Leveraging Semantic Web Computing for
Context-Aware Software Engineering
Environments

Roy Oberhauser
Aalen University
Germany

1. Introduction

The increasing and ongoing need for and reliance on software in almost all industries,
coupled with increasing code volume and complexity and changing technologies, results in
increasing productivity pressure on software engineers to deliver greater software
functionality within stringent cost, time, and quality constraints. Moreover, the software
maintenance phase is affected by these pressures, and new approaches are also needed for
improving the efficiency and effectiveness of corrective and progressive maintenance
activities. The nature of many software engineering (SE) projects, especially in small and
medium enterprises (SMEs), often undergo rapid technology, tool, and process changes.
Although coupled with ever shorter delivery cycles, this area has, however, not yet lent
itself to the type of optimization that business process management (BPM) has succeeded in
achieving in other industries and disciplines. It is somewhat ironic that software and IT
technology has played a significant role in achieving results for BPM, yet the application to
SE processes has not succeeded. Among the various challenges, software engineering
environments (SEEs) typically consist of heterogeneous tool environments not optimally
tuned to leveraging the semantic value of data that become available in these SEEs during a
SE project.

Computer-Aided Software Engineering (CASE) tools are software applications that support
software engineering activities within a software development process. Due to the incessant
lack of standardization in data formats, interfaces, protocols, and agreed upon (common)
data models, tools have typically been created with their own internal interaction and data
model paradigms. Yet the focus of industry on BPM systems (BPMS) via Enterprise
Application Integration (EAI) with Service-Oriented Architecture (SOA) has fueled a wide
adoption of web service (WS) toolkits, and has recently had a ripple effect in SE with an
increasing provision of RESTful and SOAP-based WS access to tool functionality and data.
However, the access to this functionality and data has not been exploited via Semantic Web
(SemWeb) technologies, and herein lies potential. SemWeb adds machine-processable
semantics to data (Berners-Lee et al., 2001). SemWeb computing (SWC) allows for greater
and improved automation and integration of information due to its formal structuring of

www.intechopen.com

158 Semantic Web

information, clearly defined meanings and properties of domain concepts, and standardized
exchange formats. The application of SWC within a confined heterogeneous SEE setting
where external interchange of data is not a primary concern can provide certain advantages,
for example for context-aware computing (CAC).

This chapter explores CoSEEEK (Context-aware Software Engineering Environment Event-
driven frameworK), a hybrid semantic web computing approach towards improved context-
aware SEEs. The approach is based on an event-based computing paradigm, utilizing multi-
agent computing for active SE processing components. Space-based computing is used as a
common data repository, decoupling the interaction and data of tools and agents and
supporting heterogeneous and flexible configurations. A process-aware information system
(PAIS) is utilized to support adaptable SE processes, giving SE engineers process support
while supporting the degree of adaptability appropriate for the organization. A conjunction
of paradigms enables CAC to be applied in heterogeneous SEE settings and exhibit
proactive and reactive behaviors that can improve the effectiveness and efficiency of SEEs.
The hybrid SemWeb focus avoids the perhaps unjustifiable time and resource investments
that a comprehensive integration would require for the tool, artifact, person, process,
project, measure, practice, event, and data models in an SEE along with the inevitable
continual changes, while leveraging the noticeable benefits for software engineers in
responsiveness of the SEE. The experimental results validate the current feasibility and
potential benefits that such a distributed, decentralized, event-based, hybrid semantic web
approach can bring to SEEs. The chapter is organized as follows: section 2 reviews the
current literature; section 3 discusses the requirements and constraints; section 4 describes
the solution approach while section 5 details a current realization; section 6 then discusses
the results which are followed by a conclusion in section 7.

2. Literature Review

With regard to SE tool interoperability in SEEs, one attempt at standardization was the
Portable Common Tool Environment (H-PCTE) ISO/IEC 13719:1998, “a distributed object
management system (OMS) standardized by ISO/IEC and ECMA which is intended to be
used as a basis of distributed software development environments (SDE), or, more
generally, distributed document editing systems.” It specifies various services such as data
management, schema management, access and concurrency controls, notifications, and
bindings for C, Ada, and IDL (CORBA). At this point it is not relevant to the industry, as no
commonly used SE tools today utilize or promote this or alternative standards.

(Arbaoui et al., 2002) and (Gruhn, 2002) provide an overview of Process-Centered Software
Engineering Environments (PCSEEs). (Adams et al., 2006) describes worklets, a SOA-based
extensible repertoire of self-contained sub-processes aligned to each task, from which a
dynamic runtime selection is made depending on the context of the particular work
instance. An example of a metamodel-based PCSEE framework is OPEN (Object-oriented
Process, Environment and Notation), which addressed business, quality, model, and reuse
issues (Henderson-Sellers, 2002) and is based on CORBA and not on WS. It has not been
active since 2006. Another example is DiIME, which is a proprietary, integrated, collaborative
environment for managing product definition, development and delivery processes and
information (Koenig, 2003).

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 159

As to integration of SemWeb technologies in the SE lifecycle, (Oberhauser & Schmidt, 2007)
discuss a holistic approach. (Calero et al., 2006) includes ontology work on SWEBOK
(Software Engineering Body of Knowledge), software maintenance, software measurement,
and other related SE ontologies. (Happel & Seedorf, 2006) describe the application of
ontologies in SE and a framework for classifying them. With regard to software artifacts,
(Bontcheva & Sabou, 2006) present an ontology learning approach that exploits a range of
information sources associated with software projects. Work utilizing the Semantic Web for
automated software engineering purposes includes (Dinger et al., 2006).

While it appears that relatively little work on context-aware SEEs has been done, much work
regarding context-awareness has been done in the area of ubiquitous and pervasive
computing, e.g., (Ferscha et al., 2004). Examples of frameworks for building context-aware
applications include the Java Context-Awareness Framework (JCAF) (Bardram, 2005) and
the ContextToolkit (Dey & Abowd, 2000). Considering the combination of SWC with CAC,
(Adi et al., 2000) describe a semantic data modeling approach for situation detection that
defines and describes events and their relationships to other events, objects, and tasks.
(Christopoulou et al., 2005) describe Context Meta-Model (CMM), an ontology-based three
layer metamodel for context with a formal mapping to OWL DL.

