
An Object-Oriented Invocation Layer
for the Java Message Service

Klaus Jank1, Roy Oberhauser1

1Siemens AG, CT SE 2, Otto-Hahn-Ring 6,
81730 Munich, Germany

{klaus.jank, roy.oberhauser}@siemens.com

Abstract. New applications and software environments are increasingly
distributed across a large or even unpredictable number of networked
computing devices, require mobile and ad-hoc networking capabilities, and
must integrate with more systems, all of which create greater demands on the
middleware used to realize these systems. On the Java platform, RMI is a well-
established paradigm, yet deficiencies become evident in particular with regard
to scalability and remote invocation completability - which is the assurance that
invocations are executed according to client and service expectations regardless
of the state of the participants or the communication network. While the Java
Message Service (JMS) addresses these deficiencies, it lacks the simplicity,
explicit contracts, clear coupling, and strong typing of an object-oriented
invocation paradigm. This paper will describe our Java Invocation Layer for
Messaging (JILM), a(n) (a)synchronous invocation layer to support object-
oriented invocations while leveraging the unique distribution and QoS
properties that JMS provides.

1 Introduction

Distributed Java computing applications have often relied on RMI or RMI-IIOP [21]
(referred to as RMI in this paper) because of its object-oriented paradigm, simplicity,
and wide availability. However, changing environments and demands, such as a
larger and often unpredictable number of networked computing devices (e.g., internet,
embedded, and pervasive computing), greater mobility and ad-hoc networking (e.g.,
P2P, wireless), and increasing inter-system integration (e.g., intranets, B2B) cause
RMI’s deficiencies to become apparent, in particular scalability and remote
invocation completability.

Scalability challenges occur when addressing an unpredictable number of
participants or long duration invocations due to RMI’s synchronous invocation model.
The advantages of asynchronicity for scalability have been investigated, e.g. for
CORBA in [1]. However, there are situations where it is desirable to be able to choose
the appropriate mechanism in an invocation: asynchronous invocations – to fulfill
scalability requirements, or synchronous invocations – to address programming
complexity or to perform short duration invocations. Thus support for both invocation
models is desirable.

Moreover, if a client makes an asynchronous invocation, this should not require the
service to have to support the additional complexity of asynchronicity. But as system
integration increases, more services rely on and utilize other services (i.e. service
chaining), where the asynchronous invocation model may be preferable1 for the
service, such as has been argued for middle-tier servers in Eckerson [5] and
Deshpande [4]. Consequently, the client and service invocation models should be
decoupled, supporting independent client and service usage.

With regard to remote invocation completability in our scenarios, the following
invocation properties, missing in RMI, become important: Time-Independent
Invocations (TIIs), Location-Independent Invocations (LIIs), group invocations, batch
invocations, interim or partial results, and Quality-of-Service (QoS). These will be
described below.

Since the simultaneous availability of invocation participants cannot always be
guaranteed, TIIs are desirable to allow the separate parts of the invocations to be
stored and forwarded when each participant becomes independently available. This
decouples the client and server lifetimes. The CORBA Specification [16] includes
support for TIIs.

RMI invocations rely on object references which can change in dynamic systems,
causing destination-specific, point-to-point invocations to fail. Similarly, the issue
with Inter-Operable References (IORs) is known for CORBA invocations [6], being
addressed with Inter-Operable Group References (IOGRs) in Fault Tolerant CORBA
[16]. LIIs support the completability of invocations to other available and compatible
invocation targets.

Group invocations, as used in this paper, refer to the ability to have a set of
services receive the same invocation. Whereas group messaging has been used to
distribute events, they often lack the desired distributed-object abstraction, cp.
JavaGroups [7]. And while the concept of group invocations is common in parallel
programming, e.g. Group Method Invocation [12], our motivation is not parallelism
for performance per se, but rather the assurance that the entire group eventually
receives the invocation, e.g. to change the configuration parameters or distribute data.
Group invocations enhance completability while supporting the simplicity of object-
orientation, e.g. in unreliable networking environments and in cases when the client
cannot know which objects must receive the invocation.

