

XML-based Programming Language Modeling:
An Approach to Software Engineering

Christian Reichel
University of Heidelberg
Heidelberg, Germany

christian.reichel@informatik.uni-heidelberg.de

Roy Oberhauser
Corporate Technology, Siemens AG

Munich, Germany
roy.oberhauser@siemens.com

ABSTRACT
Today’s software faces escalating technical and business
difficulties, yet it continues to be coded in static,
inflexible structures that are not prepared for automation
and agility. xApproach is an XML-based approach to
software engineering that leverages XML-based language
representations and pipeline transformations to provide a
consistent and flexible solution for number of issues,
including complexity, comprehension, and automation
aspects. A core framework (FXLF) in combination with
the editor (FXLE) supports role-based activities while
removing the burden of programming in XML. Usage
scenarios evaluated include customization, separation of
concerns, domain-oriented languages, and technology
mapping, with results showing a range of benefits,
applicability, and prospects.

KEY WORDS
Software Engineering, Automation, Modeling,
Programming Languages, Domain-Specific Languages,
XML

1. Introduction

In the face of escalating technical difficulties (e.g.,
complexity, distribution, integration) and business forces
(e.g., development time, maintenance costs), software
agility and flexibility properties become increasingly
important. Current software code is primarily expressed
in static structures that constrain agility; they are often
difficult and time-consuming to change and not prepared
for future automation (software factories, generative
programming, etc.). Additionally, views of these
structures (e.g., documentation, architecture, operation)
are not based on an interoperable, unified model, and
various tools have their own internal representation
(Eclipse, Sun Java Studio Creator), e.g., based on
Abstract Syntax Trees (ASTs). Analogous to plain-text
documents, these representations are missing a
standardized transformation capability (e.g., XSL
Transformations (XSLT)) and must rely on proprietary
mechanisms to make model modifications, thereby
limiting interoperability and automation. These static

structures exacerbate solutions to issues such as
complexity, comprehension, and automation, and thus
constrain further improvement possibilities in software
engineering.

For example, it is difficult to optimize the presentation of
software source code in support of the various roles
(programmer, operator, etc.) and phases (e.g.,
development, operation, and maintenance) involved in the
production and use of software. Regarding both
complexity and comprehension, available abstraction
mechanisms do not adequately integrate these aspects in a
consistent fashion as to how software artefacts are
presented. Thus, viewers of software are often confronted
with distracting and irrelevant information for their
current interest, and difficulties exist in keeping the
various related pieces in sync. Standardized and generic
modeling approach such as Model Driven Architecture
(MDA) with XML Metadata Interchange (XMI), address
some of the aforementioned aspects. Yet in many cases,
bottom-up strategies with domain-specific models and
views can provide simpler, lightweight, less error-prone,
and more agile solutions.

Concerning the underlying code structures, current
programming languages restrict flexibility in their
keywords and grammar and have limited customization
and modification mechanisms. E.g., while data
transformation is quite common in daily Enterprise IT
activities, no common standards for code transformation
have been established. Although XML has a proven
record for interoperability, XML-based source code
representations (e.g., JavaML [1] and CppML [2]) in the
context of a unified and interoperable model that address
the software engineering aspects of complexity,
comprehension, and automation have not received
sufficient attention.

This paper investigates the applicability of XML-based
source code representations for a unified and
interoperable model approach to the above issues in
software engineering. In section 2, the basic principles
involved are elucidated. Section 3 validates the
fundamental approach with a reference implementation,
and presents applicable tooling that enhances its usage.

Section 4 analyzes the overall solution results with
measurements, possible areas of application, and
mentions future work. In Section 5 related work is
discussed, followed by a conclusion.

2. Solution Approach
An approach addressing the aforementioned aspects
within software engineering involves certain key
requirements and objectives. In the first step, all basic
mechanisms are expressed by two main principles: the
representation principle and the transformation principle.
As shown in Fig. 2.1, the representation principle
introduces central XML-based models for programming
languages, whereby the conversion between the model
and all related views is specified by type Ta
transformations. XML was chosen due to its
standardization, ubiquity, and tool support.

