
An Approach to Flexible Application Composition
in a Diverse Software Landscape

Roy Oberhauser

Corporate Technology, Siemens AG,
Otto-Hahn-Ring 6, 81730 Munich, Germany

roy.oberhauser@siemens.com

Abstract. With the escalating complexity, aggregation, and integration of
software in enterprise, mobile, and pervasive arenas, it becomes increasingly
difficult to compose, deploy, and operate applications that span a distributed
and diverse software landscape. Furthermore, the increasing aggregation of
software artifacts, including platforms, frameworks, components, services, and
tools, lack a standard metadata description capability that hinders rapid and
flexible distribution, deployment, and operation. This paper presents a general
approach, realized with the FAST Framework, to improving the development,
deployment, and operation of distributed applications that consist of diverse
software artifacts. Application specification and composition is based on
configuration queries that flexibly combine modules and a container that non-
intrusively manages module lifecycles. The results show benefits with regard
to simplified configurability, enhanced reuse via XML-based description
propagation, improved distributed-application-provisioning intervals vs. local
configurations, as well as applicability to Grid, Web Services, and MDA.

1 Introduction

As a trend, the complexity of software applications is escalating, where complexity is
a function of the types and number of relationships among the software elements.
This escalation is especially true of distributed applications in areas such as enterprise
and pervasive infrastructures and applications. Increasing software integration as
well as the aggregation of software artifacts, e.g. as shown in the tendency to utilize
standardized platforms and API providers (e.g. J2EE, .NET), open source software
frameworks, etc., contribute to the overall underlying complexity of an application.

Simultaneously, competitive pressures compel developers to more rapidly produce
software that is parameterized to fit various predefined and hard-to-predict post-
defined operational contexts and configurations. As these pressures in turn cause
developers and maintainers to handle multiple projects simultaneously, when consid-
ered in conjunction with geographically distributed teams, the rapid reuse and propa-
gation of deployment configurations will become a growing necessity.

Conversely, software operators (a set that includes developers) are faced with a
daunting set of amassed choices with regard to both the parameterization and (repro-
ducible) configuration of aggregated, distributed, and legacy software. This is exac-

erbated by the inherent variability of software, as in versioning of any of the constitu-
ent parts of a distributed application. This has given rise to the adage “Never touch a
running system,” and the problems in this area are described with case studies in [1].
While a myriad of configuration and deployment mechanisms exists, no unifying,
widely adopted, practical, and economic solution in this diverse, heterogeneous soft-
ware landscape is available.

Considering these aforementioned challenges, the primary objective is to support
distributed application configurations (especially with regard to composability, flexi-
bility, manageability, and reuse) by means of a non-intrusive infrastructure with mini-
mal requirements for describing and provisioning the involved software artifacts. An
artifact can be a piece of software or anything associated with it (e.g., tools, docu-
mentation). A solution that comprehensively addresses all possible software configu-
rations and artifacts is beyond scope; rather, the contribution of this paper is a practi-
cal and economic approach that deals with various basic issues in the current gap in
distribution, deployment, and operation, thereby drawing attention to this area.

The paper is organized as follows: Section 2 reviews related work to elucidate the
current gap. In Section 3, the solution approach and constraints are presented. This
is followed in Section 4 by a description of the solution realization, referred to in this
paper as the FAST Framework. At the core of the framework is a container that man-
ages modules and configurations and communicates with other containers. Section 5
discusses the results, and in Section 6, a conclusion is drawn.

2 Related Work

Because the focus of this paper touches such a universal aspect of software, it can
easily be related in some way to a range of other efforts and work. Since not all re-
lated work and aspects can necessarily be addressed, only primary and/or key compa-
rable work will be mentioned.

In the area of composition and integration, the VCF [2] approach to component
composition relies on a Java API and requires component model plugins. Its focus is
limited to components, and thus cannot provide a unifying approach that includes
preexisting and non-component-oriented artifacts. FUJABA [3], a meta-model ap-
proach to tool integration, requires plug-ins and does not address distributed applica-
tions. [4] provides a survey of various composition environments, all of which can-
not provide a unifying approach due to constraints, platform-dependencies, or a com-
position focus at the more intrusive communication or interaction level, resulting in
development phase dependencies or runtime impacts. As to composability in Web
Services (e.g., BPEL4WS, WSCI), its focus is the interaction abstraction level, leav-
ing the infrastructural aspects of aggregation, configurability, distribution, provision-
ing, deployment, and manageability for a diverse software environment unaddressed.