3. Requirements and Constraints

For creating a solution approach for context-aware SEEs, specific requirements and
constraints must be considered. As shown in the context diagram of Fig. 1, for typical SE
projects, artifacts are retained in a configuration management (CM) tool-based repository,
e.g., CVS, Subversion, etc., and thus changes to artifacts can be readily detected and SE
events can be generated. People involved in SE activities interact with the SEE primarily via
the use of SE tools (shown as SE Tool Services), and to support context-awareness these
interactions should generate SE events transparently. SE actions may also be directed to
appropriate SE tools or tool services. Other project-specific inputs into the SEE are tailored
SE processes, workflows, and best practices, as well as general and domain-specific SE
knowledge and quality assurance methods.

490U

A el
8 ot Predmis]

i

Fig. 1. SEE context diagram

www.intechopen.com

160 Semantic Web

While numerous and various requirements for a context-aware SEE may be considered due
to the diversity in SEEs, the following general requirements were important to shaping the
solution approach (the square brackets below indicate the abbreviated form):

e Automatic selection of proposed quality measures should be based on contextual
problems or risks [Req:AutoQM]

e Quality measures should be adjusted based on new events and states across the
project [Req:QMAdj]

e Automated project task assignment for a software engineer should be based on
task difficulty (which maps to skill level), employee availability, and roles
[Req:AutoTask]

e Tasks to be performed by a software engineer shall be adjusted based on context
within the realm of constraints allowed in the process workflow [Req:TaskAdj]

e The black-box view of solution use cases should demonstrate context-awareness
not otherwise currently easily provided [Req:BlackBox]

e Support for heterogeneous operating systems and SE tool implementations
[Req:Heterog]

e Avoid internal access to SE tools [Req:Encap]

e Support for distributed SEEs [Req:Dist]

4. CoSEEEK Solution Approach

To achieve improved and more holistic solutions for SEEs, the CoSEEEK approach is a
synthesis of various areas of computing shown in (Fig. 2), specifically semantic web
computing (SWC), service-oriented computing (SOC), space-based computing (SBC), multi-
agent computing (MAC), event-based computing (EBC), complex-event processing (CEP),
context-aware computing (CAC), rule-based computing (RBC), and process-aware
information systems (PAIS). These will be discussed below.

Semantic Web : ““Space-Based

= - Computing -~ Computing .;' o
‘Service-Oriented T Multi-Agent
_____(En_mputi_n_g____- . Computing _ :
Complex Event @ Context-Aware
_Processing _Computing -

E:ent*ﬁ:sed ™) “Rule-Based .
amputin e | i f
~OMPHNE Process-Aware ~_Computing_-

Information Systems_

Fig. 2. The CoSEEEK synergistic solution approach to SEE
Semantic web computing, with its formal structuring of information and machine-processable

semantics, has the potential to improve SE automation and information integration. One of
the issues facing SWC is the creation and adoption of standardized ontologies in OWL (Web

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 161

Ontology Language) (Horrocks et al., 2004) for the various industry domains to precisely
define the semantic meaning of the domain-specific concepts. The additional modeling
effort incurred by ontologies must result in savings elsewhere (Oberle, 2006). Coupled with
customized SEEs needs and the rapidly changing and specialized nature of many SE tools, a
transitional hybrid stage is proposed. CoSEEEK utilizes the advantages of the distributed
and heterogeneous support OWL provides, and relies on defining the semantic meaning of a
common subset of the key concepts necessary to adjust quality measures, project task
assignments, or workflows based on events within a shared agent-accessible context.
Service-oriented computing, with its reliance on Web Services (WS), provides platform-neutral
integration for arbitrary applications (Alonso et al., 2003). The advantages of WS for SE are
discussed in (Dinger et al., 2006). Some SE tools already support WS via SOAP or REST, and
this access to data and functionality produced or consumed by the SEE tools can be
leveraged, e.g., by agents, for enhanced collaboration and distributed data exchange across
heterogeneous services in a loosely-coupled fashion. All CoSEEEK inter-process
communication is via WS in support of [Req:Dist] and [Req:Heterog].

Space-based computing is a powerful paradigm for coordinating autonomous processes by
accessing tuples (an ordered set of typed fields) in a distributed shared memory (called a
tuple space) via messaging (Gelernter, 1985), thereby exhibiting linear scalability properties
by minimizing shared resources. Work on semantic enhancement of tuple spaces includes
sTuples (Khushraj et al., 2004), which extends the object-oriented JavaSpace implementation
(Freeman et al., 1999) with an object field of type DAML-OIL Individual. (Tolksdorf et al.,
2005) and (Tolksdorf et al., 2005a) describe work on Semantic Tuple Spaces. The Triple
Space Computing (TSC) project! aims to develop a communication and coordination
framework for the WSMX Semantic Web Service platform (Bussler et al., 2005) (Simperl,
2007). CoSEEEK leverages a non-SemWeb XML-based SBC to support a common shared
context accessible by loosely-coupled agents. This also supports [Req:Dist] [Req:Heterog] as
well as the hybrid SemWeb approach.

Multi-agent computing or Multi-Agent Systems (MAS) have been researched extensively? 3.
Agent-based event management approaches includes Sense, Think & Act (ST&A), which
exhibits function-driven, goal-driven (local goals), and collaborative goal-driven (global
goals) behaviors. Tool-specific agents are used to invoke tool functionality, retrieve data, or
provide event sources. In CoSEEEK, the agents are employed in the style of the blackboard
architecture pattern (Hayes-Roth, 1985); thus agents do not interact directly, resulting in
loose-coupling and functional flexibility. SBC is utilized and events are placed in spaces
where subscribing agents are notified of changes. This supports [Req:Encap] and [Req:Dist].
Event-based computing allows the flow of the software functionality to be determined by
events, supporting context-awareness with temporal data and allowing reactive and
proactive behaviors. Proactive in this sense is behavior that is preventative in regard to SE
problems, and may still be a response to some event and not necessarily self-triggered.
Complex event processing (Luckham, 2002) or event stream processing (ESP) is a concept to
deal with meaningful event detection and processing using pattern detection, event

Uhttp:/ /tsc.deri.at

2 The Journal of Autonomous Agents and Multiagent Systems, Publisher: Springer Science+Business Media
B.V.

3 Whitestein Series in Software Agent Technologies and Autonomic Computing, published by Springer
Science+Business Media Group

www.intechopen.com

162 Semantic Web

correlation, and other techniques to detect complex events from simpler events. With
CoSEEEK, once complex events are detected, workflow adjustments can be made in a PAIS,
and developers are informed about changes via Task Management.