Figure 2.1: Representation Principle

In this context, the term view includes common, e.g., plain
text, and derived, e.g., hierarchical or graphical,
representations, yet all based on the same XML-based
model. This includes every traditional non-XML-oriented
source code document of a given programming language
Lang (e.g., Java) that can be alternatively represented in
an XML-based document xModel (e.g., xJava), which
forms the model for all derived views (e.g., a Java syntax
view with custom keywords).

Given these central models, the transformation principle
defines two additional transformation types that allow the
modification of the underlying models (Tb) and the
conversion between models (Tc). In Fig. 2.2, Tc can be
illustrated with an example wherein Model A can be a
high-level description (e.g., a Service Language (SL) that
is a Domain Specific Language (DSL)) and Model B
can be a technology-specific (e.g., uses platform-specific
APIs) or a language-specific model (e.g., xJava).

Figure 2.2: Transformation Principle

The combination of these principles are united in an
XML-based approach called xApproach. The inherent
transformation capability of xApproach yields dynamism

and flexibility, and addresses the following problem
aspects:

- Type Ta transformations enable the creation of different

views, and, via the adaptive presentation of information,
various abstraction levels can be supported addresses
complexity and comprehension aspects,

- Type Tb transformations allow the modification (e.g.,
insertion, removal of blocks) of the underlying model
addresses agility aspects as well as language and
software personalization/customization,

- Type Tc transformations provide the conversion of
models addresses certain technology mapping and
integration aspects.

All transformation types enable an improved automation
capability and in combination with XML-based models
provide the foundation for a unified approach.

In this context, specific xModels, instead of common
plain-text views and their associated ASTs, form a central
component to software engineering. Ta related approaches
for producing XML-based representations of source code
have been described in research work, e.g., JavaML and
srcML [3]. In the case of scrML, a data view and
document view are supported, thus, e.g., it can be used as
an exchange format as well as an independent layer of
representation between the developer and the source code.
While xApproach encompasses these efforts, its
additional and explicit focus on derived views (e.g. DSLs)
and the exploitation of standardized transformation
mechanisms for XML-based model documents enables
flexible capabilities in many fields of application. In this
way, e.g., workflow graphs or XML pipelines [4] execute
chains of transformations (e.g., via XSLT or the XML
Query Language (XQuery)) on a given xModel
document.

3. Solution Realization
To provide a reference implementation of xApproach and
realize its objectives, a core framework (FXLF) was
developed. The interaction of the framework
functionality with the human roles involved in software is
supported with an editor (FXLE) that presents the
graphical interfaces and views, and thereby enables the
application of the principles in various problem domains.

3.1 Core Framework (FXLF) Implementation
FXLF is responsible for the transformation of models and
the generation of specific views. To realize the
representation principle, two directions of type Ta
transformations are considered:

a) View xModel. In the case of a traditional view (e.g.,
a programming language such as Java) the parser
generator ANTLR [5] provides the front-end for the
xModel creation (see xJava example in Fig. 3.1);
standard grammars are slightly modified (e.g., by

activating AST generation, etc.) and used as the basis for
the automatic lexer/parser generation which builds the
subsequent AST representation. A visitor is then used to
traverse the tree and to generate XML nodes (element,
attribute, etc.) based on the current AST-node type.
Special mapping properties (name, formatting, etc.) are
specified in a XML-based visitor configuration file.

In all other cases, the transformation principle can be
applied with intermediate models (including type Tb and
Tc transformations) when necessary.

<method>
 <modifiers><public/><static/></modifiers>
 <type><void/></type>
 <identifier>main</identifier>
 <parameter>
 <type>
 <identifier>String</identifier>
 <array_declarator/>
 </type>
 <identifier>args</identifier>
 </parameter>
 <statements> … </statements>
</method>

Figure 3.1: xJava snippet for Java main method

b) xModel View. The XML form of xModel supports
the direct usage of XML-based transformation languages
like XSLT and XQuery. The XML framework for Java
DOM4J is used for XSLT, where templates allow the
pattern-based definition of rules (e.g., for every node
type). These can generate traditional plain-text views
such as formatted Java, filtered views (e.g., middleware-
only), or graphical output formats (e.g., SVG). Each file
encompasses all the rules necessary for generating that
specific view (see Fig. 3.2).

