
Integrating Quality Modeling in Software Product Lines

Joerg Bartholdt
Corporate Technology

Siemens AG
Munich, Germany

joerg.bartholdt@siemens.com

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@htw-aalen.de

Andreas Rytina
itemis

Munich, Germany
andreas.rytina@itemis.de

Marcel Medak
FNT GmbH

Ellwangen, Germany
marcel.medak@fnt.de

Abstract— Due to the large number of possible variants in
typical Software Product Lines (SPLs), the modeling of,
explicit knowledge of, and predictability of the quality
tradeoffs inherent in certain feature selections are critical to
the future viability of SPLs. This article presents IQSPLE
(Integrated Quality Software Product Line Engineering), an
integrated tool-supported modeling approach that evaluates
both qualitative and quantitative quality attributes without
imposing hierarchical structural constraints. This contributes
to better traceability; annotation; constraint enforcement; and
quality attribute trade-off analysis - depicting overall product
quality impacts on-the-fly. The approach is used in an eHealth
SPL scenario, with the results showing that this approach is
promising for effectively integrating quality attributes into
SPL engineering in conjunction with (UML-based) artifacts.

Keywords - variability; software product lines; quality
modeling; feature modeling

I. INTRODUCTION
SPLE seeks to foster a systematic reuse of software

assets for different but similar software products (typically
within a domain). The general approach captures the
commonalities and variability of the products in the product
line and splits the development into domain (commonalities)
and application (additional individual features for the final
product). Products are created by integrating common
artifacts (usually a platform) and optionally configuring them
with product-specific artifacts [3][4].

Significant feature-oriented work and methodologies
such as Feature-Oriented Domain Analysis (FODA) [5],
FeatuRSEB [6], PuLSE [7] are well known for domain
analysis and variability modeling for SPLs. However, for a
potentially large set of possible variants, a significant aspect
yet to be sufficiently addressed is the consequences of
choices on the end qualities exhibited by a variant. An SPL
engineer is faced with many more quality-related unknowns
than a software engineer for a common single application
software architecture. While various approaches for
combining quality modeling with SPL engineering (SPLE)
exist, previous work does not provide an integrated tool-
supported approach with both qualitative and quantitative
quality attributes (Q-attributes) that are explicitly considered
in the variant derivation process without imposing structural
constraints such as a hierarchical structure. In this problem
space, the tool-supported IQSPLE method contributes trade-
off analysis, traceability, annotation, and constraints

enforcement of quality attributes during selection. Our
previous work in [1] was extended to directly integrate
solution space quality modeling with Unified Modeling
Language (UML)-based artifact annotation support for
variability and quality annotations as well as aggregated
quality evaluation capabilities.

Considering the need for trade-off analysis, the
distribution of quality attributes can vary significantly in
software products, as shown in [8] that studied 24 ATAM
(Architecture Tradeoff Analysis Method) evaluations. Such
quality attributes are often not fully and systematically
captured in prose. Even if formal models like the OMG
(Open Management Group) UML-related QoS profile are
used, an automatic aggregation ability is requisite to benefit
most from a formal description. IQSPLE contributes
methods and tools to immediately derive the quality attribute
values of a given product instantiation.

Because qualities in SPLs often describe crosscutting
concerns, the definition of qualities in the problem space is
generally not linked to the solution space, resulting in a lack
of traceability. IQSPLE contributes traceability via a formal
linking that is used to calculate the quality attributes from the
selection of product variations via the properties of assets in
the solution space. This also supports the detection of quality
issues for certain SPL variants that can be used in narrowing
tuning efforts to the relevant solution artifacts.

Typical feature-oriented tooling concentrates on
functional features; quality constraints are, if at all, modeled
as simple XOR on features and thus remain purely in the
problem space. IQSPLE enhances current feature modeling
with support for the annotation of solution components with
quality properties and arbitrary aggregation functions. By
linking to the features, automatic constraint checks on given
quality requirements can be executed. To enforce a common
understanding and enable automatic calculation in the
problem and solution space, a formal quality-capturing
model for crosscutting as well as localized quality attributes
is necessary.

This paper is structured as follows: Section II describes
an e-Health scenario with the ensuing requirements that
initiated the research. Section III describes the IQSPLE
solution approach, which is then illustrated via an eHealth
SPL scenario in Section IV. The solution is evaluated in
Section V, with Section VI discussing related work. A
conclusion and references follow.

161

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. E-HEALTH SCENARIO AND REQUIREMENTS
For illustration purposes, a simplified eHealth problem

scenario that motivated this research is used. Patients are
referred to other clinics due to their specialization (surgery,
physical therapy, imaging, etc.). In the past, computed
tomography images, clinical findings, etc., were given to the
patient in the form of a printout or CD to take to the next
treatment. This was error-prone, not all information was
necessarily available at the next treatment location, and one
was not sure that the data was current.

The eHealth scenario describes a clinic chain that wants
to introduce SEPDE (software system for electronic patient
data exchange) between organizations. The existing hospital
information systems (HIS) are supplemented with SEPDE.
The chain consists of ten hospitals where eight have the same
HIS product and two have individual solutions.

Figure 1 shows a reduced feature tree of the SEPDE SPL.
Integration with existent HIS, which is a key feature of the
product line, can be achieved with three different techniques:
web services, CORBA or message-based. The message-
based approach allows for two different options: A high-
throughput, but expensive commercial one or a slower, but
license-free open-source variant.

Figure 1. Conventional feature tree.

The development effort for creating the adapter to
connect to existing HIS differs: XML-based web services are
perhaps easier to develop, but carry greater performance
overhead compared to binary protocols. The CORBA-based
binary integration makes the final solution better in terms of
latency and throughput, but development efforts are higher
due to its complexity. A message-based approach increases
integration flexibility and scalability, yet development
complexity increases due to asynchronicity and lack of
object-oriented remote method calls while longer latencies
can be expected due to the centralized message broker.

For security and privacy, confidential connection
(mapped to SSL connections), message-based encryption and
signature (allows secure audit records), and virus scanning is
supported. While all decrease the overall performance, the
former two are necessary if no VPN exists between the sites;
the latter additionally results in ongoing costs for continuous
updates.

