklist on coding style. The last of the 
four GIs is associated to the Atomic Task of 
checking in. In that case, it is a note from the 
configuration manager containing important 
information about the current development branch.  

5 TECHNICAL REALIZATION 

This section provides details on the technical 
realization of the approach and its user interface. 

5.1 Technologies 

The approach enhances CoSEEEK and the 
realization is shown in Figure 4 and described in the 
following. Event-based communication was chosen 
due to the context-aware nature of the framework, 
which gathers and processes events from its 
environment and internal components. A loose-
coupling of components, which also facilitates the 
addition or removal of functionality, is achieved 
using a tuple space (Gelernter, 1985) on top of a 
native XML database (Meier, 2009).  

For the Event Management component, event 
acquisition is achieved via Hackystat and its tool-
based sensors (Johnson, 2007). Event aggregation 
utilizes the complex event processing framework 
Esper (Luckham, 2001) to detect and process higher-
level activity events. 

Both the Knowledge Provider and the Context 
Management components are realized via semantic 
web technology. That technology, in particular 
ontologies, is advantageous (Gasevic et al, 2006): it 
provides a taxonomy for the modeled entities and 
their relations, as well as a vocabulary including 

logical statements about these entities. Well-
structured ontologies enable automated consistency 
checking and enhance interoperability between 
different applications and agents, supporting 
knowledge sharing and reuse. Because of its 
maturity, OWL-DL (McGuinnes and Van Hamelen, 
2004) is used as an ontology language. The semantic 
reasoner Pellet (Sirin et al, 2007) is also used for 
processing and SPARQL (Prud’hommeaux and 
Seaborne, 2006) is integrated for querying the 
ontology. Programmatic ontology access uses the 
Jena framework (McBride, 2002). Two separate 
ontologies were used to facilitate scalability and 
manageability and to enable a separation of 
concerns: an ontology for knowledge management 
(Knowledge Provider) and an ontology for SE 
process execution (Context Management).  

 

Figure 4: Technologies utilized. 

The Process Management component is based 
on the dynamic Process-Aware Information System 
(PAIS) AristaFlow (Dadam and Reichert, 2009). 
AristaFlow supports dynamic runtime adaptation of 
workflows while also providing correctness 
guarantees. This supports the Context Management 
component’s ability to context-sensitively adapt the 
executing process. The Knowledge Store and the 
Knowledge Collection GUI are realized using the 
Semantic MediaWiki (Krötzsch et al, 2006). The 
latter provides facilities for easy collection of 
knowledge from users and for tagging this 
information with machine-readable semantics. To 
provide the Knowledge Provider with easy access to 
that information, a SPARQL endpoint was added to 
the wiki using the SPARQL server Joseki, a part of 
the Jena framework (McBride, 2002). Finally, via 
dynamic web pages, the Knowledge Management 
GUI supports GI configuration while the Process 
Support GUI can be accessed in an IDE (like Eclipse 
or Visual Studio). These two GUIs provide process 
support for software developers, and are briefly 
described in the succeeding section. 

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

512



 
(a) GI Creation GUI            (b) GI Browsing GUI    (c) Process Support GUI 

Figure 5: GUI Screenshots. 

5.2 Implementation Prototype 

This section briefly illustrates the prototype 
implemented to evaluate our approach. Therefore, 
Figure 6 shows the developed GUIs used to interact 
with the KPS. Since, for our realization, the 
Knowledge Collection GUI is the Semantic 
MediaWiki (Krötzsch et al, 2006) interface, it is not 
pictured. The Knowledge Management GUI is 
shown in Figure 5a and 5b; 5a shows on the left side 
a menu providing access to basic GI functionality 
(creating, editing, and browsing), and to its right a 
frame used to create a new GI with all necessary 
options. There is an option for creating a private GI, 
enabling users to add personal GIs that are only 
shown to them. Figure 5b shows the GI browsing 
functionality, where users can apply various options 
and tags to locate and modify GIs. A guidance 
tracker can show users their last GI-related actions 
and the related actions of other users. Users can 
recommend their private GIs to other users, e.g., a 
new best practice. Figure 5c shows the Process 
Support GUI, which is directly integrated into the 
IDE (both Eclipse and Visual Studio 2010 as a 
browser-based plugin). Note that due to screen space 
limitations and partner requirements, a different GUI 
style evolved. The lower section of that GUI gives 
comprehensive information about the activity that is 
currently performed, ranging from the project in 
which it is executed, over the Assignment Activity, to 
the Atomic Task currently being performed. In the 
upper section, an active GI of the type checklist is 
shown. It has three items that have to be checked 
and can be completed using the given ‘Complete’ 
button. Additionally, the GI can be rated, 
influencing its rank for future prioritization and use. 