Context-aware computing is concerned with the acquisition of context (e.g., using sensors to
perceive a situation), the abstraction and understanding of context (e.g., matching a
perceived sensory stimulus to a context), and application behavior based on the recognized
context (e.g., triggering actions based on context) (Schmidt, 2003). Event Condition Actions
(ECA) is enabled via a semantic reasoner. CoSEEEK utilizes CAC to support the
requirements [Req:AutoQM][Req:QMAdj][Req:AutoTask][Req:BlackBox].

In rule-based computing a collection of rules is applied to a collection of facts via pattern
matching using efficient algorithms such as Rete (Forgy, 1982). It may be advantageous with
regard to the transitional hybrid SemWeb support that non-context-specific rules (e.g.,
artifact quality rules) be maintained separately. CoSEEEK sees advantages to utilizing RBC
for such purposes, for example triggering quality events at certain thresholds. This also
reduces the ontology complexity.

Process-aware information systems separate process logic from application code while
avoiding data- or function- centricity. Workflow management systems (van der Aalst & van
Hee, 2002) can be viewed as an enabling PAIS technology, whereas a key feature of PAIS is
to support process change (Reichert & Dadam, 1997; Miiller et al., 2004; Pesic et al., 2007).
Since SE in a project setting is in view for this chapter, the uniqueness of each project and
the complexity will likely cause unforeseen changes to become necessary in a subset of SE
processes. The CoSEEEK approach utilizes PAIS to support the requirement for adaptable
SE processes [Req:TaskAdj].

The combination of these various computing paradigms enhances the ability of the
CoSEEEK approach to deal with various difficulties that arise in supporting context-aware
SEEs while fulfilling the requirements. The following discussion describes considerations
regarding the key aspects of event processing, the conceptual architecture, and the context
model.

4.1 Event Processing

Due to the very heterogeneous nature of SE tooling, today’s available tools are typically
built with an information island mentality, and at best integration into a widely-used IDE
(Integrated Development Environment) is considered, e.g., Eclipset. Given the lack of
standards and support for sourcing tool SE events, various techniques such as proxies, tool
agents, plugins, or wrappers may be used to generate such SE events.

As illustrated in Fig. 3, events from SE tooling are acquired and then stored in the common
space, where it may optionally be annotated with any relevant contextual information by
any agent after this point. Event processing mainly includes CEP to detect higher level
events. Agents with subscriptions to the space are notified if appropriate, and proactive and
reactive behaviors are supported. This may result in workflow adjustment, and the software
engineer is informed of a change in tasks or measures via task management. The responses
and actions by software engineers to task management via SE tools cause further event
acquisition, and so on.

4+ http:/ /eclipse.org

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 163

Event Event Contextual Event Workflow Task
Acquisition Storage Annotation Processing Adjustment Management

Fig. 3. Event flow

4.2 Solution Architecture

The conceptual view of the CoSEEEK solution architecture is shown in Fig. 4. Artifacts is a
placeholder for the artifacts that are produced or used in a software project. These are
accessed usually via tools directly or indirectly on a file system. SE Tools is a placeholder for
independent development and testing tools that are tied into CoSEEEK. Agents provides
behavior agents as well as management agents for each SE tool and CoSEEEK process for
application control and integration in the architecture. The Event Extraction consists
primarily of event sensors and data collection for SE tools. Data Storage provides event and
data storage in a loosely-coupled fashion via an XML Space implementation. This allows
CoSEEEK (e.g., the agents) to be reactive to event or data changes and still be loosely-
coupled, thus enabling integration without dependencies. Event Processing applies CEP and
any contextual annotation to events. Process Management is aware of and responsible for SE
process conformance of activities and supports adaptive task management. Context
Management contains a semantic reasoner that tracks and adapts the context as needed and
generates appropriate events to initiate behavior. The SemWWeb Integration module is OWL-
aware and is responsible for loading, storing, and synchronizing OWL between the space
and the Context Management module, e.g., using Jena or Protégé generated Data Access
Objects (DAOs).

[_

Fig. 4. Conceptual view of CoSEEEK architecture

L vy

4.3 Context Model

The context model developed for CoSEEEK will be described in conformance with the
context model analysis framework presented in (Bolchini et al., 2007) and is summarized in
Table 1.

www.intechopen.com

164

Semantic Web

Modeled aspects are the set of context dimensions managed by the model:

Space: no location-specific aspects were as yet necessary, but could easily be added
to handle geographically distributed projects.

Time: temporal aspects are managed, e.g., the timeframes allowed or available for
certain tasks or quality measures.

Absolute/relative space and time: Both absolute and relative time aspects are needed.
The absolute time is needed for logging and archival purposes as well as
supporting traceability. Relative time is used for determining the time available for
tasks or measures.

Context history: The context history is used as experience to adjust and improve
current and future relations between problems, risks, and preemptive and reactive
measures

Subject: the point of view of the context is both the user and the application.

User profile (Role or Features based): The profile of the user, e.g., their experience, is
considered explicitly in the context.

Representation features are the general characteristics of the model itself:

Type of formalism: Ontology-based

Formality level: OWL-Lite compatibility was achieved and results in the best
performance and computability characteristics.

Flexibility: the context is bound to the SE domain. However, an adaptation to new
SE concepts is supported

Variable context granularity: aspects deal with different abstraction levels, e.g.,
artifacts, activities, persons, and the project.

Valid context constraints: the number of admissible contexts is constrained, e.g., a
person executes an activity within a project

Context management and usage refers to the way the context is built, managed and exploited:

Context construction: the context description is built centrally at design-time, rather
than dynamic run-time agreement among partners.

Context reasoning: reasoning on context data is enabled by the model to infer
properties. Current usage is however rule-based, but inference of new facts is
foreseen for future usage.

Context quality monitoring: the quality of the retrieved context information is not
considered or managed.