Batch invocations support the grouping of multiple related invocations. With
regard to completability, the entire group of related requests is viewed as a single
entity, thus providing consistency for the invocation participants that either all or none
are sent. This is advantageous, for example, in TII scenarios when connectivity cannot
be guaranteed.

Partial or interim results may be desirable in such systems when long-duration
invocations or large transfers are involved. For example, interim updates to the status
of a request could be provided at critical transition points (e.g., “request being
processed,” “request completed,” etc.). Partial results could include large amounts of

1 In order to improve scalability, concurrency or asynchronous models can be used. However,

concurrency models often lead to increased overhead such as thread management, context
switching, dynamic memory allocation, and synchronization [20]. Asynchronous models -
where the executing thread runs on a different CPU than the invocation thread, are preferable
in scenarios where blocking may occur, such as service chaining.

chunked detector or measurement values. Partial results enhance completability (with
regard to expected behavior) by supporting “best effort,” while interim results provide
the ability for clients to know what is occurring with their longer-duration request.

QoS provides the capability of specifying different quality levels for invocation
delivery to support deterministic behavior, as in durability (e.g., surviving reboots),
ordering (e.g., commit after set), prioritization (e.g., abort might have higher priority),
reliability (e.g., retries) and deterministic semantics (e.g., exactly once). JMS [22] and
CORBA AMI support similar types of properties.

While the use of messaging such as JMS instead of RMI would support the desired
asynchronicity for scalability and remote communication completability, the use of
messages increases programming complexity due to its lower abstraction level. The
lack of an object-oriented invocation model results in implicit contracts, implicit
coupling, and weak typing. This can make JMS-based systems more difficult to
program and maintain correctly.

Hence, neither RMI nor JMS alone satisfies the desired properties in our context.
However, the choice of a communication provider for an application in the scenarios
we discussed is often critical and involves many factors. In order to further
adoptability, the solution should leverage middleware capabilities already commonly
available and support provider exchangeability.

Thus there exists a need for an invocation middleware that provides the simplicity
and strong typing of an object-oriented paradigm while supporting the following
properties:

• scalability of asynchronous invocations,
• Time-Independent Invocations (TIIs),
• Location-Independent Invocations (LIIs),
• group invocations,
• batch invocations,
• interim or partial results,
• QoS,
• client-service invocation model decoupling,
• communication provider exchangeability.

We have designed JILM as a solution to provide these properties. We will begin
with a description of our general solution approach followed by a detailed solution.
We will then evaluate JILM and compare it with other middleware and related work.

2 General Solution Approach

Our solution approach consists of the following participants (see Fig.1):

ServerClient

Service
Proxy

Invocation

Result(s)

JMS

In
vo

ca
tio

n
La

ye
r

Service

In
vo

ca
tio

n
La

ye
r

Fig. 1. General solution approach

JMS. JMS is used to transport the call, providing asynchronous communication and
making the desired QoS properties available to services, including priority, filtering,
call expiration time, call persistence, durability, etc. To support TII, the calls are
queued by JMS until the intended peer becomes available to receive and process the
calls. Similarly, queuing supports LIIs since any message consumer may process the
call and the client is unaware of the service’s true location or reference. Group
invocations are supported by placing the calls in a topic (publish-subscribe), where
multiple services retrieve the identical call. Batch invocations are supported by
combining messages into a transacted session.

Invocation Layer. The object-oriented invocation layer addresses JMS deficiencies
and supports decoupled client and server invocation models.

On the client, the method invocation is translated into a message that includes the
service identifier, the method name, and parameters. On the server, the invocation
layer retrieves the message and invokes the call on the appropriate service instance.

The following client invocation models are supported:

• Synchronous. Blocks the client thread until the response is received,
• Asynchronous. After the call is placed in a message, control is returned to the

client thread while the response is received in a separate thread,
• Asynchronous with multiple responses. Multiple responses for the same

invocation are returned in a separate thread to support interim or partial
results,

• Futures. Creates a non-blocking call whereby the same client thread context
is retained to retrieve the response. Via polling, the client can check if results
are ready or block until ready.