6 RELATED WORK 

There are many approaches targeting knowledge 
management support for SE. (Bjornson and 
Dingsoyr, 2008) present a literature study about 
knowledge management in SE. Therein they 
describe two different kinds of approaches to 
knowledge management: technocratic schools rely 
largely on information or management technology, 
while behavioral schools focus more on 
organizational or strategic aspects of the 
implementing company. In the following, 
approaches that can be categorized belonging to the 
technocratic schools are discussed. 

(Kurniawati and Jeffery, 2004) present a study of 
the usage of a process-oriented knowledge 
management tool in a small-to-medium-sized 
software development company. That tool allows for 
web-based documentation and support for the SE 
process model. The study showed that the tool was 
accepted by users and really supported them. 
However, compared to our approach the tool has no 
advanced automation features and lacks dynamic 
tailored support for users. 

(Barros and Werner, 2004) describe an approach 
to develop, retrieve, and reuse management 
knowledge and experience concerned with software 
development risks. The approach incorporates the 
modeling of so-called risk archetypes and scenarios 
to model risk impact and resolution strategies and to 
provide reusable project management knowledge. 

The knowledge dust and pearls approach (Basili 
et al, 2001) aims at facilitating the application of a 
so-called experience base. The latter shall contain 
information about experiences that has been 
analyzed and organized in packages. The approach 

Knowledge�Provisioning�-�A�Context-sensitive�Process-oriented�Approach�Applied�to�Software�Engineering�Environments

513



 

combines both short-term and long-term oriented 
features in knowledge creation and sharing. It shall 
provide low-barrier access to knowledge and support 
the initial creation of it. 

Outside of the SE domain there have also been 
various efforts seeking to support knowledge 
management. (Liao, 2003) presents a study 
reviewing a multitude of approaches to knowledge 
management systems. These are classified in 
different areas: knowledge-based systems, data 
mining systems, information and communication 
technology, database technology, modeling, and 
expert systems providing decision support. One 
example coming from the data mining area is 
presented by (Nemati et al, 2002): By the extension 
of a data warehouse, a so-called knowledge 
warehouse is built that shall facilitate capturing as 
well as retrieving and sharing knowledge. 

As opposed to the above approaches, our novel 
approach does not solely focus on the acquisition, 
storage, and organization of knowledge. In fact, it 
provides a holistic solution that automates the 
provisioning aspect in the information lifecycle, 
strongly focusing on the context-sensitive and 
process-oriented provisioning of knowledge to the 
users. 

7 CONCLUSIONS 

By enabling context-sensitive knowledge 
provisioning and contextualizing knowledge 
management, more effective utilization of 
knowledge in the actual human activities becomes 
possible. Thus, it is our view that knowledge 
management and automated knowledge provisioning 
will play an increasingly important role in automated 
process-aware information systems. The application 
of this to the SE domain is especially challenging in 
this regard due to its intensely knowledge-oriented, 
collaborative, communicative, and highly dynamic 
development processes. 

We have presented a practical approach for 
utilizing context management to provide relevant 
knowledge, at appropriate points for the user in their 
operational process and abiding by given constraints. 
In this paper, we have introduced an active 
knowledge management component (the Knowledge 
Provider) and added an explicit abstract definition 
for that knowledge to be used as automatic guidance 
(the Guidance Item). By blending process 
awareness, the CoSEEEK Knowledge Provisioning 
System is not only aware of the current context, but 
can also situationally align the knowledge to the past 

(post-guidance items) and likely future activities 
(pre-guidance items). Thus, current passive process 
documentation and guidance can become active 
operational knowledge that is contextually 
provisioned. Our approach avoids requiring rigid 
processes that have inhibited automated workflow 
guidance for dynamic process areas such as SE. 