Ambiguity/Incompleteness management: ambiguous, incoherent or incomplete context
information is not interpolated or mediated. Only valid data is accepted.

Automatic learning features: the model was designed to support this aspect, and
although it does not yet exhibit automatic learning features in the currently
supported use cases, this is desirable and will be developed in the future
Multi-context model: All contexts are represented in a single central model instance,
with the advantage that the reasoning has access to all the possible data.

In summary, the essence of the CoSEEEK approach is the conjointment of the computing
paradigms of Fig. 2. The event processing flow, the space-centric solution architecture, and

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments

165

the SEE-specific context model elaborate on how these can be combined in order to fulfill the

requirements for SEEs described in section 3.

Category Context

Space Future

Time Supported

Space/Time coordinates (Relative or|AR

Absolute)

Context history Supported

Subject (User or Application) Projects, Activities, Artifacts Employees,
Risks, Problems, Measures

User profile (Role or Features based) Supported

Variable context granularity Supported

Valid context constraints Supported

Type of formalism Ontology via OWL

Formality level OWL-Lite or OWL-DL

Flexibility Only within the domain

Context construction (Distributed or | Centralized

Centralized)

Context reasoning Future

Context quality monitoring -

Ambiguity /Incompleteness mgmt. -

Automatic learning features Future

Multi-context model

Table 1. CoSEEEK context model support

www.intechopen.com

166 Semantic Web

5. Solution Realization

The primary focus of the initial solution realization was sufficient technical validation of the
CoSEEEK approach.

5.1 Realization Requirements
For a realization of CoSEEEK, further requirements were elaborated and an extract thereof is
listed in simplified form:

e Utilization of OpenUP5 for SE processes in the PAIS. OpenUP is a lean Unified
Process that applies iterative and incremental approaches within a structured SE
lifecycle.

e Generate dynamic checklist items based, e.g., on code complexity and test coverage

e Assignment of quality measures:

o Effort (Low/Med/Hi) can be different conceptual instances with any
granularity (e.g., person hours, Low/Med/Hi, or based on a worker
formula) and can be made equivalent for a query.

o Assign an artifact review if quality rules triggered a quality event and the
risk is high. If time allows within the iteration, assign an inspection.

o Assign refactoring as needed

o Quality measures for the future (list of open measures)

¢ Remember problems and unfinished measures.

e Report “Top 10” problems periodically.

e Considers person availability

e Suggests proactive measures (for risks) and reactive measures (for problems)

e Developer receives notifications via emforge and mylyn, including checklists

e Web Service-based XML Space implementation with different collections for
events, context, and the ontology

Following are some key functional scenarios that incorporate a subset of the above context-
aware requirements. The Automatic Assignment Scenario Fig. 5 assigns a qualified worker
to a task based on their role, skill level, and current availability. SOC is supported for direct
assignment retrieval by a tool.

In the automatic quality measure scenario of Fig. 6, a new problem event is generated and
placed in the Space, e.g., by the Rules Processing Agent, whereby the Context Management
is notified due to its Space subscription and retrieves and processes the event. SemWeb
Integration is used to instantiate a new problem in the ontology. The semantic reasoner is
then invoked which has a rule that is triggered when a Problem exists with the status new in
the ontology. A countermeasure is chosen based on various criteria and the ontology in the
Space is synchronized via SemWeb Integration. Other subscribed agents are notified of an
ontology change and may then respond to the new measures, e.g., the rule agent.

5 http:/ /epf.eclipse.org/wikis/openup/

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software

Engineering Environments

167

1 role, skill level

Context We
Service

_—
-

b

6 gualified
employees
2 role,
skill level
Projectmanagement

5 qualified
employees

« System »

Context Layer

3 query(role, skill leve, freel)

4 qualified
empioyees

Cntology Layer
(DAO)

Fig. 5. Context-aware automatic assignment scenario [Req:AutoTask]

1 new event

B

VO

Semantic Aules

[l = Event
Processor e
Pririty
Problem riority i
2 problem event
r
Context 4 new problem
Layer -
5 propose measures
3 update & update
Ontology
Layer (DAD)

Service

Fig. 6. Context-aware automatic quality measure scenario [Req:AutoQM]

In the scenario of Fig. 7, a list of the top 10 problems may be retrieved via SOC, for display

by a tool.

4
get top 10
project problems

Context Web

-— Service

1
10 problems 2
1op 10 project 1
Projectmanagement problems!

« System »

5
0 problems

Context Layer

3 guery(probliems)

4
problems

Ontology Layer
(DAD)

Fig. 7. Context-aware top 10 problems [Req:Top10]

www.intechopen.com

168 Semantic Web

5.2 Implementation Architecture

The CoSEEEK Implementation Architecture is shown in Fig. 8. The Artifacts consist of source
code and test code. The SE Tools consisted of Eclipse as a representative for Integrated
Development Environments (IDEs), JUnité to represent SE test tools, Subversion? to
represent version control systems for artifacts, PMD8 and Metrics® for static analysis tools,
and EmForge!? and Mylyn!! for task management tools. Event Extraction utilized Hackystat
sensors (Johnson, 2007) for event extraction, an agent forwarding the events to the XML
Space implementation which uses eXist!2 as a storage backend. Event Processing utilized
Esper3 for CEP. As an agent platform, WADE (Workflows and Agents Development
Environment) was used (Caire et al., 2008). With regard to Process Management, ADEPT2
(Dadam et al., 2007) was utilized as PAIS technology. Rules Processing was performed by
Drools4. For Context Management and semantic reasoning, the Rete-based inference engine
Bossam (Jang & Sohn, 2004) was employed. It supports reasoning over OWL and SWRL
ontologies and RuleML rules. SemWWeb Integration for loading, storing, and synchronizing
OWL between the space and the Context Management module was achieved using Java-
based Data Access Objects (DAOs) generated using the Protégé ontology editor.

T Coovonone) ([omee)

Fig. 8. CoSEEEK implementation architecture

No suitable XML Space implementation was found, thus an XML Space was realized in
keeping with SOC using Apache CXF5 for SOAP-based WS and eXist as a backend. Since in
CoSEEEK SBC is used for storage, retrieval, and change notification of key shared data such
as events, context, and ontologies, its performance was evaluated in section 6.