The supported client invocation models are declared in the service proxy
interfaces, which include the supported synchronous and or asynchronous method
declarations. To be able to clearly distinguish a synchronous from an asynchronous
invocation, separate interfaces can be used, and methods that provide an
asynchronous invocation model must define a response handler as the first input
parameter. Asynchronous responses are provided in the client when the invocation
layer invokes the response handler.

The following server-side service invocation models are supported:

• Synchronous. Simplifies service programming and provides better
performance for short duration calls, since it retains the thread context,

• Asynchronous. Enables pooling and reuse of threads that would otherwise
wait, which can enhance server scalability in certain scenarios where service
chaining or network calls are involved,

• Asynchronous with multiple responses. Multiple responses, such as partial
results, may be returned before the final response.

The supported service invocation model(s) are defined by the service
implementation, not the proxy. Thus a service may implement only a synchronous
method, but may offer the client both synchronous and asynchronous method
declarations. This decoupling of client and service invocation models can simplify the
service implementation while providing flexibility for the client. Reflection, dynamic
method signature mapping, and a preference strategy are used to decide which service
implementation method corresponds to a client call.

Partial results are supported by associating multiple response messages with a
single call context.

Service. The service provides functionality independent of the middleware used to
invoke it. The service implementation defines the supported service invocation model
for each method. During the registration of a service, the invocation layer uses
reflection to dynamically determine the implemented method signatures in order to
use the appropriate invocation model to invoke a method.

Proxy. The Proxy pattern [3] is used to represent the service on the clients. Since the
mechanism for propagating a call is independent of the actual interface or method
name, a java.lang.reflect.DynamicProxy is utilized, which supports different service
interfaces with a common service proxy implementation of the client invocation layer
described above. For each service, synchronous and/or asynchronous interfaces are
provided (or a variant of one interface that provides both synchronous and
asynchronous methods), allowing the client to choose the invocation model it wishes
to use (per interface or per method).

Since the service configures the JMS-related QoS properties of the service proxy
instance, by distributing the proxy, e.g. via Jini’s Lookup Service [23] or JNDI [21],
services can specify and control the QoS - which was not possible with pure JMS.

3 Detailed Solution

The design of JILM will be illustrated via client (Fig. 2) and server (Fig. 3)
collaborations.

Client Invocation Layer Initialization. The client uses a lookup mechanism to
retrieve a service proxy with the desired interface(s). The service proxy contains a
Forwarder instance (ref. Forwarder-Receiver pattern [3]) that encapsulates a
JMSConnectionFactory and the JMS properties to be used. It creates a connection and
registers itself as a JMS message producer.

To receive the results of a method invocation, the Forwarder also creates a
Receiver which creates a temporary destination for responses. A temporary
destination exists as long as the JMS connection exists. The identifier of the response
destination is sent via the JMSReplyTo header property of a JMS message.

For time-independent responses, the Receiver within the service proxy
transparently makes a durable subscription to an alternative response topic. In order to
receive only the client’s response messages, a JMS message selector with a permanent
client identifier is registered. This approach is also used to store responses when a
JMS connection has been lost.

 Client
JMSService Proxy (Dynamic Proxy)

Forwarder

response
topic

response
queue

ACT Table

Receiver

Proxy Pattern

ACT
Invocation
Handler

2. store ACT

3. forward Call

result
ACT

4. deliver
message

5. receive
message

6. remove ACT

Client
Threads 1. invoke

Callback
Threads

7. callback

request
queue

Fig. 2. Client invocation layer

Client-Side Invocation Collaborations. Fig. 2 illustrates the dynamic collaborations
among participants in the client.

For an asynchronous invocation, the client explicitly creates and passes an
Asynchronous Completion Token (ACT) [20], realized as a ResponseHandler, with
an invocation (1). The Invocation Handler of the service proxy stores the ACT in the
ACT Table (2) of outstanding requests and passes the call to the Forwarder (3). The
Forwarder marshals the call arguments (service identifier, method identifier, and
method arguments) and the ACT in a JMS message and delivers it asynchronously
(4). The identifier of the response destination is sent via the JMSReplyTo header
property of a JMS message, at which point control is returned to the client invoker.

With a synchronous invocation, the ACT is created internally by the service proxy
and the thread is blocked until the response containing the desired ACT is returned.