For higher availability of the system, a two-host-solution
can be instantiated. The session state must then be replicated
between the hosts so it exists should one of them fail.

This simplified scenario illustrates the relevance of
quality attributes (e.g., performance, price, security) to the
choice of specific features. The customer may not have exact
requirements (e.g., ‘use case 15’ must be performed in less
than 1.5 sec). However, the customer may be able to trade
quality attributes against each other or functional features
(e.g., 1.5 sec is achievable with the commercial MQ with a
5000€ license, whereas with the open-source solution it is
1.8 sec – which might be acceptable).

Each functional feature influences to some degree all
system quality attributes, making the manual tracking of
quality attributes difficult. Common feature trees contain
functional features that are selectable individually (with a
few constraints between each other), while system quality
attributes are a crosscutting concern that changes with each
(de)selection of a feature. Moreover, the quality correlations
are often not expressible in simple constructs. Feature model
constraints could (de)select features automatically, causing
an entire set of quality attribute values to change at once.

Figure 2. Example models affected by variability.

Qualities of the solution manifest themselves in different
views. Many quality constraints can be described on the

162

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

component level, e.g., the usage of a specific session
manager implementation correlates to the availability of the
system, see Figure 2. Others become apparent in the
deployment view, e.g., the availability of the solution
depends on the number of redundant elements or even the
existence of components like a load-balancer, but only make
sense when more than one host exists. Certain use cases are
valid only or change their nature depending on the features
selected or on quality parameters. The resulting use case
view can be used to generate development specification
documents or user manuals. An additional benefit of a
consistent and integrated usage of modeling of the views is
the automatic traceability of features in models and
specifications.

Considering non-trivial SPLs, the impact on quality
attributes is not foreseeable for the SPL engineer, thus there
is the need for methodology and tool support. As quality is
usually not exactly defined by the customer beforehand and
requirements may change, quality support is needed during
the selection process.

A. Requirements
The following requirements on the methodology (M-

requirements) and tool support (S-requirements) are deduced
from the scenario:

M1: qualitative values. It must be possible to define quality

values such as low, medium, or high in cases where a
quantitative expression is not feasible or would be too
expensive to measure. The quality attribute must be
definable in the solution space as a property of an artifact
and in the problem space as a non-functional requirement
of the customer. Because non-functional customer
requirements depend on design details, it must also be
possible to link the qualities between the problem space
and the solution space.

M2: quantitative values. It must be possible to define
quantitative values (e.g., memory footprint, response
times) in order to calculate the resulting quality values of
the instantiation. Here also, the quality attribute must be
definable in the solution as well as the problem space.

M3: algorithms for calculating the resulting attribute values.
The methodology must support the definition of a
calculation algorithm (“aggregation function”) for the
resulting quality value. This applies to quantitative as
well as qualitative values (however, it may be less
intuitive for qualitative values).

M4: presentation as feature. To support configuration and
selection of qualities for a product instance, qualities can
be presented in a separate quality tree like features, or
alternatively within the feature tree, e.g., when qualities
are relatively straightforward and the maintenance of a
separate quality tree would seem contrived.

M5: artifact annotation. Quality attributes are treated as a
first-class modeling citizens, and modeling and other
artifacts can be annotated wherever appropriate. The
annotation mechanisms shall follow a standardized
mechanism to foster reuse and community acceptance.

S1: calculate the quality values of a given variant. The
quality attributes that result from the selection have to be
calculated (ideally on-the-fly), to give immediate
feedback and let the users realize what changes in quality
values a change in features results in.

S2: determine the set of possible variants. Given quality
constraints during the selection process, the tooling shall
determine the valid variants.

S3: constrain the selectable features. Quality attribute
requirements shall be definable in advance and during
feature selection, with those features not selectable
whose selection would impair the required quality.

S4: visualization of quality values. From a customer
perspective, multiple quality attributes may be of interest
and may differ between customers. Thus, the tooling
shall support an appropriate yet configurable
visualization of the resulting quality values.

S5: quality modeling integration in solution space.
Consistent, gap-less usage of modeling techniques,
especially for quality modeling, leverages available
tooling. All views on the solution space of the product
line will more or less be influenced by quality attributes.
The tooling must handle all of these in a consistent way,
thus consistent meta-models must be applied on which
transformers, generators, evaluators and viewers rely.

S6: reuse of artifacts. Automatic evaluation of quality
attributes requires a formal description of quality
properties and correlations. These formal descriptions
can also be used for other purposes, e.g., for generating
product specification documents, manuals, etc.

S7: traceability support. Generated artifacts should carry
dependent tracing information, e.g., the “administration
of multiple hosts” chapter in the manual depends on the
selection of a high availability solution.

III. SOLUTION
To address the aforementioned requirements, IQSPLE

integrates quality attributes in the solution artifacts, maps the
feature and quality selection in the problem domain to the
associated solution artifacts, and collects and evaluates the
quality attributes. With appropriate aggregation functions,
the quality attributes of the product instance can be
automatically evaluated and displayed in the selection
configuration. The various elements of the IQSPLE
methodology are described below.

A. The IQSPLE Process
The process is depicted in Figure 3. SPL domain
engineering involves:
1) Requirements Analysis. Through the analysis of the

problem domain, common and variable feature and
quality requirements are collected.

2) Feature variability and quality variability modeling. In
addition to the typical feature modeling in a feature tree
(e.g., using the Compositional Variability Management
(CVM) framework, a separate quality tree is used to
model the quality attributes and their value types, e.g.,
memory footprint in MB, latency in ‘use case 15’ in ms).
It is assumed that components can be assigned quality

163

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attribute values based on a specification or measurement.
Note that discrete values need not be ordered.

The resulting quality tree can serve as a basis for
selecting non-functional requirements. As appropriate,
elements in the trees can be linked to other trees (e.g., a
selection in the quality tree might deselect certain
features in the feature tree) and to the UML models.

For automated synchronization support, UML
vendor-specific APIs can be used to allow changes to the
(quality-annotated) models to be automatically reflected
in the trees (e.g., certain quality options might disappear
if no longer supported in the solution models). This
supports M1, M2, and M4.