As to platform-specific provisioning frameworks, SmartFrog [5] is a flexible, ob-
ject-oriented framework for the deployment and configuration of remote Java objects.
It has a security concept and its own declarative non-XML language includes param-
eterized and inheritable templates. However, its component model requires inheri-
tance from Java objects - thus requiring a Java wrapper class for each external soft-

ware artifact it manages, and the more flexible concept of queries for application
composition does not appear to be supported. Jini’s Rio [6] provides dynamic provi-
sioning capabilities, policies, and telemetry using an agent-based Dynamic Container.
Service components are described using XML-based metadata (an Operational-
String). A component model (Jini Service Beans) is provided and, for managing
external services, Service Control Adapters must be written. Its model is platform-
dependent and its reliance on Jini’s RMI mechanism makes infrastructural interop-
erability in diverse landscapes problematic.

Common configuration management tools, such as HP’s OpenView, IBM’s Tivoli,
etc., address various enterprise deployment and operation issues, yet they do not nec-
essarily scale down for small projects, devices, or budgets, and various other tools are
often tied to operating systems. Management standards activities, such as the Open
Management Interface and OASIS Web Services Distributed Managmement Techni-
cal Committee, address management interfaces for Web Services (WS), but will
likely not be able to manage all related and legacy artifacts. Platform-specific man-
agement initiatives, such as Java Management Extensions (JMX), will necessarily be
limited to their platform, and have typically neglected the aspect of metadata.

Metadata initiatives, such as the WS-MetadataExchange, may allow WS to ex-
change metadata with one another, but first the WS must be operational, and no
metadata standard exists for describing basic operational aspects of software artifacts.
Platform-specific metadata such as contained in Java JAR files, in .NET, and in JSR
175 “A Metadata Facility for the Java Programming Language,” are not easily acces-
sible or modifiable by operators, especially for diverse environments. Where tooling
creates the metadata, it tends to become so complex and all encompassing that man-
ual creation for incorporation of other artifacts is avoided.

Model-Driven Architecture (MDA) [7] is primarily a development-centric para-
digm and depends on the existence of models for the involved artifacts. While
[8][9][10] describe the combination of Model-Integrated Computing (MIC) with
middleware, the approach to distributed configuration and parameterization appears
to be application synthesis, close integration with the CCM container CIAO, and in
the future advanced meta-programming with reflection [11] and AOP [12]. How
these distributed applications and each (non-modeled-)artifact are managed and con-
figured in each operational environment variant over their lifetime, in conjunction
with potential overlapping integration that occurs in SOA environments, is not de-
tailed. While beyond the scope of this paper, in a model-centric environment a unify-
ing approach for artifact metadata could conceptually, via XML Metadata Inter-
change (XMI) and the Meta-Object Facility (MOF), be integrated into such a tool
chain to address various deployment, configuration, and parameterization aspects for
artifacts at development-, initialization-, and run-time.

While viewpoints differ, Grid initiatives such as the Globus Alliance are primarily
focused on resource sharing, security, performance, QoS, and the larger provisioning
problem [13] with runtime interoperability protocols and toolkit APIs in view. Many
(legacy) software artifacts are and will remain outside of this scope, yet the Grid
resources being shared, e.g. via WSRF [14], may well be dependent on these hidden
artifacts and their proper distributed configuration, management, and parameteriza-
tion. A unified and cost efficient approach to these challenges is needed.

3 Solution Approach

To discuss the solution approach, it is helpful to work with an example that also illus-
trates the various challenges when different inter-related and inter-dependent software
components, services, applications, frameworks, and infrastructures are combined.
Although this illustration was realized for test purposes, the intent of this illustration
is not to show an ideal distributed application, but rather to bring to the forefront the
issues diverse artifacts and infrastructures can create.