<xsl:template match="method">
 <xsl:apply-templates select="modifiers"/>
 <xsl:apply-templates select="type"/>
 <xsl:apply-templates select="identifier"/>
 <xsl:text>(</xsl:text>
 <xsl:apply-templates select="parameter"/>
 <xsl:text>)</xsl:text>
 <xsl:apply-templates select="throws"/>
 <xsl:apply-templates select="statements"/>
</xsl:template>

Figure 3.2: xJava Java XSLT method template

The combination of a) and b) enables bidirectional
mapping between models and views.

To realize the transformation principle, type Tb and Tc
transformations are applied for xModel xModel* and
xModel A xModel B transformations respectively. A
description of the modification processing steps (chain or
graph) is done using XML Pipeline utilizing processes
that have XML I/O. The XML Pipeline specification was
implemented separately because no Ant-task-independent
implementation was available. Various process plugins
are supported (XSLT, XQuery, etc.). Usages include
xModel modification (e.g., weaving of data, removal of

code, etc.). These process descriptions can be reused as
shareable library entries, such as an entry for supporting
tracing capabilities. For type Tc transformations, model
conversions are accomplished in a similar fashion as type
Tb but have a different purpose and result (e.g., SL to
Web Service Description Language (WSDL), SL to Java,
etc.). Validation mechanisms for achieving a certain
grade of syntactical correctness of xModel documents
rely on XML Schema validation or generated model
parsers.

3.3 FXL Editor (FXLE)
The GUI-based FXLE application (see Fig. 3.4) uses the
aforementioned FXLF implementation. It consists of a
basic project editor with access to xApproach core
functionality components. Realized are: various views of
source code documents (traditional, XML-based, filtered,
SVG, etc.), a graphical pipeline management and
execution (graph-based, intermediate result views,
debugging with stepping, etc.), varying libraries
(predefined transformations, processes, pipelines,
language converters, etc.), as well as automatic xBuild
handling of projects. Roles are supported with
perspectives that combine available views and that
address their individual needs. Additionally,
programming languages can be integrated via the flexible
import of ANTLR grammar files.

Figure 3.3: FXL Editor

4. Solution Results
The solution will now be assessed using selected metrics
of FXLF, software engineering usage scenarios with
FXLE, and an evaluation of the current implementation.
This is followed by identified future work.

4.1 FXLF Metrics
To determine if the FXLF implementation is suitable for a
realistic usage scenario, performance and size were
initially measured. In this context, an xBuild task
encompasses the typical processes of Java xJava
conversion (XJC), xJava Java conversion (JC) via

XSLT, and the compilation Java bytecode (C) via
javac from J2SDK 1.4.2. The results shown in Fig. 3.3
were made for a project example consisting of 425 Java
classes and 27,637 LOC. The graph on the left shows
time measurements which were the average of 20 cycles
across all project classes for different systems. On each
system the normal Build time C of the project (see the left
100% bar) was compared to the xBuild time (on its right)
which consisted of the aforementioned conversion times
for XJC, JC, and C. This shows that the complete xBuild
takes approximately 8-9 times longer than the C build and
that JC takes the largest portion (78% of the total). With
increasing system performance nearly linear reductions in
xBuild times are observed. The graph on the right shows
that xJava representations of Java code require
approximately 6 times more space.

Figure 4.1: FXLF Measurements

The pipeline execution time should be considered as an
additional factor in the xBuild time, but was not included
in these measurements due to the wide spectrum and
complexity in possible pipeline structures. However, as
an indication of the potential magnitude, a simple XSLT
copy of an xJava document (duplication) takes 4 times
longer then the Java xJava conversion time of that
source file.