¢ http:/ /junit.org

7 http:/ /subversion.tigris.org

8 http:/ / pmd.sourceforge.net

9 http:/ / metrics.sourceforge.net/

10 http:/ /www.emforge.org

1 http:/ /www.eclipse.org/mylyn/
12 http:/ / exist.sourceforge.net/

13 http:/ /esper.codehaus.org

14 http:/ /www jboss.org/drools/
15 http:/ / exf.apache.org/

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 169

5.3 Leveraging CAC and SWC

To achieve context-awareness, an analysis of common SE concepts was performed and then
incorporated into the ontology shown in Fig. 9. The modeling focused on high-value and
reusable SE concepts such as activities, problems, risks, and quality measures and practices.
Relations to artifacts are used, but artifact details are maintained outside of the ontology.
Tools are minimally modeled in their relation to events.

The concept of a Template was introduced for denoting prescribed relationships and
properties, e.g., by predefined processes such as OpenUP. A Template contains generic
metadata such as preconditions, postconditions, required artifacts, produced artifacts,
responsible roles, etc.

For example, an instance of the ActivityTemplate would have this specific metadata for
“Design the Solution” activity. Once this activity is actually started, an Activity class is
instantiated that is based on this ActivityTemplate (and remains after completion for
historical context). This allows a comparison of the actual activity state vs. the prescribed
state and allows common problems and risks associated with the activity to be tied to the
ActivityTemplate, while real problems are tied to the Activity instance.

Fig. 9. CoSEEEK implemented ontology

The SemWeb Integration and Context Management design components are shown in Fig.
10, while Fig. 11 shows the dynamic interactions for an activity event with ontology
synchronization and context processing.

AT L —r

= Evani f | I Conteid el Servicn |

v

| DOnirriogy Layer ([DAD) |

ML Space

Fig. 10. SemWeb Integration and Context Management

www.intechopen.com

170 Semantic Web

iy
St 3
. [N

Fig. 11. Activity event ontology update and context processing

Events necessary to support the prescribed level of context-awareness had the following
contextual relevance:

Activity Begin and End events:

e Logging

e Relevant for task assignment

e Provides the current context for a person and the project
Artifact Begin and End events:

e Logging

e Relevant for task assignment

e Provides the current context for a person and the project
New Problem event:

e Logging

e Triggers the automatic suggestion of quality measures

e Relevant for the Top 10 problems
Completed Measure event:

e Logging

e Relevant for the Top 10 problems

An example of a semantic reasoner rule in Bossam is shown in Listing 1. This rule ensures
that a quality measure is assigned when a new problem is detected.

reasoner.tell ("rule ruleMeasuresForNewProblems is"

+ " if Problem(?p) and sem:class (?0)"

+ " and hasProblemStatus (?p, ?status) and
[?status=problemStatus New]"

+ " and hasProblem(?thing, ?p)"

+ " then sem:assignMeasureForNewProblem(?0, ?p, 2thing)");
Listing 1. Example context-based quality measure assignment rule

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 171

5.4 Leveraging rule-based computing

The rules engine Drools was used to address areas where semantic-agnostic rules excel, e.g.,
to assess the quality of artifacts or to generate dynamic checklists. The rules engine does not
have direct access to Context Management, but rather to non-SWC context that is available
to all agents in the XML Space. This separation of responsibilities allows context-centric
processing not to be burdened with tool-specific and lower-level quality processing
functionality, and thus permit the focus on ontology-centric higher-level intricate context
and relation-centric support via SWC. This is the essence of the hybrid SWC approach in
CoSEEEK, leveraging SWC technologies for common and high-value SE areas as seen in the
ontology of Fig. 9. Benefits include lower maintenance and training costs compared to
comprehensive SWC.

For the realization, events generated by Hackystat sensors due to invocation of the PMD
and Metrics tools causes the rule agent to take the output of the tools in XML form and
transform them via XSLT into an intermediate simplified XML form for parsing by the rule
engine. Any negative results cause the artifact context in the space to be adjusted with the
actual quality problems, see Fig. 13 for an example.

= Ceomtent atepay="Aotfact” i="artfact T type="Code™>
- Srecipienis>
recipient emadl="tos banfig com” langmages"en'i»
“yeripaent winal="Tlubk I-z.‘.g'-x:,' cem” language="4e" >
<fhrecipients>
= g evalnmion®
<k bevel="medram >
= L P AN PSS
<-Ie ami e meaTEre="meange T emplae Rewew” stame="proposed’f>
Sl ime Avim s>
= eg-rhecklisn>
-t e lddind. ean naame="EFC
g checkling e names"(N
2ag-elopcdclinn-itwin name="C T >
<l hec kel
Cievtmglierded level="TLow" >

<ae =350 upe
“g-evaliabon®
<leantenn=

Fig. 13. Artifact context

The rules primarily determine quality problems, and during checklist generation a map of
quality problems to checklist items is referenced with a set of locale-specific checklist items
serving as a basis for the natural language checklist items. Quality measures assigned by
Context Management are also incorporated when these are not already addressed by task
assignment, e.g., assigning refactoring and testing tasks. A dynamic customized checklist is
generated in XHTML and a link sent to the software engineer as a task via emforge in order
to address the quality issues, see Fig. 14. When the engineer processes the checklist, the XML
is archived in a collection in the XML Space.

Nesting too high r

You've got unused mmports -

Submit |

Fig. 14. Dynamically generated XHTML checklist screenshot

www.intechopen.com

172

The choice of checklist items is dynamically generated, temporally context-dependent and
containing items deemed applicable. The software engineer is thus not bothered by
irrelevant checklist issues, and as such perceives the SEE as context-aware in regard to
quality management behavior [Req: AutoQM][Req:BlackBox].

5.5 Leveraging Process-Awareness

For SEE process support, OpenUP processes were mapped to ADEPT2 process templates as

illustrated in the figure below.