As to solution constraints, no interference in the interfaces, installation, communi-
cation, and interactions between or within a module should necessarily occur, nor
should changes be required to a module. Thus, encapsulation is not to be enforced,
but rather a mechanism for developers to manually supply the relevant and missing
metadata is provided, which may be partial but sufficient for the operational tasks.
The relative simplicity and ubiquity of XML is a desirable quality to further adoption
and standardization efforts, supports the rapid creation of missing module descrip-
tions, and avoids coupling to the artifact itself (in contrast to JMX). Reuse of speci-
fied configurations and module descriptions as well as a lifecycle management
mechanism shall be supported. Emphasis should be given to enhanced support for an
operational view, benefiting operators, developers, and testers. Due to a lack of im-
plementations and tools to realize this approach, a framework is necessary to interpret
the configuration and module descriptions and manage the modules.

Fig. 1. Problem view showing sample distributed application interactions using di-
verse software artifacts

In Fig. 1 the problem view is presented using an illustration. Given a JBoss-ported
reference J2EE PetStore enterprise application (PetStoreEAR) that is dependent on a
J2EE application server JBossto become operational, this grouping of software arti-
facts can be considered a configuration PetStore. Another grouping, called the Per-
sistenceService, consists of an XML persistence Web Service (PersistenceAxisWS)
that abstracts XML Native Database (XND) differences, is based on the Apache Axis
WS framework, is deployed as a web application (WAR) within a web server
(Apache Tomcat), and uses Apache Xindice as an XND. Now hypothetically, with-
out modifying either of these configurations, a PetStoreSupplier distributed applica-
tion configuration would like to intercept all placed orders to the PetStore configura-
tion, e.g. via an HTTP Proxy with interception capability (called WSBroker), persist
these orders as XML via the PersistenceService configuration, and provide tracing
data to a tracing Web Service implemented with the webmethods GLUE WS toolkit
(TracingGlueWS). Note that the problem space could involve non-Java software.

To converge on a solution, the problem domain was partitioned into three separate
areas:
1. The first area dealt with module description: what are the common attributes of

software artifacts or modules that should typically be described, how should they
be described, and what strategies can be used to reduce redundancy, manage
change, and keep the involved effort and maintenance low?

2. The second area dealt with configuration description: how should modules best be
flexibly aggregated into a grouping, how can redundancy be reduced, and how can
the reuse or propagation of configurations be supported?

3. The third area consisted of the distributed software infrastructure necessary for
supporting the lifecycle of modules and configurations with minimal intrusion and
constraints in a diverse software landscape.

As a starting point, the FAST Framework will provide the overall structure neces-

sary for lifecycle management, configuration support, and any common and shared
modules and tools, shown in Fig. 2 using the problem example from Fig. 1. Discus-
sion of modules, configurations, and containers follows.

Fig. 2. Sample distributed application with the FAST Framework, showing contain-
ners, modules, configurations, and sub-configurations

3.1 Modules

As modularity plays a key role in dealing with complexity, for this paper, a module is
an abstraction for the partitioning of a (semi-)independent unit of software (software
artifact) required by an application, at any desired abstraction level, and can include
frameworks, services, components, packaged applications, web and application serv-
ers, documentation, etc. For reuse, extensibility, and flexibility, a module is de-
scribed via an XML-based Module Descriptor File (MDF), as seen in Fig. 2. This
MDF supplies the necessary and desired metadata, typically the information required
for its lifecycle management along with any additional information, as shown in the
example in Listing 1. Note that an XML Schema definition specifies the allowable
values, and is not shown due to space constraints.