When the response containing the ACT and the final result is returned (5), the
Receiver demarshals the JMS message and removes the original ACT from the ACT
Table (6). Then a callback thread notifies the client asynchronously about the result
by utilizing the ResponseHandler’s callback method (7).

To indicate interest in multiple responses, the client supplies a special ACT,
realized as a MultiResponseHandler type, which is not removed until a message with
a completion flag is received.

For futures, the client provides a special ACT, realized as a
FutureResponseHandler type, where the result is stored until retrieved by the client
thread.

Server
JMS

request
queue

response
topic

response
queue

Receiver
1. receive

ACT Table

ACT
7. invoke

6. store ACT &
Forwarder

ACT
Forwarder

9. get Forwarder

Forwarder

Invoker
Thread

Callback
Thread

result
ACT8. deliver

result

ACT
result10. forward

result

11. deliver
message

Service B

Service A

Thread Pool

2. onReceive

request

Leader

Followers

3. promote
new leader

Forwarder

4. invoke
Service Invoker

5. map call &
create ACT

Fig. 3. Server invocation layer

Server Invocation Layer Initialization. A service registers with the invocation
layer, which creates and assures distribution of a service proxy to clients. The method
mapping table, which maps the service proxy interfaces onto the actual service
implementation, is stored in an instance of a service invoker component. A Receiver
is created that establishes a connection to the JMS server for a JMS message
consumer at the pre-configured JMS message destination. It is responsible for
demarshalling messages and maintains references to the service invokers to dispatch
the incoming requests.

The Leader/Followers pattern [20] is utilized, where a Thread Pool is initialized
and the leader thread calls the receive method of the Receiver (1), which itself
invokes the synchronous receive method of the JMS message consumer (2).

Server-Side Invocation Collaborations. Fig. 3 illustrates the dynamic collaborations
among participants in the server asynchronous invocation model.

When the JMS message arrives, the Receiver first demarshals the message. Since
the message will be discarded, a Forwarder is created (if one does not already exist
for this client) which contains the client JMS response destination. Since JMS does
not support concurrent sends to one queue, only one Forwarder instance per client
destination is created.

Based on the service identifier transmitted with the request message, the Receiver
obtains the associated service invoker component. Then the invocation arguments
(method identifier, call arguments, and the service identifier reference) along with the
Forwarder are passed to the leader thread. This thread immediately promotes a new
leader (3) and then becomes a processing thread invoking the service invoker (4). The
service invoker creates a new ACT, realized as a ResponseHandler, which identifies
the client response Forwarder (5) and is stored in the ACT table (6). The service
invoker maps the call onto the actual implementation method and makes the
invocation on the service (7). For an asynchronous method, a reference to the
ResponseHandler is passed as the first parameter. Before method completion, an
incomplete status can be set in the ResponseHandler, which will cause it to be
retained in the ACT table for future retrieval, e.g. on completion of an asynchronous
invocation to another service. The ResponseHandler can also be used to cause partial
results to be sent to client. When the service has finished processing, the thread
returns to the thread pool and becomes a follower thread.

A callback thread from a separate pool is used to send the result, thus decoupling
service processing threads from communication issues. The callback thread retrieves
the ResponseHandler from a queue, which contains the result along with the original
client ACT of the invocation (8), and obtains the associated response Forwarder from
the ACT table (9). Then it invokes the Forwarder’s send method (10), which marshals
and sends the result with the client ACT in a JMS message (11). Since JMS does not
support concurrent message sending, the Forwarder’s send mechanism is
synchronized.

If the client destination is temporarily unreachable by the service, the Forwarder
can be configured to either discard results or include an alternative JMS destination
(such as a topic) to hold the responses until the client is available. The Forwarder
must include a unique client identifier with the message to allow the client to select its
responses.

4 Performance Evaluation

In this section we evaluate the performance and scalability of our JILM
implementation, comparing the throughput of JILM to Java RMI two-way invocations
and measuring the overhead of JILM versus a standalone JMS solution. For our
measurements we utilized the Sun reference implementation for Java RMI, JDK
1.4.1_01 and the open source project OpenJMS v.0.7.5 [18] as a JMS implementation.
Other JMS providers may perform differently.