Figure 3. IQSPLE process.

3) Modeling of solution artifacts including quality-
annotations. A quality meta-model such as the UML
QoS Profile, variability profile, etc., is used to allow
solution space models (i.e., software artifacts) to be
annotated with quality attribute names and values. Note
that each element can have multiple quality attributes
assigned and these elements can be linked with features
(e.g., memory consumption, use-case-specific latency,
scalability properties), but not all components must be
assigned all attributes. E.g., all components will affect
memory, but not all will influence the latency in use case
15. This supports M1, M2, M5, and S5, S7.

SPL application engineering involves:
4) Configuration. A product configuration is selected based

on feature and quality requirements (e.g., using CVM).
This supports S2 and S3.

5) Quality Model Instance generation. Based on the
configuration information and using UML tooling (e.g.,
openArchitectureWare (oAW)), a tailored Quality Model
Instance is generated (e.g., in ECore).

6) Quality evaluation. OCL statements in the Quality Model
Instance are used to evaluate the resulting qualities. A
quality (aggregation) function is defined to support M3

and S1. To calculate the overall quality of the resulting
product instance, the quality attributes of all selected
components must be aggregated. In simple cases, this can
be a sum-operation (e.g., memory footprint, latency) or
min-operation (e.g., security behavior is as good as the
weakest component). Complex operations are also
possible, e.g., encryption depends on message length
which depends on the selected features, so influence may
be expressed in factors such as “encryption increases
latency of use case 15 by 50%”. For quality-based
attributes, the aggregation function may count the
number of occurrences, the most frequent wins, or
calculates an average over ordered elements.

7) Quality validation. Based on the quality viewer, the
qualities achieved are validated by the user or, based on
tradeoffs, the configuration is adjusted as necessary. This
supports S4.

8) Product Instance Generation. Once the configuration has
been validated, artifacts are generated (e.g., UML
models, code, documentation including specifications,
and user manuals), and manual artifacts are implemented.
This supports S6.

B. Variability
Negative variability. Negative variability starts from a

maximal description (e.g., a UML model containing all
possible elements of the product line) and deletes the
elements that are not connected to selected features [2]. By
this reduction, the final model of the selected product
instance will be the result.

Depending on the selected features, model elements can
be removed to derive different product instances. This is
reflected in the model by tagging the different types with the
stereotype <<Variation>>. The condition for which it is
generated for the product instance is defined by the tagged
value {feature = “any feature condition”}.
This indicates to the generation process that the elements
associated with the feature condition are generated if the
condition evaluates to true, otherwise they are removed.

This is called negative variability since the starting point
is a superset of the model definition and the unnecessary
elements are stripped away according to the features
selected. [2] discussed negative variability in class diagrams
to model data structures of product lines and generate the
data model for a selected product instance. In order to
integrate this approach with quality modeling, this
mechanism was extended for other diagram types. E.g., the
results of the quality “scalability” will be seen on a
deployment diagram that contains one, two, or more hosts.
Another example is the deletion of a use case in a use case
diagram because a certain feature was deselected. Use case
diagrams can form the basis for product specification and
manuals, which should also adapt automatically to selected
features for the product instance.

Structural variability. Structural variability describes a
change in the model dependent on some feature selection [2].
The element is already contained in the model, but its
structure (type, cardinality, association) may vary.
Structurally changing a UML model is achieved by adding

164

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the stereotype <<modify>> to the elements that should be
structurally changed and by setting predefined tagged values.
Possible tagged values are, e.g., feature, type, cardinality,
name, and initialValue.

In the resulting model, the corresponding property is
changed. This can also be used to redirect associations by
changing the type of the association.

C. Integrity Constraints
Constraint checking and their languages such as the OCL

(Object Constraint Language) in UML are a known and
powerful capability for assuring modeling correctness. Since
SPLs typically support a large number of variations and
quality aspects are typically crosscutting concerns that affect
multiple models, constraint capabilities should be applied at
the most appropriate points across the tooling.

For instance, feature/quality modeling constraints can be
utilized to determine the validity of a certain combination of
features or qualities (e.g., CVM provides a proprietary
language to specify feature constraints). Instance tailoring
constraints can be applied to check conditions (e.g., ensuring
that the domain and feature/quality models are consistent)
before or during the tailoring process as well as the artifact
generation process.

D. Quality Functions and Annotations
In order to enable the evaluation of qualities of a product

instance, mathematical functions are used to aggregate
quality attributes. These functions are defined as relations
between a valid variant v and a value x, where x represents
the state of a specific quality.

 xvqi a: (1)

To access attribute values of different artifacts, two
additional functions are defined. The function attribE returns
a single attribute value of a specific solution element (e.g.,
concrete component) and requires a valid variant v, a specific
element e and the intended attribute a.

 xaevattribE a××: (2)

The second function attribV returns a vector of all
attribute values of a variant that match the provided attribute
name. This provides access to values and can be used if no
exceptional conditions must be taken into account.

 xavattribV a×: (3)

Note that there are no limitations on using different value
ranges for aggregations, as long as a reasonable aggregation
function for the quality can be determined. Numbers for
calculating memory footprint are just as possible as using
low, middle, high values to assess, e.g., security aspects.

As an example, privacy could be defined as follows:

 ⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

=

=

∑
∑
∑

=

=

=

)tiontaProtecDa,v(attribVx
i

)otectionPrData,v(attribVx
i

)otectionPrData,v(attribVx
i

privacy

x,high

x,middle

x,low

)v(q

r

r

r

3

2

1

 (4)

By modeling restrictions (Figure 1) on feature
associations as constraints, M4 is supported. A constraint ci
is defined as a relation between a variant v and one element
of the set {true, false}.

 },{: falsetruevci a (5)

This allows a definition of, e.g., performance
requirements based on predefined quality functions.

 ⎩
⎨
⎧ ≤

=
elsefalse

msvqtrue
vc latency

eperformanc ,
300)(,

)(
 (6)

The constraints are used as a way to filter out remaining
variants that violate given requirements. For deselection
functionality support for S2 and S3, IQSPLE inspects each
feature beneath a selection line in the feature tree and decides
if a feature selection violates the given requirements. In order
to decide feature selectability, IQSPLE distinguishes three
fundamental cases. A feature is:

a) not selectable if it does not occur in any remaining

variant,
b) selectable if it occurs in every variant,
c) or in combination selectable if it occurs in some variants

but not in all.