4.2 Use Case Tests using FXLE
To demonstrate the applicability and benefits of
xApproach/FXLE in the context of software engineering
tasks, various usage scenarios were successfully applied
and tested. These included:

DSLs and Technology Mapping
If the description and development of software is moved
to a high(er)-level of abstraction, the developer must not
categorically choose concrete low(er)-level technologies
and implementations and can thus concentrate on coding
the functionality. FXLE can address both this abstraction
aspect as well as the process of lower-level technology
mapping, although issues such as correctness and
completeness still need to be solved.

Test scenarios that illustrate comprehension, flexibility
and time improvements, comprised:

- Several customized Java syntaxes for personalized

language wishes (that are transformed to valid Java
syntax).

- The creation of DSLs to support different abstraction
levels; a Transformation Language (TL) and a SL were
specified with xModels xTL and xSL and several views.

- Model conversions for TL to XSLT and to a limited
extent TL to XQuery were defined and validated.

Customization/Personalization
FXLE can help to adapt, extend or create customized
software. The XML-based technologies can be used to
encapsulate changes in special files and apply them as
transformations in different scenarios. The term
customization of software generally refers to the
activities:

- Removal or modification of existing code blocks, e.g.,

to replace customer-bound algorithms
- Insertion of new code blocks, e.g., to add extra-

functionality a customer paid for
- Activation/deactivation of existing code blocks, e.g., to

activate inherent functionality

Tests that show reusability, adaptation and time
improvements consisted of the customization of FXLE
(e.g., the editor layout and dialogs with external data sets,
updates for additional features, Swing GUI generator,
etc.) via TL transformations.

Variation Points (VP)
VPs enable the ability to change pre-defined areas of the
code after development time. xModel documents can
represent variation points by both coupling objects and
XML code (e.g., avoiding runtime parsing of
configuration files by setting initialization variables
appropriately in the code) and enabling transformations to
be carried out at various points in time. For instance, an
xJava document that holds the initialization values can be
dynamically loaded as a Java class without the usage of
runtime XML frameworks such as JAXB and Castor [6].

Simple VP tests allowed operator modification of
xModel-based code on predefined points in the software
(e.g., choice of security mechanisms) and exemplify
related simplification and maintenance improvements.

Separation of Concerns (SOC)
Many approaches to modularizing crosscutting concerns
exist (e.g., Aspect-Oriented Software Development
(AOSD)). FXLE can be used to address SOC. Critical
aspects like security policies or error handling are stored
in transformation files (e.g., in an Aspect Language (AL))
and, when desired, weaved into the source code via
transformations.

Flexibility and reusability tests consisted of xModel
modifications to achieve SOC, specifically for
logging/tracing (an XSLT-based transformation
“transparently” added tracing code to every method).

4.3 Solution Evaluation
Practical usage of xApproach in combination with
appropriate tooling such as the FXLE has shown that it is
viable for addressing the problem areas considered. The
system performance results show that its application in
current development and operational systems is feasible.
From this point of view, it appears promising that
xApproach can be the basis for a unified solution
approach to various software engineering problems such
as complexity, comprehension, and automation.

Regarding measurements of FXLF, the following aspects
should be considered: the xBuild process had no logic,
e.g., to compare timestamps and avoid unnecessary
Java xJava Java conversions and compilations, thus all
files were regenerated. Separately, incremental builds
could aid the perceived performance. The XSLT
transformation was shown to be a significant bottleneck
of 80% of the xBuild time (without pipelines), and thus
other or highly optimized XSLT implementations can
reduce these times. For typical “best practice”
programming files that are not horrendously large, the
memory footprint on the systems in Section 3.1 was not
shown to be an issue, even when 50 concurrent xBuild
threads were executed. The 6x size increase of xJava vs.
Java files can be improved by reducing tag name sizes,
however, once standards for xModels become prevalent,
the amount of reduction achievable will be limited.