JILM Overhead vs. JMS. We first determined the overhead of JILM itself by
measuring the average throughput of 10,000 two-way invocations in a single-threaded
client application using the asynchronous invocation model of JILM. For this
experiment we utilized a 1.7 GHz computer with 768 GB of RAM running Windows
XP.

The result was an average additional overhead of 900 microseconds per two-way
invocation across both the client and service-side invocation layers versus the time
used by JMS.

JILM vs. RMI (Two-Tier). To test the scalability of JILM clients, in this two-tier
experiment we compared the throughput of 10,000 two-way invocations in a single-
threaded client application using RMI, the asynchronous invocation model of JILM,
and the synchronous invocation model of JILM. In order to simulate different call
durations, the client invokes a simple method that takes a wait argument specifying a
specific server delay before the method returns with a short sample string.

For this experiment we utilized a 1.53 GHz computer with 768 GB of RAM as
client and a 1.7 GHz computer with 768 GB of RAM as server. Both were running
Windows XP and were connected by a 10 Mbps Ethernet.

10
20
30
40
50
60
70
80
90

10 25 50
server-s ide operation delay

[msec]

op
er

at
io

n
th

ro
ug

hp
ut

[c

al
ls

/s
ec

]

Java RMI
JILM sync.
JILM async.

Fig. 4. Two-tier scalability results

Fig. 4 compares the empirical results. For short duration invocations, RMI has better
performance than asynchronous JILM due to the overhead of the JILM+JMS
implementations. This overhead is also apparent for synchronous JILM, whereby for
longer duration calls it nears RMI’s throughput.

Thus, once the server invocation delay exceeds the JILM+JMS overhead, the
scalability advantages of asynchronous JILM become apparent. In addition, at those
invocation delays synchronous JILM can be used to benefit from its simplicity and
completability advantages with near RMI performance.

JILM vs. RMI (Three-Tier). In our next experiment, we show the effects of service
chaining on scalability. We compared the throughput of 10,000 two-way invocations
which were performed by a single-threaded client application using RMI and the
asynchronous invocation model of JILM.

For this experiment the client application runs on a 1.53 GHz computer with 768
GB of RAM, the middle tier service on a 1.7 GHz computer with 768 GB of RAM
and the sink server on a 1GHz computer with 1GB of RAM. During the
measurements the server delay on the middle tier was set to zero and on the sink
server it was set to 10, 25, and 50msec.

10

20

30

40

50

60

70

80

10 25 50
server-s ide operation delay

[msec]

op
er

at
io

n
th

ro
ug

hp
ut

[c

al
ls

/s
ec

]

Java RMI
JILM async.

Fig. 5. Three-tier scalability results

Fig. 5 compares the empirical results. As in the first experiment, RMI has better
performance for short duration invocations. However, as the server delay of the sink
server increases, JILM is able to take advantage of asynchrony to achieve higher
invocation throughput between the participants in comparison to RMI’s blocked calls.

From our three-tier results we see that the use of asynchronous invocations is
beneficial for throughput and scalability for cases where service chaining or similar
effects occur.

5 Related Work

Table 1 shows a comparison of middleware based on our required set of features.

Table 1. Middleware comparison

Feature JMS RMI Async
RMI

CORBA
AMI JILM

Object-oriented invocations N Y Y Y Y

Synchronous Y Y Y Y Y

Asynchronous Y N Y Y Y

Time-independent Y N N Y Y

Location-independent Y N N2 Y3 Y

Group communication Y N N2 Y4 Y

Batch communication Y N N N Y

Interim/partial results Y N N N Y

QoS5 Y N N Y Y

Invocation model decoupling N/A N N Y6 Y

Provider exchangeability Y N N N7 Y

RMI. While callbacks have been used to support a form of asynchronicity within the
constraints of the RMI implementation, a number of issues occur:

− clients must make an RMI server available (requires additional client resources),
− server threads may be blocked (e.g. on the callback for busy clients),
− client security issues (with ServerSockets) and firewall issues,
− correlating the client thread context with the response,
− client threads are blocked until the server responds to the initial JRMP call,
− concurrent calls utilize additional sockets.