Cases a and b are trivial. However not every

consequence of a selection can be predicted, especially if
there are still open selections that affect the fulfillment of
constraints. Thus, IQSPLE uses Case c to indicate that a
feature selection possibly can only be made dependent on
further feature selections.

An example is shown in Figure 4. To illustrate the
process, a constraint is defined that forces a selection of at
least five features. Initially all variants are derived that fulfill
the constraint. Subfigure (1) shows the root feature tagged in
green, which means that at least one variant of the feature
tree matches the constraint and that feature f0 is contained in
the set of the valid variants. Green features must always be
selected.

In (2) f0 is selected and the selection cut is moved below
f0. Here f1 is tagged in green and f2 in red. It is obvious that
f2 will always be tagged in red because of the alternative
relation to f1, which is an invalid selection since with f2
maximally four features can be selected. Consequently, f1
must be selected as shown in (3). In this case f3 is selectable
and f4 in combination selectable. In (4) f3 has been selected
and f4, f7 and f8 are in combination selectable. While the

165

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

current selection does not fulfill the constraint of at least five
selected features, it is recognizable that a combination of the
three remaining features would. If the current selection is a
valid variant and fulfills the constraint, the selection of a blue
feature is optional. For the case that a current selection does
not fulfill a constraint, it is necessary to select further blue
features.

(1) (2)

(3) (4)

f0

f1

f3 f4

f2

f5 f6

f7 f8

f0

f1

f3 f4

f2

f5 f6

f7 f8

f0

f1

f3 f4

f2

f5 f6

f7 f8

f0

f1

f3 f4

f2

f5 f6

f7 f8

Feature

Selectable
Non
selectable

In combination
selectable

Selected Or

Alternative

Mandatory

Optional

Figure 4. Selection process example.

Thus the IQSPLE process supports the handling of fixed
requirements and, depending on the stakeholder’s
perspective, one can see either which subset of features still
fulfill the requirements or if the selection of a certain feature
does not.

In the current implementation, all quality functions were
defined in OCL due to its expressiveness, UML integration,
and standardization, as shown in Figure 5. In the diagram,
four Quality of Service (QoS) characteristics are shown for
latency, security, costs, and availability. To annotate certain
constraints as quality aggregation functions, the OMG
“UML Profile for Modeling QoS and Fault Tolerance
Characteristics and Mechanisms” [9] was extended with the
<<aggregateFunction>> stereotype. Each
QoSCharacteristic can have at most one
aggregateFunction. To allow the retrieval of feature
expressions from within a QoSCharacteristic,
QoSCharacteristic inherits from the class
AbstractQoS. Static methods are defined in the
QoSCharacteristic, which can be additionally used for
the definition of constraints.

The range of attribute values is determined by the
QoSCharacteristic. For instance, costs are usually
positive numbers that are summed, while usability could be
either decreased by adding more components to administrate,
or increased by a module that presents role-based
administration user interfaces.

Figure 5. QoS characteristics with OCL quality aggregation functions.

In the OCL code of Listing 1, the aggregation function
for latency is shown.

Listing 1
context QoS_availability::availability() :
QualitativeValue
post:result = allAvailabilityValues(Order::asc)
 ->first()
-- same query with the generic method attribV:
-- result = attribV(QoS_availability)
-- .oclAsType(QualitativeValue)

166

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-- ->sortedBy(integerValue())->first()

The method allAvailabilityValues(..)
returns an array of the results of all the availability
constraints. The input parameter defines the sorting order of
the array. The parameter Order::asc is for ascending
order. The method call first() returns the smallest
availability value. Alternatively, the call could have been
realized with the method attribV, as described in the
comments. The return values would then need to be cast to
the specific type and sorted.

E. Quality Evaluation
The Quality Evaluator calculates the quality values,

which utilizes the quality model instance created by the
tailoring process. Impacts on qualities are evaluated by
executing the OCL, thus calculating the quality attribute
values of the selected artifacts for the product instance and
aggregating them to an overall value. To support S4, after the
quality value calculation and aggregation process, the
assessed variant aggregated qualities are presented to the
user as a spider chart as shown in the Quality Editor of
Figure 6. This process is triggered every time a user changes
a feature selection. The effect of a feature selection on
particular qualities can thus be dynamically observed in the
change to the chart during selection. This is helpful
especially in trade-off situations.

Via this mechanism, the attribute values for a specific
variant can be concretely defined in the solution space. For
instance, a timeout configuration setting can be dependent on
the combined latencies of the selected message component
(commercial or open source).

Additionally, in order to ensure that the configured
variants achieve the required qualities, during configuration
the selectability of certain features and qualities are
dynamically grayed-out (unselectable) based not only as
hitherto on some abstractly modeled constraint/dependency
between feature trees or tree elements, but on the impact
evaluation of a specific feature or quality selection on
variants (configuration feedback). For example, if a user
defines that there is a budget of 10000€ for licenses, then all
(aggregated) features are grayed out that are dependent on
components that do not meet this requirement. At the time of
de(selection) of a feature, the resulting configuration is
verified against the quality requirements. In case the
configuration does not meet the requirements, the user can
choose alternatives. Currently a brute-force algorithm is used
to recursively evaluate the remaining variants in the tree.
Dependent on the number of variants, the automatic
assessment of possible variants can take significant
computation time. Therefore, typically not every variant is
evaluated, but once a user-configurable limit of valid
variants is found, the automatic assessment is halted and the
alternatives are suggested to the user. If no valid variants are
found within some user-defined time limit, the user is
required to select additional features to further limit the
variant space and thereby shorten the computation time.

As shown in Figure 6, the Quality Editor presents the
aggregated quality values of a variant and provides

information about the location and number of quality
constraints that affect a certain quality attribute. For
example, in Figure 6, the user has selected the quality
attribute latency (get patient data) and, in the description
which contains static and dynamic text, the user sees that
most latency constraints are located in the component view.

Figure 6. Quality editor.