Since xApproach transformations are dependent on an
xModel, to achieve wide applicability and reusability of
the transformation libaries and entries a standardization of
these xModels (e.g., for programming languages) is
necessary. In the context of complex scenarios, xModel
transformations and modifications require additional
attention as well as solution approaches due to issues that
can occur in areas such as correctness, completeness, and
efficiency. As these transformations become more
widespread and available, mechanisms must be included
to assure the appropriate quality and trust for the user.

The XML Pipeline engine was shown to be very flexible,
even if open issues remain in the pipeline execution such
as addressing order dependencies between pipelines,
versioning, conditional branching, etc. Extensions to the
XML Pipeline standard are possible, however, other
solutions are feasible, e.g., usage of the XL platform [7]
as a workflow engine.

FXLE has shown that the xApproach principles had no
negative impact for the user since the tools can hide the
approach from the user, yet offer access when desired.
Different usage scenarios were applied and shown to be
flexibly supportable across a wide spectrum without
requiring significant changes to the tooling. The
application of this degree of flexibility can positively
affect role activities, e.g., programming via personalized
language extensions, optimized views, etc. Furthermore,

the use of xApproach in conjunction with state-of-the-art
XML-based software engineering frameworks (e.g., XMI)
can deliver additional benefits.
One noticeable aspect in the evaluation of FXLE was that
there is a need for more flexible transformation and
language description/creation, e.g., via graphical solutions
that enable automated grammar definition. Here, DSLs
such as SL and TL (which will be described in separate
papers) can be helpful and more efficient.

4.4 Future Work
Areas for future work were identified and include the
following activities:
- Improving xBuild performance times: results showed

that the transformation engine (XSLT) is a significant
factor, and therefore optimized implementation
alternatives need to be considered.

- Practical and efficient DSL expression and creation:
Existing XML-based transformation and service
languages are cumbersome; in this area TL and SL are
being completed and graphical views are being
considered.

- Correctness, completeness, and validity checks for
model transformations.

- Pipeline/workflow improvements and versioning issues.
- Greater integration with common developer tools by

porting of the xApproach/FXLF to IDEs such as
Eclipse.

- Distributed pipeline support: xApproach would enable a
new paradigm of distributed software build processing
across systems. The overhead cost versus the benefit
needs further investigation.

- Synchronization of documentation with code: the
power of XML-based code representation enables the
cross-referencing with XML-based documentation
artefacts.

Generally, the lack of standardized xModel language
representations inhibit the ability to address current and
future software engineering issues in the aforementioned
manner, and usage of xApproach in more complex and
widespread scenarios would require this standardization
for true interoperability and exchangeability, yielding
significant benefits for the community.

5. Related Work
In this paper, xApproach, its realization, and selected
fields of application were presented. The section below
mentions related and representative work in the fields of
XML-based source code representation and domain-
oriented programming.

With regard to source code representations, JavaML [1]
provides an XML-based representation of Java source
code. JavaML uses the Jikes Java compiler framework to
transform the source code from a plain-text representation
into JavaML, and then XSLT for the reverse
transformation from JavaML into Java. This
representation does not preserve the original structure of

the source code (e.g., formatting information) and has
certain weaknesses in comparison to semantically
enhanced grammars [8]. Alternatively, the Source
Markup Language (srcML) [3] creates a multi-layered
document where the original source code (including
formatting) forms the base-layer and the added XML-
based markup layer reveals, e.g., the syntactic information
and the underlying structure. Thus, the original source
code remains intact and can be easily extracted by
removing all XML tags from the srcML format. While
xApproach goes beyond these source code representation
aspects, JavaML and srcML can be used as xModels for
Java within the representation principle.

In the area of SOC and Aspect Oriented Programming
(AOP), the operator approach [9] proposes XML-based
operators (enclosed by the transform tag) as an
extensible aspect language. The prototype has been
realized using JavaML for xJava creation, XML tools for
xJava modification and (in one case) XSLT for Java
source code generation. This approach addresses a subset
of the xApproach software engineering goals in the
context of SOC, such as the XML-based creation of an
Aspect Language (AL) and the improvement of the code
structure. Generally, the operator approach focus is
restricted to the AOP problem domain (e.g., aspects, join
points).