Jﬂl‘du:ﬂ:hﬂnmg !

e — - o=
e b " o
li SR Teit esad ;/
I-Et-‘r:hl‘kf
{E_
Fig. 15. Start Task Template
‘:ADEPTZI |:Ta5kRunnEl I |:SgaceTaskEndL|slenerI ‘ -SpaceQbserverManager I ‘ ‘Space I

€L

iy

runTask()

| \
| \
| \
startTask(|
\

SpaceTaskEndListener() |

!

nofify()

_

1 register()
T
\
suspend() |
- \
\
|
for eaEh matching listener]
‘ notify()

unregister()

resume()

I
T |
Fig. 16. Task Management Sequence

www.intechopen.com

Semantic Web

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 173

The ADEPT2 process templates required an integration mechanism to place new tasks
events in the Space for retrieval and processing by the EmForge task management agent,
and then wait for their notification of task completion. A component TaskRunner was
developed that provides two methods: runTask which starts a new task and waits for the
end event in the Space, and the method stopTask which removes an open task. A sequence
diagram for runTask is shown in the figure below.

The software engineer perceives changes in the IDE, in this case Mylyn displays the emforge
task list as shown below. Any changes to the tasks or usage of tools by the software engineer
generate events that adjust the context and possibly process and may result in task
adjustments. Since CoSEEEK is aware of all open tasks, and to allow for assignment
flexibility and maintain focus, the software engineer typically sees only the current task and
optionally next one (to allow for mental preparation and reduce surprises).

& .ﬂ.nt|r|§| TR, lﬁ!Tagk]E'j Syrrc] =)
= d‘g I:E' 1|I_| .i _‘1 v

Flnd.'l P Al ¥ Activate...

[2:,'-_«@ Uncategorized
=l [y MyTasks [Local EmForge]
2% 4: Implement Developer Test

[::E; Unmatched [Local EmFarge]
Fig. 17. Mylyn Task List showing OpenUP task via emforge

6. Results

The preliminary results for this research focused on the viability of the CoSEEEK approach,
with the realization meeting its functional scenario goals, general requirements, and detailed
realization requirements. As to any performance and scalability limitations, the performance
evaluation principally has SWC and CAC limitations in view. Due to the centricity and
dependency on the new SBC implementation, sufficient performance in this area was also
verified.

6.1 SBC Performance

For measuring the SBC performance of the CoSEEEK XML Space implementation, the
configuration consisted of 10 AMD Opteron 180 Dual Core 2,4 GHz 3GB PCs running
Windows XP Pro SP2, Java JDK 1.6.0_06, and Apache CXF 02.01.03 on a 100MBit/s Ethernet
network. 1 PC was configured as the Space server with eXist 1.2.5-rev8668 as a backend. For
the read or write operations, up to 8 PCs (each with a client) were used as space clients all
performing the same operation. For notifications, 1 PC wrote 1000 events in the space and
up to 8 clients received notifications. The measurements were repeated 3 times and the
averages presented in the following tables.

www.intechopen.com

174

Semantic Web

Clients | Write time (ms) | % increase | Notification time (ms) | % increase
1 14.0 - 14.7 -
2 14.1 0% 14.4 -2%
4 15.0 7% 15.0 4%
8 17.0 13% 17.0 13%

Table 2. Average notification performance for 1000 events

Clients | Write time (ms) | % increase
1 13.9 -
2 16.3 18%
4 23.0 41%
8 61.7 168%

Table 3. Average write performance for 1000 events

Clients | Read time (ms) | % increase
1 10.7 -
2 9.5 -11%
4 124 31%
8 41.8 237%

Table 4. Average read performance for 1000 events

Table 2 shows that notification performance was not significantly affected by an increase in
peers, and the scalability is sufficient for SEE purposes. The results for writing into the space
in Table 3 show the bottleneck effect of the chosen data consistency limitation of allowing
only sequential writes. Since the space is used primarily as a blackboard coordination
mechanism, such heavy parallel writing by multiple agents is not expected. Table 4 shows
the read performance, but again due to the chosen data consistency mechanism, the reads

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 175

are synchronized to wait until the write completes, and vice versa. If this becomes a serious
bottleneck in industrial settings, various optimizations are possible.

6.2 SWC and CAC Performance

For measuring the semantic reasoner performance and scalability, the test configuration
consisted of an Intel Core 2 Duo 2,0 GHz PC running Mac OS X 10.5.6, 2 GB RAM, Java JRE
1.5.0, Bossam 0.9b45, and Protégé 3.3.1. The averages from 3 measurements are shown in the
following tables.

resultPossibleEmployee = reasoner.ask("query g is Person (?employee)"
+ " and available (?employee, 1)"

+ " and hasAbility(?employee, " + role + ")"

+ " and hasSkillLevel (?employee," + skillLevel + ");");

Listing 2. Example context-based task assignment rule

Factor
Person instances | Time (ms) | increase in
time
10 60 -
100 83 1.4
1000 274 3.3
10000 7397 27.0

Table 5. Query performance vs. person instances

resultArtifact=reasoner.ask("query g is Artifact (?artifact)"
+ " and basedOnArtifactTemplate (?artifact, ?template);");
Listing 3. Artifact rule

Artifact | Time | . Factor . Factor '
instances | (ms) increase increase in
in time artifacts
10 55 _
100 62 1.1 10
1000 | 137 22 10
10000 1578 115 10
20000 | 3936 25
40000 | 10793 27

Table 6. Query performance vs. artifact instances

In the person query, the effect of the multiple conditions shows a larger impact to the
performance than for the artifact query for the cases of 100 and 1000 instances. Since overall
time was measured, in both cases the jump from 1000 to 10000 instances caused the time to
jump from the millisecond range to seconds, at which point operating system multitasking
and scheduling may play a more significant factor and account for the anomaly in the factor

www.intechopen.com

176 Semantic Web

increases in time. The 20000 and 40000 artifact instance measurements show that this
remains consistent thereafter for larger sets.

Since the current usage of the reasoner and context-awareness is supportive and requires no
hard real-time user or system response latencies, these results show that current usage of
such an approach for typical SE project sizes with typical SE IT hardware is feasible.

7. Conclusion

To deal with the current and coming challenges facing SE, new approaches for SEEs are
needed that coalesce the heterogeneous and distributed tool data and events that occur,
contextualize them, and then proact or react to provide software engineers with a cohesive
and improved SEEs. While semantic web computing is an obvious candidate, due to the
uniqueness of each project context, the advantages of must be weighed against some of the
difficulties and the investments required, and a pragmatic hybrid approach may be
reasonable in the interim.