The attribute values of a model element can also be
dynamically calculated or become part of a variant, e.g., as a
function of changes in the dependencies and selections.

IV. E-HEALTH SPL EXAMPLE

To illustrate IQSPLE, the E-Health example of Section II

will be used applying the process described in section III.A.

1) Requirements Analysis
This is assumed to have been completed in this simplified

example.
2) Feature variability and quality variability modeling

The feature tree from Figure 1 is now split into a feature
tree (Figure 7) and a quality tree (Figure 8).

The single-host / dual-host features are removed from the
feature tree. The customer should not select whether (s)he
wants one or two hosts, which was modeled as a feature.
Instead, the resulting quality of the solution is defined by the
customer, in this case 95% or 99% availability. The dual-
host solution is a solution and, as such, not of primary
interest to the customer (it might be from an administrative
point of view later).

The headline “security” is split. Virus scanning is
definitely a customer visible (external) feature and, as such,
located in the feature tree. The two other options
“connection” and “message-based” were for deciding the
security property if the communication can be unprotected,
e.g., if the systems are interconnected via VPN. Connection-
based security was implemented by using SSL, thus
authenticating sender and receiver and encrypting the data in
transit, but only a message-based signature results in

167

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

auditable messages because the messages together with the
signatures can be archived as-is in an audit trail record and
the signature can be verified again later. Thus, the customer
is primarily interested in the resulting quality properties, e.g.,
if he has to obey specific regulations for auditable records,
but does not care about the actual implementation necessary
to achieve this. Security is an example for qualitative values
(see requirement M2) with an order (“none” < “confidential”
< “auditable”).

Figure 7. Feature Tree.

Figure 8. Quality Tree.

Note that a group of features can create additional value,
e.g., if the http protocol is used for the user interface and
DICOM protocol for image data retrieval, the complete
solution is “confidential” only if both protocols provide
confidentiality mechanisms, e.g., SSL. The aggregation
function would be:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

==
∧==

==
∧==

=

elsenone

alconfidenti
alconfidentialconfidenti

alconfidenti
autitable

auditable

vq urity

securityDICOMcomp.
ecurityHTTPcomp.s,

securityDICOMcomp.
security.HTTPcomp

)(sec

3) Modeling of solution artifact including quality
annotation.

The diagrams in Figure 9 through Figure 11 contain a
(simplified) super-set of all possible artifacts annotated with
constraints on the selected features and qualities. For
example, Host2 in the deployment view is marked as
<<Variation>>. The condition is {featureExp =
“99%”}, thus the element “Host2” will vanish if the feature
is not selected. The same is true for the load balancer. For
details on negative variability, see [2].

Additionally, the quality attributes are annotated
according to the OMG QoS profile [9] as described in Figure
5.

Figure 9. Quality-annotated use case model.

4) Configuration
For a fictitious customer, the product instance as shown

in Figure 12 is selected. The customer chooses a message
queue as the most flexible technology for integration, which
is also the most future-proof variant. To save costs, (s)he
selects the open-source implementation. For consolidation of
patient records, (s)he wants the new system to have an MPI
(Message Passing Interface). He/she selects virus scanning
because all systems are connected to the internet, which is
how the data exchange is routed.

From a quality perspective, (s)he emphasizes the
availability of the system and selects 99%. Since no VPN is
in place, (s)he selects confidential data exchange, but (s)he
has no requirement for auditable signatures. The customer
does not set any other quality constraints in the quality tree
as shown in Figure 13.
5) Quality Model instance generation.

This step generates an internal representation of the
quality model to be used during the quality evaluation. For
performance reasons, this quality model instance only
contains the quality constraints, quality aggregate functions,
and feature expressions. Based on this simplified model, the
Quality Evaluator calculates the quality attribute values for
all constrained elements and then aggregates the resulting
values to overall quality values.

168

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Quality annotated component model.

Figure 11. Quality annotated deployment model.

Figure 12. Selected product variant.

Figure 13. Initial quality tree defined by the customer.

6) Quality evaluation.
Due to the selection in the feature and quality tree, the

aggregation functions can aggregate the overall quality
attribute values of the product instance (see Figure 17 and 18
for the resulting product instance artifacts). E.g., the license
cost (a quality attribute referred to by requirement M1) is
determined by the sum of the existing artifacts on all
diagrams (see formula in QoS_costs:
allCostValues(Order:asc)->sum()):

Base 30,000
Load Balancer 5,000
Commercial session manager 5,000
Total 40,000

 The evaluation of the quality attributes is shown in

Figure 14.

169

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. First quality spider chart.

7) Quality validation
The customer realizes that the latency of the use cases,
represented by latency for “get patient data,” is unacceptable.
Modifying the messaging software provider from “open-
source” to “commercial” results in the quality spider chart
depicted in Figure 15, showing that the price increases to
45000€, but now the latency reaches an acceptable level.

Figure 15. Final quality spider chart.

8) Product Instance Generation
The resulting artifacts are depicted in Figure 16, 17, and

18.

Figure 16. Tailored UseCase View.

Figure 17. Tailored Component View.

Figure 18. Tailored Deployment View

The use case Failover is included, thus the user manual
will contain the section about administration and monitoring
of the high availability solution.

The deployment diagram shows dual hosts with a load
balancer required to fulfill the 99% availability. From the
deployment diagram, the bill of materials can be derived and
will now contain dual hosts and a load balancer, which has to
be ordered from a 3rd party provider.

The component diagram includes only MQ as an
integration provider and a distributed cache that is necessary
for the multi-host deployment for sharing the state across
multiple hosts.

The eHealth scenario exemplified how IQSPLE
facilitates greater thought to and usage of quality in the
domain and application engineering stages. First, customers
can make decisions about required qualities based on facts
instead of subjective estimations from the SPL engineer.
Customers are also able to see how a decision affects
particular qualities and if the consequences of a decision are
acceptable. The SPL engineer benefits since thought to

170

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system qualities are explicitly stipulated, which can help to
improve the overall quality of the SPL architecture. In case a
quality requirement is not fulfilled by the SPL, the engineer
can track the different impacts on the quality and single out
optimization opportunities. Additionally, it is possible to
determine if a feature selection breaks any given quality
requirements, which is done by filtering all possible variants
based on existing quality requirements.