By enhancing a PAIS with semantic technology, 
our approach offers greater degrees of flexibility 
with regard to understanding the contextual 
implications of the workflow model and managing 
the process. The technical realization showed the 
concept’s feasibility and practicality. By supporting 
the users with relatively simple GUIs, the 
complexity of semantic technology could be hidden 
and usability increased. Our approach does not 
require that the entire information contents be 
semantically annotated; only categorization as 
metadata via tagging is required. Thus, currently 
passively available knowledge and guidance forms 
can be utilized and contextually activated for a user. 

Future work includes an empirical investigation 
in conjunction with industrial project partners in live 
software projects. Planned features include the 
integration of tool-generated dynamic knowledge.  

To support contextually-sensitive active 
knowledge management, ongoing challenges 
remain. Further work and wider adoption is needed 
towards practical techniques and standards for 
context modeling and knowledge packaging  that 
allows (process-oriented) knowledge and 
documentation to be easily generated, appropriately 
annotated for semantics and contexts, automatically 
integrated in information systems, and automatically 
and contextually provisioned in operational 
situations. 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge Alexander 
Grünwald for his help with the technical realization. 
This work was sponsored by the BMBF (Federal 
Ministry of Education and Research) of the Federal 
Republic of Germany under Contract No. 17N4809. 

REFERENCES 

Basili, V., et al., 2001. An experience management system 
for a software engineering research organization. Proc. 
26th Annual NASA SW Engineering Workshop, 29-35. 

Barros, M. O., Werner, C. M. L., Travassos, G. H., 2004. 
Supporting  Risks in Software  Project  Management. 

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

514



 

Journal of Systems and Software, 70(1-2), 21-35. 
Bjornson, F. O., Dingsoyr, T., 2008. Knowledge 

management in software engineering: A systematic 
review of studied concepts, findings and research 
methods used. Information and Software Technology, 
50(11), 1055-1068. 

Brooks, F. P.: No Silver Bullet: Essence and Accidents of 
Software Engineering, Information Processing, 1986. 

Cugola, G. et al, 1995. How to deal with deviations during 
process model enactment. Proc. 17th Int'l Conf. on 
Software engineering, 265-273. 

Dadam, P., Reichert, M., 2009. The ADEPT project: a 
decade of research and development for robust and 
flexible process support - challenges and 
achievements. Computer Science - Research and 
Development, 23(2), 81-97. 

Dellen, B., Maurer, F., 1996. Integrating planning and 
execution in software development processes. Proc. 
5th Workshop on Enabling Technologies: 
Infrastructure for Collaborative Enterprises, 170-176. 

Gasevic, D., Djuric, D., Devedzic, V.: Model driven 
architecture and ontology development. Springer-
Verlag, 2006. 

Gibson, D. L., Goldenson, D. R., Kost, K., 2006. 
Performance results of CMMI-based process 
improvement. Technical Report, Software Engineering 
Institute, Carnegie-Mellon University, Pittsburgh. 

Gelernter, D., 1985. Generative communication in Linda, 
ACM Transactions on Programming Languages and 
Systems, 7(1), 80-112. 

Grambow, G., Oberhauser, R., 2010. Towards Automated 
Context-Aware Selection of Software Quality 
Measures. In Proc. of the Fifth Intl. Conf. on Software 
Engineering Advances, 347-352. 

Grambow, G., Oberhauser, R., Reichert, M., 2010a. 
Semantic Workflow Adaption in Support of Workflow 
Diversity. In Proc. 4th Int’l Conf. on Advances in 
Semantic Processing, 158-165. 

Grambow, G., Oberhauser, R., Reichert, M., 2011a. 
Towards Dynamic Knowledge Support in Software 
Engineering Processes. In Proceedings of the 6th 
International Workshop on Applications of Semantic 
Technologies. 