So while callbacks reduce the client call blocking time equivalent to the server
processing duration, as the system scales to capacity, these limitations will affect the
system non-optimally.

RMI Variants. In contrast to callbacks, Futures [24], Batched Futures [2], and
Promises [11] address call latency by delayed referencing of the result, thus retaining
the client thread context from request to response.

Various asynchronous JRMP-compatible RMI variants have been created, such as
ARMI [19], Active-RMI [8], and as described by Kerry Falkner [10]. They rely on a
modified RMI stub compiler to insert asynchronous behavior and create a separate
thread for each invocation. E.g., whereas [10] is an asynchronous RMI

2 Possibly supported by parallel RMI extensions.
3 With the addition of FT CORBA [16].
4 With the use of Data Parallel CORBA [17].
5 E.g., ordering, prioritization, delivery guarantees, durability, rerouteability, etc.
6 Not included in the specification, but demonstrated in [4].
7 Implementations can be exchanged, but the protocol is fixed.

implementation that uses Futures, JILM supports Futures without adding Java
keywords to the language and without creating a new thread per outstanding request.

JR [9] extends the language to provide a concurrency model on top of RMI, but
still has the underlying RMI limitations (although JR is capable of using another
transport).

Custom-protocol variants that support asynchronous communication include
NinjaRMI [15], which requires language extensions. It uses one-way asynchronous
communication that may include callback information.

Although RMI does not support group method invocation, much work has been
done to create extensions to RMI to support parallel programming environments, e.g.
Manta [14], GMI [12], and CCJ [13]. However, our intent and usage model is not
parallelism per se, and these specialized extensions were unsuitable for use in our
context, not fully supporting model decoupling, QoS, and provider exchangeability.

CORBA AMI. While CORBA AMI provides asynchronicity, it requires an IOR or
IOGR in order to make an invocation [6], limiting its LII capability. On the other
hand, JILM does not require a valid service reference, but can store the invocation in
JMS until a service instance exists and retrieves it. Neither batch invocations nor
partial or interim results are supported.

While CORBA Messaging implementations could be exchanged, the middleware
protocol is specified, whereas JMS does not specify the protocols used, thus JILM
provides a greater degree of provider flexibility. For Java environments, Java ORB
implementations that fully support the AMI specification are not currently known to
us or in wide use at this time.

Deshpande [4] describes an asynchronous method handling (AMH) mechanism for
decoupling client invocations from server invocations, in particular for middle-tier
servers. JILM’s service invocation layer supports an equivalent capability for Java
services while supporting interchangeability of JMS providers or other middleware
via the Forwarder-Receivers.

6 Conclusion

RMI has not addressed the demands in today’s systems for asynchronicity and remote
invocation completability. In particular, it lacks the desired properties as shown in
Table 1.

While JMS has been used in distributed computing to address some of these issues,
its usage entails issues including the lack of an object-oriented invocation model,
implicit contracts and coupling, and weak typing. This is the area that JILM
addresses. By providing an invocation layer around JMS, we were able to mitigate
many issues related to JMS, while supporting the desired (a)synchronous invocation
models and completability properties.

Our performance measurements show that JILM adds 900 microseconds in
roundtrip overhead to the JMS implementation. The asynchronous JILM scales well
as the call duration increases. Our three-tier results showed that an asynchronous
invocation model is beneficial for throughput and scalability for cases where service

chaining or similar effects occur. In addition, the JILM synchronous model can be
used for simplicity and yet achieve near RMI throughput for longer server call
durations while benefiting from JILM’s completability advantages.

By relying on patterns for JILM, our design can be readily applied and reused on
various platforms. For systems or architectures that are considering JMS usage, JILM
provides an easier and higher-level programming model than direct messaging. In
addition, the use of object-oriented invocations ensures that the client utilizes the
types and methods expected by the service and allows the service to provide a client
proxy that encapsulates the communication mechanism expected by the service. One-
way calls could easily be supported if desired.

JILM addresses both the need for asynchronous invocations in Java and the need
for remote invocation completability assurances in today’s systems.