V. EVALUATION
Evaluation criteria considered beyond the M and S

requirements were an initial assessment of scalability for
current SPL development including the usage of OCL for on-
the-fly quality evaluation.

The measurements were performed on an Dell Latitude
E6500 (Core2Duo CPU @ 2.53GHz) PC with 3.5GB RAM
running Microsoft Windows XP Pro SP3, Java JDK 1.6,
Eclipse Galileo 3.5 (Modeling Distribution SR1),
openArchitectureWare 5, CVM framework 0.6.0, Eclipse
OCL2.0 Interpreter 1.3, and the Eclipse Modeling
Framework 2.5. All measurements were performed 3 times
and averaged.

For the first set of measurements, the tailoring process
(as shown in Figure 3) for binding the variability of the
Quality Annotated Model to derive a single variant (Quality
Model Instance) was considered to determine the current
practical scalability limitations of variation points, features,
and resulting generation time. Table I and Figure 19 show a
nearly linear correlation between a change in the number of
variation points and the generation time when the number of
features was held constant. An increase in the number of
features also showed a nearly linear increase in the
generation time. This result is explained by the iterations
used in the generator code implementation for each variation
point and for each feature. As to conditions, varying the
number of Boolean conjunctions up to 20 for a variation
point made no significant difference due to other inherent
overheads.

TABLE I. TAILORING PROCESS TIME (MSEC) GIVEN A NUMBER OF
FEATURES AND VARIATION POINTS

Number of
Variation

Points

Total Number of Features

300 600 900

1500 4302 6411 8709
3000 6771 11307 15526
4500 9453 16016 22563

The derivation and quality analyses of all variants of a

SPL can be computationally expensive and make its usage
impractical. Thus, measurements on the performance of the
implementation for automated variant derivation were
performed to determine its limits. The time to derive all
variants of a quality-annotated model with 100
QoSConstraints (simple additions) was measured for a
binary structured feature tree of or-relations, while the
number of features was increased from 10 to 32. The results
in Table II and Figure 20 show that, given a current PC, the
quality could be evaluated with up to 20 features and 2000

resulting variants on-the-fly with results in less than a
minute.

0

5

10

15

20

25

1500 3000 4500

T
ai

lo
ri

ng
 T

im
e

(s
ec

)

Variation Points
(model elements + quality constraints)

300

600

900

Number
of

features

Figure 19. Tailoring process time (sec) vs. variation points and number of

features.

0

20000

40000

60000

80000

100000

120000

140000

0

500

1000

1500

2000

2500

10 12 14 16 18 20 22 24 26 28 30 32

ev
al

ua
tio

n
tim

e
(s

ec
)

number of features

time in s

variants

nu
m

be
ro

f v
ar

ia
nt

s

Figure 20. Quality evaluation time (sec) vs. number of features and

variants.

TABLE II. QUALITY EVALUATION TIME GIVEN A NUMBER OF
FEATURES AND VARIANTS

Features Variants Time (sec)
10 63 4
12 127 5
14 255 7
16 511 11
18 1023 18
20 2047 35
22 4098 65
24 8191 126
26 16383 247
28 32767 497
30 65535 1012
32 131071 2075

Based on these results with available tooling and

systems, it is currently feasible to use and have the benefits
of IQSPLE in industrial settings. The evaluation showed that
performance for single variant quality evaluations was
sufficient for usage today, but scalability issues were found

171

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with handling large variation sets. When the quality
evaluation of a large number of variants is desired, it is
recommended that quality evaluations be executed in offline
batch mode, and the results for all variants stored in a
database for later access in order to enable tradeoff analysis
to take place without encumbrances. Optimization
possibilities include evaluating boundary constraints on the
quality function properties to avoid further calculation
overhead, e.g., aborting a calculation when a boundary value
is exceeded.

VI. RELATED WORK
.Related work includes the Feature-Softgoal

Interdependency Graph (F-SIG) approach [10], which
supports quality modeling in the domain analysis phase. Its
lack of support for quantitative values results in only
imprecise quality assessments of a variant. The Extended
Feature Model (Ext-FM) [11] applies a Constraint-
Satisfaction-Problem approach and allows both quantitative
and qualitative values to determine the set of matching
variants. However, it requires a hierarchical modeling of
quality attributes that restricts the possible set of quality
dependencies that can be modeled. The Integrated Software
Product Line Model (ISPLM) [12] integrates an
implementation model that supports quantitative Q-
attributes, yet it does not specify how these Q-attributes are
to be utilized for a Q-assessment or set selection of variants.
The Q-ImPrESS project [13] aims at modeling quality
attributes at an architectural level. A reverse engineering
process is used to derive component models which than are
evaluated for quality prediction. It lacks support for
modeling variation points in the problem space and in the
solution space. Quality-driven Architecture Design and
Analysis (QADA) [14] is a SPL architecture design method
supporting traceable product quality and design-time quality
assessment. Qualitative quality requirements are treated as
architectural style(s) and patterns, and quantitative quality
requirements as the properties of individual architectural
elements. While addressing not only the conceptual
architecture but also the concrete architecture, it does not
produce implementation artifacts. It uses quality viewpoints
[15] and conforms to OMG’s Model-Driven Architecture
(MDA) and IEEE 1471 [16] and uses UML profiles. [17]
describes a tool chain that supports QADA including quality
evaluation and test result imports. The protégé ontology tool
is used for quality attribute definition, whereas IQSPLE
encourages the use of feature tree tooling (e.g., CVM) for
quality attributes due to its simplicity and prevalence. A
comparison of these methodologies is shown in Table III
with “Y” meaning yes and “N” meaning No.

COVAMOF [18] supports the modeling of dependencies
between a set of variation points, however it does not
explicitly address quality modeling.

While the Attribute Driven Design (ADD) method [19]
supports the explicit articulation of the quality attribute goals
for SPLs, it is narrowly focused on the definition of the
conceptual architecture.