SmartTools [10] presents a software generator for
domain-specific or programming language creation based
on XML and object-oriented technologies (e.g., visitor
design pattern, aspect, etc.). Its modular architecture and
generic visualization tools (concerning Xpp, lmltree,
BML, etc.) form the basis for different views on
documents. The SmartTools approach also addresses a
number of xApproach goals, such as the creation of DSLs
and the development of a higher-level transformation
language. Basically, its approach differs in some essential
parts (e.g., framework generator, AST visitors, message
controller) and its focus is narrower than xApproach.

6. Conclusion
The escalating technical difficulties and business forces in
software engineering require a new approach to achieve
the flexibility and agility properties necessary to enable
enhanced automation and comprehension in the onslaught
of ever more code, aggregation, and integration. New
forms of programming languages will play an essential
part, and good reasons exist for future programs to be
stored as XML documents (e.g., so that programmers can
represent, process, and transform code and meta-data
uniformly) [11].

Starting with the theoretical foundation of xApproach as
expressed in the representation and transformation
principles, a core framework was realized to evaluate its
applicability to a number of software engineering
challenges. Automation capabilities are improved
through the unifying xModel that enables standardized
type Ta, Tb and Tc transformations, and the evaluation

of FXLF demonstrated that a general usage of xApproach
is feasible. Additionally, an editor FXLE that utilizes
FXLF was implemented to address several complexity
and comprehension aspects. It supports the creation of
new abstraction levels (customization, DSLs, etc.) as well
as the inclusion of role-based and activity-based views
throughout the software lifecycle. Hereby, for instance,
programmers, testers, or operators are able to work with a
suitable language that they can comprehend and with
views that present the essential concerns of the software
applicable to their current interest. The combination of
xApproach with FXLE has shown that various software
engineering scenarios can be uniformly addressed (e.g.,
customization, DSLs, technology mapping, generative
programming) while providing a tremendous untapped
potential for addressing current and future agility and
automation issues.

7. Acknowledgements
We would like to thank Ulrich Dinger and Martin Saler
for their implementation work.

References:
[1] Greg J. Badros, JavaML: A Markup Language for
Java Source Code. Proceedings of 9th International World
Wide Web Conference (WWW9), Amsterdam, The
Netherlands, May 13-15, 2000.
[2] Mamas, Even, Kontogiannis, Kostas, Towards
Portable Source Code Representations Using XML.
Proceedings of WCRE’00, Brisbane, Australia, November
2000, pp. 172-182.
[3] M.L. Collard, etc., Supporting Document and Data
Views of Source Code. Proceedings of the 2nd ACM
Symposium on Document Engineering (DocEng 2002),
McLean, VA, November 8-9, pp. 34-41, 2002.
[4] N. Walsh, E. Maler, XML Pipeline Definition
Language Version 1.0. W3C Note 28 February 2002.
Available from http://www.w3.org/TR/xml-pipeline.
[5] Terence Parr, ANTLR: Another Tool for Language
Recognition. Available from http://www.antlr.org.
[6] The Castor Project: An open source framework for
Java. 2004, Available from http://www.castor.org.
[7] D. Florescu, A. Grünhagen, D. Kossmann, XL: a
platform for Web Services. CIDR 2003, CA, USA.
[8] H. Simic, M. Topolnik, Prospects of encoding Java
source code in XML. ConTel 2003: 7th International
Conference on Telecommunications, June 11 -13, Zagreb,
Croatia, 2003.
[9] S. Schonger, et al., Aspect oriented programming and
component weaving: Using XML representations of
abstract syntax trees. Workshop Aspektorientierte
Softwareentwicklung, Universität Bonn, Germany, 2002.
[10] I. Attali, et al., Aspect and XML-oriented Semantic
Framework Generator: SmartTools. Second Workshop on
Language Descriptions, Tools and Applications,
LDTA’02, Grenoble, France, 2002.
[11] Gregory V. Wilson, Extensible Programming for the
21st Century. January 2004. Available from
http://pyre.third-bit.com/~gvwilson/xmlprog.html.