The CoSEEEK approach, with its synthesis of various computing paradigms, provides
advantages for addressing this situation. The semantic meanings of a common subset of the
key concepts are used to adjust quality measures, project task assignments, or workflows
based on events within a shared agent-accessible context. Combined with a semantic
reasoner, context-aware proactive and reactive behaviors that can improve the effectiveness
and efficiency of SEEs are exhibited. The reduced ontology focus avoids the perhaps
unjustifiable time and resource investments in SWC that a comprehensive integration would
require for the tool, artifact, and data models in an SEE along with their continuous changes,
while leveraging the visible benefits in responsiveness of the SEE. Context-aware behavior is
perceived by humans via task assignments and dynamically generated checklists.

The event processing flow coupled with the solution architecture provides flexibility and
loose-coupling in the processing of events. The current CoSEEEK ontology and context
model supported the SE scenarios, and additional ontologies can be incorporated for
expanded reasoning if desired. As a side note, by utilizing EDA, RBC, and PAIS, no
sequential process logic was needed to support the scenarios, which furthers flexibility and
potential reuse and is a key for the adaptability of the infrastructure in ever-changing SEEs.
The results validated the current technical feasibility and potential benefits that the
CoSEEEK approach can bring to SEEs. Future work includes planned empirical studies of
CoSEEEK in SE industrial settings.

8. Acknowledgements

The author thanks Tobias Gaisbauer, Michael Vogeli, and Daniel Sebel for their assistance
with the experiments, implementation, and figures.

9. References

Adams, M.; ter Hofstede, A.H. M.; Edmond, D. & van der Aalst, W. M. P. (2006). Worklets:
A Service-Oriented Implementation of Dynamic Flexibility in Workflows, In:
Lecture Notes in Computer Science, Vol. 4275, Springer Berlin / Heidelberg, ISSN
0302-9743

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 177

Adi, A.; Borzer, D. & Etzion, O. (2000). Semantic Event Model and its Implication on
Situation Detection. In Proceedings of the Eighth European Conference on Information
Systems (Hansen HR, Bichler M, Mahrer H eds.), Vienna, pp. 320-325

Alonso, G.; Casati, F.; Kuno, H. & Machiraju, V. (2003). Web Services - Concepts, Architectures
and Applications, Springer Verlag, Berlin

Arbaoui, S.; Derniame, J.; Oquendo, F. & Verjus, H (2002). A Comparative Review of
Process-Centered Software Engineering Environments, In: Annals of Software
Engineering, Vol. 14, Issue 1-4 (December 2002), J. C. Baltzer AG, Science Publishers
Red Bank, NJ, USA, ISSN:1022-7091

Bardram, J. (2005). The Java Context Awareness Framework (JCAF) - A Service
Infrastructure and Programming Framework for Context-Aware Applications, in
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Vol. 3468/2005,
ISBN 978-3-540-26008-0

Berners-Lee, T.; Hendler, J. & Lassila, O. (2001). The Semantic Web, Scientific American, May
2001, pp. 28-37

Bolchini, C.; Curino, C. A.; Quintarelli, E.; Schreiber, F. A. & Tanca, L. (2007). A data-
oriented survey of context models. SIGMOD Rec. 36, 4 (Dec. 2007), pp. 19-26

Bontcheva, K. & Sabou, M. (2006). Learning Ontologies from Software Artifacts: Exploring
and Combining Multiple Sources, In: Proceedings of 2nd International Workshop on
Semantic Web Enabled Software Engineering (SWESE 2006)

Bussler, C.; Kilgarriff, E.; Krummenacher, R.; Martin-Recuerda, F.; Toma, I. & and Sapkota,
B. (2005). WSMX Triple-Space Computing, http://wsmo.org/TR/d21/v0.1, June
2005, D21 v0.1

Caire, G.; Gotta, D. & Banzi, M. (2008). WADE: a software platform to develop mission
critical applications exploiting agents and workflows. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems: Industrial
Track, pp. 29-36.

Calero, C.; Ruiz, F. & Piattini, M. (Eds.) (2006). Ontologies for Software Engineering and
Software Technology, ISBN: 978-3-540-34517-6

Christopoulou, E.; Goumopoulos, C. & Kameas, A. (2005). An ontology-based context
management and reasoning process for UbiComp applications, In: Proceedings of the
2005 Joint Conference on Smart Objects and Ambient intelligence: innovative Context-
Aware Services: Usages and Technologies (Grenoble, France, October 12 - 14, 2005).
sOc-EUSALI '05, vol. 121. ACM, New York, NY, pp. 265-270

Dadam, P.; Reichert, M.; Rinderle, S.; Jurisch, M.; Acker, H.; Goser, K.; Kreher, U. & Lauer,
M. (2007). ADEPT2 - Next Generation Process Management Technology.
Heidelberger Innovationsforum, Heidelberg, April 2007

Dey, A. & Abowd, G. (2000). The Context Toolkit: Aiding the Development of Context-
Aware Applications, in Proceedings of the Workshop on Software Engineering for
Wearable and Pervasive Computing, Limerick, Ireland

Dinger, U.; Oberhauser, R. & Reichel, C. (2006). SWS-ASE: Leveraging Web Service-based
Software Engineering, In: Proceedings of the International Conference on Software
Engineering Advances (ICSEA’06), IEEE Computer Society Press.

Ferscha, A.; Hechinger, M.; Mayrhofer, R.; dos Santos Rocha, M.; Franz, M.; and Oberhauser,
R. (2004). Digital Aura, In: Advances in Pervasive Computing, Vol. 176, Austrian
Computer Society (OCG), pp. 405-410

www.intechopen.com

178 Semantic Web

Forgy, C. (1982). "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem", Artificial Intelligence, 19, pp 17-37, 1982.

Gelernter, D. (1985). Generative communication in Linda, ACM Transactions on Programming
Languages and Systems, volume 7, number 1, January 1985, pp. 80-112

Gruhn, V. (2002). Process-Centered Software Engineering Environments, A Brief History
and Future Challenges, In: Annals of Software Engineering, Springer Netherlands,
Vol. 14, Numbers 1-4 / (December 2002), J. C. Baltzer AG, Science Publishers Red
Bank, NJ, USA. ISSN:1022-7091, pp. 363-382

Happel, H. & Seedorf, S. (2006). Applications of Ontologies in Software Engineering, In:
Proceedings of the Workshop on Semantic Web Enabled Software Engineering (SWESE) at
the 5th International Semantic Web Conference (ISWC 2006)

Hayes-Roth, B. (1985). A blackboard architecture for control, Artificial Intelligence, Volume
26, Issue 3 (July 1985), pp. 251-321.