With regard to addressing SPL variability and quality
annotation in UML models, the comparison matrix in Table

IV shows an assessment of related SPLE approaches for a
subset of requirements. ‘Quality annotation’ refers to the
capability of annotating existing artifacts in SPL with quality
information. ‘Requirements analysis’ refers to the support of
the requirements process from elicitation to documentation,
while ‘feature model integration’ means the usage of feature
models as a basis for the approach. ‘Negative variability’ and
‘structural variability’ are defined in [2] and describe the
means to define SPL artifacts and transfer them into product
instance artifacts. ‘UML compliant’ refers to the restriction
of using standardized modeling based on UML including
OCL, stereotypes, tagged values, etc., an influential factor
for industrial adoption of an approach. Modeling artifacts
can contain ‘modeling constraints’ (i.e. constraints defined in
the solution space) and ‘configuration constraints’ (i.e.
interdependencies of features in feature trees). Constraints
might become expensive to evaluate, thus a separation of
constraints that can be evaluated on-the-fly and constraints
that will only be checked during the generation process
might become necessary, evaluated under ‘checks during
generation’. ‘Product instantiation’ evaluates the ability to
create a definition of the derived product instance, the
simplest form of which could be a list of selected features.
An approach can explicitly include ‘code generation’ in its
process and allow ‘quality variability tracing across
elements’, meaning selections and bindings through the
artifacts.

TABLE III. METHODOLOGY COMPARISON FOR QUALITY SUPPORT

Requirement F-
SIG

Ext-
FM ISPLM Q-

ImPrESS
QADA IQSPLE

M1: qualitative
values Y Y N Y Y Y

M2: quantitative
values N Y Y Y Y Y

M3: algorithms for
calculating the
resulting attribute
values

N Y N Y N Y

M4: presentation as
feature N N N N N Y

M5: artifact
annotation N N N Y Y Y

S1: calculate the
quality values of a
given variant

N Y - Y Y Y

S2: determine the set
of possible variants N Y - N N Y

S3: constrain the
selectable features N N - N N Y

S4: visualization of
quality values N N N Y N Y

S5: quality modeling
integration in solution
space

N N N Y Y Y

S6: reuse of artifacts N N Y Y Y Y
S7: traceability
support N N Y Y Y Y

172

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. METHODOLOGY COMPARISON FOR UML VARIABILITY
SUPPORT

 S
PL

IT

 P
L

U
S

 M
D

D
-A

O
-P

L
E

 U
M

L
 e

xt
. [

22
]

 IQ
SP

L
E

quality annotation
requirement analysis +++ +++ ++ + ++
feature model integration
negative variability
structural variability
UML compliant
modeling constraints
configuration constraints
checks during generation
product instantiation +++ + +++ + +
code generation
quality variability tracing
across elements

Approaches include the conceptual framework SPLIT

[20], where additional UML stereotypes, e.g.,
<<variabilityMechanism>> and <<variationPoint>>, are
used for specifying variable elements. However, SPLIT does
not integrate an abstract feature view as does the IQSPLE,
and the variation points and the corresponding variants
require a separate class that may cause transparency issues in
large SPLs. PLUS (Product Line UML-Based Software
Engineering) [21] extends UML to model variability and
commonality using stereotypes and primarily subclassing.
[22] presents a generic modeling approach with additional
variability stereotypes as extensions to UML. The variation
points and variants can be assigned with tagged values to
define certain properties, such as the binding time of
variants, the multiplicity of associable variants, and the
condition of binding. However, this approach does not
address the derivation of product line instances. Crosscutting
variability in SPLs is investigated in MDD-AO-PLE
[23][24][25] and related aspect-oriented (AO) SPLE work.
While this work has not specifically addressed the
difficulties described in this paper for quality modeling
integration, the combination of these AO techniques with
IQSPLE could be synergistic and should be investigated in
future work.

VII. CONCLUSION AND FUTURE WORK
By integrating quality modeling into SPLs with a holistic

method and tool approach, the application of IQSPLE results
in product as well as process benefits. At the product level,
the resulting product instance has a higher potential value to
the customer since it is more likely to conform to his or her
expectations, satisfying not only requested features but also
complying with quality expectations. At the process level,
the use of an interactive, quality-driven selection process
provides efficiencies by supporting on-the-fly evaluation and

visualization for expeditious trade-off analysis while
assisting with and automatically constraining valid variant
selection against quality requirements. Efficiency is also
furthered via reuse of quality modeling and annotations
throughout the SPL lifecycle. The effectiveness of the
process is enhanced by making qualities first-class
requirement entities that are analyzed and formalized. The
comprehensive approach promotes contemplation of
(aggregated) quality impacts from the initial SPL concept
since qualities can be (directly) annotated across the solution
space artifacts (and are available directly to SPL engineers).
SPL process effectiveness is also furthered by automatic
evaluation and optimization as well as traceability support
for the source of variability decisions. IQSPLE supports the
flexible derivation of individual variants instead of a limited
set of predefined variants via immediate feedback on the
resulting quality attribute values of the current selection.
Barriers to adoptability of quality modeling in industrial
SPLs are lowered by IQSPLE due to its avoidance of
unnecessary complexity (e.g., ontologies are avoided) and
focus on integrating known and common tooling and
standards (UML, OCL, stereotypes, tagged values, OMG’s
QoS profile, MDD (e.g., oAW), Eclipse, feature trees).

By fulfilling the M and S requirements, IQSPLE supports
qualities in quantitative and qualitative ways. The application
of constraints on features allows the explicit modeling of
quality values inside a feature tree. It is not necessary to
make any structural changes to feature trees or add any
additional implementation details, so feature trees can still be
used for customer communications. With quality functions, a
mechanism is provided to transform different quality impacts
into a single quality characteristic and thus make it possible
to compute qualities of a variant. To make it easier to
recognize how changes in feature selections affect qualities,
quality values can be displayed in spider charts.

The eHealth scenario shows how IQSPLE supports the
detection of optimization opportunities and trade-offs during
product instantiation, making use of the traceability of the
modeled dependencies.