Grambow, G., Oberhauser, R., Reichert, M., 2011b. 
Contextual Injection of Quality Measures into 
Software Engineering Processes. Int'l Journal on 
Advances in Software, 4(1 & 2), 76-99. 

Heravizadeh, M., 2009. Quality-aware business process 
management. PhD Thesis, Queensland University of 
Technology. 

Johnson, P. M., 2007. Requirement and Design Trade-offs 
in Hackystat: An In-Process Software Engineering 
Measurement and Analysis System. In Proc. of 1st Int. 
Symposium on Empirical Software Engineering and 
Measurement, 81-90. 

Jones C., 2010. Get Software Quality Right. Dr Dobb's 
Journal, June 28. 

Kess, P., Haapasalo, H., 2002. Knowledge creation 
through a project review process in software 
production. Int’l Journal of Production Economics,  

80(1), 49-55. 
Krötzsch, M., Vrandecic, D., Völkel, M., 2006. Semantic 

mediawiki. Proc. Int'l Semantic Web Conference, 935-
942. 

Kurniawati, F., Jeffery, R., 2004. The long-term effects of 
an EPG/ER in a small software organisation. Proc. 
Australian Software Engineering Conf., 128-136. 

Lenz, R., Reichert, M., 2007. ‘IT support for healthcare 
processes-premises, challenges, perspectives’, Data & 
Knowledge Engineering, 61(1), 39-58. 

Liao, S., 2003. Knowledge management technologies and 
applications--literature review from 1995 to 2002. 
Expert systems with applications, 25, 155-164. 

Luckham, D. C., 2001. The power of events: an 
introduction to complex event processing in 
distributed enterprise systems. Addison-Wesley 
Longman Publishing Co. 

McBride, B., 2002. Jena: a semantic web toolkit, Internet 
Computing, Nov 2002, 55-59. 

McGuinness, D. L., Van Harmelen, F., 2004. OWL web 
ontology language overview. W3C recommendation. 

Meier, W., 2009. eXist: An open source native XML 
database. Web, Web-Services, and Database Systems, 
LNCS, 2593, 169-183. 

Müller, D., Herbst, J., Hammori, M., and Reichert, M., 
2006. ‘IT support for release management processes in 
the automotive industry’. Proc. 4th Int'l Conf. on 
Business Process Management, 368-377. 

Nemati, H. R., Steiger, D. M., Iyer, L. S., & Herschel, R. 
T., 2002. Knowledge warehouse: an architectural 
integration of knowledge management, decision 
support, artificial intelligence and data warehousing. 
Decision Support Systems, 33, 143–161. 

Oberhauser, R., 2010. Leveraging Semantic Web Computing 
for Context-Aware Software Engineering Environments. 
In Semantic Web, Gang Wu (Ed.), 157-179. 

Prud’hommeaux, E., Seaborne, A., 2006. SPARQL Query 
Language for RDF, W3C WD 4. 

Ramesh, B., Tiwana, A., 1999. Supporting collaborative 
process knowledge management in new product 
development teams. Decision support systems, 27, 
213-235. 

Rausch, A., et al., 2005. The V-Modell XT Applied–
Model-Driven and Document-Centric Development. 
Proc. 3rd World Congress for Software Quality, Vol 
III, 131-138 

Scott, K., 2002. The unified process explained. Addison-
Wesley Professional. 

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., Katz, Y., 
2007. Pellet: A practical OWL-DL Reasoner. Journal 
of Web Semantics, 5(2), 51-52. 

Schaffert, S., et al., 2008. Semantic wikis. IEEE Software, 
25(4), 8-11. 

Teigland, R. E., Fey, C., Birkinshaw, C., 1998. 
Knowledge Dissemination. Global R&D Operations: 
Case Studies in Three Multinationals in the High 
Technology Electronics Industry, MIR: Management 
International Review, 49-77. 

Yourdon E., 2004. Death March, 2nd Ed. Prentice Hall, 
Upper Saddle River, NJ. 

Knowledge�Provisioning�-�A�Context-sensitive�Process-oriented�Approach�Applied�to�Software�Engineering�Environments

515