Henderson-Sellers, B. (2002). Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF), In: Annals of Software Engineering, Vol.
14, Issue 1-4, (December 2002), ISSN:1022-7091, pp. 341-362

Horrocks, I.; Patel-Schneider, P.; McGuinness, D. & Welty, C. (2007). OWL: a Description
Logic Based Ontology Language for the Semantic Web. In: The Description Logic
Handbook: Theory, Implementation, and Applications (2nd Edition), chapter 14.
Cambridge University Press

Jang, M. & Sohn,]J. (2004). Bossam: an extended rule engine for OWL Inferencing,
Proceedings of RuleML 2004 (LNCS Vol. 3323), Nov. 8, 2004

Johnson, P. (2007). Requirement and Design Trade-offs in Hackystat: An in-process software
engineering measurement and analysis system, Proceedings of the 2007 International
Symposium on Empirical Software Engineering and Measurement, Madrid, Spain,
September, 2007.

Khushraj, D.; Lassila, O. & Finin, T. (2004). sTuples: Semantic Tuple Spaces, In: Proceedings
of the First Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous'04), pp. 268-277

Koenig, S. (2003). Integrated Process and Knowledge Management for Product Definition,
Development and Delivery, In: Proceedings of the IEEE International Conference on
Software-Science, Technology & Engineering (SWSTE), pp.133

Koenig, Shai (2003). "Integrated Process and Knowledge Management for Product
Definition, Development and Delivery," swste, pp. 133, IEEE International Conference
on Software-Science, Technology & Engineering

Luckham, D. (2002). The Power of Events - An Introduction to Complex Event Processing in
Distributed Enterprise Systems, Addison-Wesley, ISBN 0-201-72789-7

Miiller, R.; Greiner, U. & Rahm, E. (2004). AgentWork: A workflow system supporting rule-
based workflow adaptation. Data and Knowledge Engineering, 51 (2), pp. 223-256

Oberhauser, R. & Schmidt, R. (2007). Towards a Holistic Integration of Software Lifecycle
Processes using the Semantic Web, In: Proceedings of the 2nd International Conference
on Software and Data Technologies (ICSOFT 2007), Vol. 3 - Information Systems and
Data Management, 2007, pp. 137-144

Oberle, D. (2006). Semantic Management of Middleware, The Semantic Web and Beyond, Vol. 1,
Springer, New York, ISBN 0387276300

www.intechopen.com

Leveraging Semantic Web Computing for Context-Aware Software Engineering Environments 179

Pesic, M.; Schonenberg, M.; Sidorova, N. & van der Aalst, W. (2007). Constraint-based
workflow models: change made easy. In: Proceedings of the 15th Int'l Conf. on
Cooperative Information Systems (CooplS'07), Vilamoura, Algarve, Portugal, LNCS
4803, pp. 77-94

Reichert, M. & Dadam, P. (1997). A framework for dynamic changes in workflow
management systems. In: Proc. 8th Int’l Workshop on Database and Expert Systems
Applications, Toulouse, pp. 42-48.

Schmidt, A. (2003). Ubiquitous Computing - Computing in Context, PhD dissertation,
Lancaster University, U.K.

Simperl, E.; Krummenacher, R. & Nixon, L. (2007). A coordination model for triplespace
computing, Proceedings of the 9th International Conference on Coordination Models and
Languages (Coordination), Springer Verlag, June 2007

Tolksdorf, R.; Bontas, E. P. & Nixon, L. J. (2005). Towards a Tuplespace-Based Middleware
for the Semantic Web, Proceedings of the 2005 IEEE/WIC/ACM international Conference
on Web intelligence, (September 19 - 22, 2005). Web Intelligence. IEEE Computer
Society, Washington, DC, pp. 338-344

Tolksdorf, R.; Nixon, L.; Bontas, E. P.; Nguyen, D. M. & Liebsch, F. (2005a). Enabling real
world Semantic Web applications through a coordination middleware, Proceedings
of the 2nd European Semantic Web Conf. ESWC'05, 2005

Van der Aalst, W. & van Hee, K. (2002). Workflow management: models, methods, and
systems, MIT Press.

www.intechopen.com

180 Semantic Web

www.intechopen.com

Semantic Web
Semantic Web

B Edited by Gang Wu

ISBN 978-953-7619-54-1

Hard cover, 310 pages

Publisher InTech

Published online 01, January, 2010
Published in print edition January, 2010

Having lived with the World Wide Web for twenty years, surfing the Web becomes a way of our life that cannot
be separated. From latest news, photo sharing, social activities, to research collaborations and even
commercial activities and government affairs, almost all kinds of information are available and processible via
the Web. While people are appreciating the great invention, the father of the Web, Sir Tim Berners-Lee, has
started the plan for the next generation of the Web, the Semantic Web. Unlike the Web that was originally
designed for reading, the Semantic Web aims at a more intelligent Web severing machines as well as people.
The idea behind it is simple: machines can automatically process or “understand” the information, if explicit
meanings are given to it. In this way, it facilitates sharing and reuse of data across applications, enterprises,
and communities. According to the organisation of the book, the intended readers may come from two
groups, i.e. those whose interests include Semantic Web and want to catch on the state-of-the-art research
progress in this field; and those who urgently need or just intend to seek help from the Semantic Web. In this
sense, readers are not limited to the computer science. Everyone is welcome to find their possible intersection
of the Semantic Web.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Roy Oberhauser (2010). Leveraging Semantic Web Computing for Context-Aware Software Engineering
Environments, Semantic Web, Gang Wu (Ed.), ISBN: 978-953-7619-54-1, InTech, Available from:
http://www.intechopen.com/books/semantic-web/leveraging-semantic-web-computing-for-context-aware-
software-engineering-environments

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE e ERARKSS DEEFRSREHARIRIE M AK4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