 References

1. Arulanthu, A. B., O’Ryan, C., Schmidt, D.C., Kircher, M., Parsons, J.: The Design and
Performance of a Scalable ORB Architecture for CORBA Asynchronous Messaging. In
Proceedings of the IFIP/ACM Middleware 2000 Conference (2000)

2. Bogle, P., Liskov, B.: Reducing Cross Domain Call Overhead Using Batched Futures. In
Proc. OOPSLA'94, ACM SIGPLAN Notices, volume 29 (1994)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture - A System of Patterns, Wiley and Sons Ltd. (1996)

4. Deshpande, M., Schmidt, D.C., O'Ryan, C., and Brunsch, D.: The Design and Performance
of Asynchronous Method Handling for CORBA. In Proceedings of the Distributed Objects
and Applications (DOA) conference (2002)

5. Eckerson, W.W.: Three Tier Client/Server Architecture: Achieving Scalability, Performance
and Efficiency in Client Server Applications. In Open Information Systems, vol. 10 (1995)

6. Gore, P., Cytron, R., Schmidt, D., O'Ryan, C.: Designing and Optimizing a Scalable CORBA
Notification Service. In Proceedings of the ACM SIGPLAN workshop on languages,
compilers and tools for embedded systems (2001) 196–204

7. JavaGroups Web Site: http://www.javagroups.com
8. Karaorman, M., Bruno, J.: Active-RMI: Active Remote Method Invocation System for

Distributed Computing using Active Java Objects. In TOOLS USA (1998)
9. Keen, A., Ge, T., Maris, J., Olsson, R.: JR: Flexible Distributed Programming in an Extended

Java. In Proceedings of the 21st IEEE International Conference on Distributed Computing
Systems (2001)

10. Kerry Falkner, K.E., Coddington, P.D., Oudshoorn, M.J.: Implementing Asynchronous
Remote Method Invocation in Java. University of Adelaide (1999)

11. Liskov, B., Shrira, L.: Promises: Linguistic Support for Efficient Asynchronous Procedure
Calls in Distributed Systems. In Proc. SIGPLAN'88 Conf. Programming Language Design
and Implementation (1988) 260–267

12. Maassen, J., Kielmann, T., Bal, H.E.: GMI: Flexible and Efficient Group Method
Invocation for Parallel Programming. In LCR-02: Sixth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers. Lecture Notes in Computer
Science, Springer-Verlag, Berlin Heidelberg New York (2002)

13. Nelisse, A., Maassen, J., Kielmann, T., Bal, H.E.: CCJ: Object-based Message Passing and
Collective Communication in Java. In Concurrency and Computation: Practice and
Experience, Vol. 15, Issue 3-5 (2003) 341–369

14. van Nieuwpoort, R., Maassen, J., Bal, H., Kielmann, T., Veldema, R.: Wide-area parallel
computing in Java. In Proc. ACM 1999 Java Grande Conference (1999) 8–14

15. NinjaRMI Web Site: http://www.eecs.harvard.edu/~mdw/proj/old/ninja/index.html
16. Object Management Group: Common Object Request Broker Architecture (CORBA) Core

Specification, 3.0 ed.
17. Object Management Group: Data Parallel CORBA Specification. (May 1, 2002)
18. OpenJMS Web Site http://openjms.sourceforge.net/
19. Raje, R., Williams, J., Boyles, M.: An Asynchronous Remote Method Invocation (ARMI)

Mechanism for Java. In Proc. of the ACM 1997 Workshop on Java for Science and
Engineering Computation (1997)

20. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architecture,
Patterns for Concurrent and Networked Objects. Vol. 2. Wiley and Sons Ltd. (2000)

21. Sun Microsystems: Java 2 Platform Standard Edition version 1.4.1
22. Sun Microsystems: Java Message Service Specification, version 1.1 (2002)
23. Sun Microsystems: Jini Architecture Specification, version 1.2 (2001)
24. Walker, E. F., Floyd, R., Neves, P.: Asynchronous Remote Operation Execution In

Distributed Systems. In Proc. of the Tenth International Conference on Distributed
Computing Systems (1990)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