Models are necessarily limited in their portrayal of
reality, and holistic quality modeling of a SPL faces
significant challenges due to the large set of variations.
While IQSPLE may contribute towards improved quality
modeling in SPLs, much work remains. Future work should
address visualization of influences on qualities via quality
interaction dependency graphs; model checking integration
(e.g., UML dependency changes may affect OCL
constraints); OCL validity and syntax-checking of, e.g.,
component names and quality attributes, perhaps eventually
code-completion support; the support for and integration of
developmental qualities (e.g., architectural metrics affected
by a specific configuration); replacing the current brute-force
variant evaluation algorithm by alternatives described in
“Evaluation” Section V; decision support via analysis of
potential variants; enabling tolerances and trade-offs in
formulas for automatic optimization; and the application of
the IQSPLE in other industrial domains beyond the medical
domain.

173

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] J. Bartholdt, M. Medak, and R. Oberhauser, “Integrating Quality

Modeling with Feature Modeling in Software Product Lines”, Proc.
of the Fourth International Conference on Software Engineering
Advances (ICSEA 2009), IEEE Computer Society, 2009.

[2] J. Bartholdt, R. Oberhauser, A. Rytina, „Addressing Data Model
Variability and Data Integration within Software Product Lines”,
International Journal On Advances in Software, ISSN 1942-2628,
vol. 2, no. 1, 2009, pp. 86-102

[3] F.J. v.d. Linden, K. Schmid, and E. Rommes, “Software Product
Lines in Action: The Best Industrial Practice in Product Line
Engineering.” Springer, 2007, ISBN 3540714367.

[4] K. Pohl, G. Böckle, and F.J. v.d. Linden, “Software Product Line
Engineering: Foundations, Principles and Techniques”. Springer,
2005, ISBN 3540243720.

[5] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Software
Engineering Institute, Carnegie Mellon University, 1990.

[6] M. L. Griss, J. Favaro, and M. d. Alessandro, “Integrating feature
modeling with the RSEB,” Proc. of the 5th International Conference
on Software Reuse (1998), ICSR, IEEE Computer Society.

[7] J. Bayer, et al “PuLSE: a methodology to develop software product
lines”, In Proceedings of the 1999 Symposium on Software
Reusability (SSR '99), ACM, pp. 122-131, 1999.

[8] I. Ozkaya, L. Bass, R. S. Sangwan, and R. L. Nord, “Making Practical
Use of Quality Attribute Information,” IEEE Softw. 25, 2 (Mar.
2008), pp. 25-33. DOI= http://dx.doi.org/10.1109/MS.2008.39.

[9] OMG, UML Profile for Modeling Quality of Service & Fault
Tolerance Characteristics & Mechanisms, v1.1, formal/08-04-05

[10] S. Jarzabek, B. Yang, and S. Yoeun, “Addressing quality attributes
in domain analysis for product lines,” IEE Proceedings Software, vol.
153, no. 2, pp. 61–73, 2006.

[11] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated
reasoning on feature models”, in LNCS, Advanced Information
Systems Engineering: 17th International Conference, CAiSE 2005,
pp. 491–503, 2005.

[12] N. Siegmund, M. Kuhlemann, M. Rosenmüller, C. Kästner, and G.
Saake, “Integrated product line model for semi-automated product
derivation. Using non-functional properties,” Proc. of the Workshop
on Variability Modelling of Software-intensive Systems (VaMoS),
pp. 25–31, 2008.

[13] S. Becker, M. Hauck, M. Trifu, K. Krogmann, J. Kofron, “Reverse
Engineering Component Models for Quality Predictions”, CSMR
2010, IEEE, Mar 2010.

[14] M. Matinlassi, E. Niemelä, and L. Dobrica, "Quality-driven
architecture design and quality analysis method, A revolutionary

initiation approach to a product line architecture," VTT Technical
Research Centre of Finland, Espoo, 2002.

[15] A. Purhonen, E. Niemelä, and M. Matinlassi, "Viewpoints of DSP
Software and Service Architectures," Journal of Systems and
Software, vol. 69, 2004, pp. 57 - 73.

[16] IEEE, "IEEE Recommended Practice for Architectural Descriptions
of Software-Intensive Systems," Std-1471-2000. New York: Institute
of Electrical and Electronics Engineers Inc., 2000.

[17] A. Evesti, E. Niemel, K. Henttonen, M. Palviainen, "A Tool Chain for
Quality-Driven Software Architecting," splc, pp.360, 2008 12th
International Software Product Line Conference, 2008.

[18] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “Modeling
dependencies in product families with COVAMOF”, Proc. of the 13th
Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS 2006), March 2006.

[19] F. Bachmann and L. Bass, "Introduction to the Attribute Driven
Design Method," icse, pp.0745, 23rd International Conference on
Software Engineering (ICSE'01), 2001.

[20] M. Coriat, J. Jourdan, and F. Boisbourdin, “The SPLIT method:
building product lines for software-intensive systems,” In
Proceedings of the First Conference on Software Product Lines:
Experience and Research Directions (Denver, Colorado, United
States). P. Donohoe, Ed. Kluwer Academic Publishers, Norwell, MA,
2000, pp. 147-166.

[21] H. Gomaa, “Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures”, Addison-Wesley,
2005, ISBN 0201775956.

[22] M. Clauss, “Generic modeling using UML extensions for variability”,
In Proceedings of the Workshop on Domain Specific Visual
Languages, OOPSLA 2001, Jyväskylä University Printing House,
Jyväskylä, Finland, 2001, ISBN 951-39-1056-3, pp. 11-18.

[23] M. Voelter and I. Groher, “Handling Variability in Model
Transformations and Generators”, in Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling (DSM’07), Sprinkle, J.,
Gray, J., Rossi, M., Tolvanen, J.-P., (eds.), Computer Science and
Information System Reports, Technical Reports, TR-38, University of
Jyväskylä, Finland 2007, ISBN 978-951-39-2915-2.

[24] M. Voelter and I. Groher, “Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development,” In
Proceedings of the 11th international Software Product Line
Conference (September 10 - 14, 2007). International Conference on
Software Product Line. IEEE Computer Society, Washington, DC,
2007, pp. 233-242.

[25] I. Groher, "Aspect-Oriented Feature Definitions in Model-Driven
Product Line Engineering", Dissertation, Johannes Kepler
Universität, Linz, April 2008.

174

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