Listing 1. Module Descriptor File (MDF) example

<module name="PersistenceAxisWS" uid="1422756542">
 <description>
 <category>soa.ws.persistence</category>
 <author>John Doe</author>
 <timestamp> 27-Apr-04 9:12:14.06 GMT</timestamp>
 <version>1.0</version>
...
 </description>
 <dependencies>
 <query id="1" type="module">
 <name>Xindice</name>
 </query>
 <query id="2" type="module">
 <name>Tomcat</name>
 <version min="4.1" max="5.0.19"/>
 </query>
 <query id="3" type="module">
 <name>Axis</name>
 </query>
 </dependencies>
 <management>
 <instances min="0" max="1">
 <instance nbr="1">
 <port>9876</port>
 </instance>
 </instances>
 <lifecycle>
...
 <task type="uninstall">
 <cmd type="ant">
 undeploy/tomcat_undeploywar.xml</cmd>
 </task>
 </lifecycle>
 <templates>
 <template name="axis_webservice" version="1.0">
 <settings>
 <setting name="ws_uri" value="http://${env.ip}:
 ${instance.port}/axis/PersistenceAxisWS"/>
 </settings>
 </template>
 </templates>
 </management>
 <tools>
 <query id="3" type="module">
 <name>Axis TCP Monitor</name>
 </query>
 </tools>
 <documentation>
 <query id="4" type="module">
 <name>Command-Line</name>
 <parameters>
 <parameter>-DCMD</parameter>
 <parameter>docs/PWS-UserGuide.pdf</parameter>
 </parameters>
 </query>
 </documentation>
</module>

Each module is given a name and a uid attribute that allows the unique identifi-
cation of an MDF. Various options can be used to generate the uid, such as tools or
the use of a central uid provider. Digital signatures could be included to permit crea-
tor verification and detect content tampering. Under description, information
about the MDF itself is included. The element dependencies specifies modules
necessary for this module to function properly. Hereby dependencies use que-
ry, which allow constraints to be specified (name, version, location, etc.) and are
resolved at runtime to find a matching candidate, e.g., the best, a range, or exactly one
required candidate of the available modules known to the Container.

Under management, the number of instances of this module that can be
started as well as any instance-specific parameters can be specified. The module
lifecycle transitions can be associated with actions to be performed, and are specified
under lifecycle with task (see Fig. 3). Because all module types should be
supportable and creating multiple processes is not always desirable for resource-
constrained contexts, different external process (e.g. Apache Ant) and internal proc-
ess (e.g., same Java Virtual Machine) cmd (command) types, including parameters,
are supported for lifecycle management. One feature (not shown) is the ability to
specify a pattern for lifecycle progress and error checking in the output files of exter-
nal modules.

Fig. 3. Module and configuration typical lifecycle state diagram (additional states supported)

A template, defined in an XML Schema definition (not shown), allows the in-
clusion of pre-specified XML, and is a contract in the sense that a module that incor-
porates template indicates that it fulfills its requirements, e.g. requirements for
interfaces or protocols that must be supported, pre-configuration of parameters, valid
parameter ranges, etc. Templates are analogous in some ways to a class; they can be
instantiated with parameters and support inheritance, thus hierarchies of templates are
possible as well as overriding of default settings. The template contract in a mod-
ule can be validated against the template’s XML Schema definition. In this case, the
axis_webservice template schema (not shown) includes the AXIS template
schema (not shown) which specifies the HTTP, SOAP, and WSDL versions that are
supported, and specifies the ws_uri value. Note that setting is used to set pa-
rameters for a software artifact; for artifact configuration settings in text files, scripts
(e.g. sed, python) are supported, for XML files XSLT, and JMX is used for runtime
(re-)configuration support. While templates are optional, for maximum reuse effec-
tiveness, they should be specified and propagated, e.g. via a central repository. This
specification could be done in both general and domain-specific areas via standards
bodies, consisting of software vendors, research institutes, etc.

Under tools, any tools associated with this module can be included, while
documentation provides the queries (e.g. commands) or links to retrieve the
documentation associated with this module.

MDFs allow the information for a module to be described and associated once, and
then reused in many different configurations.

3.2 Configurations

Configurations are a hierarchical composition of modules or sub-configurations and
described in a Configuration Descriptor File (CDF), as seen in Fig. 2. A set of que-
ries is used to allow maximum flexibility in specifying and resolving the actual mod-
ules or configurations, while minimizing redundant information. Sub-configurations
allow a hierarchical reuse in the specification of configurations, e.g. in Fig. 2 both the
PersistenceService and the PetStore are sub-configurations of the PetstoreSupplier
configuration.

Listing 2. Configuration Descriptor File (CDF) example

<configuration name="PetStoreSupplier" uid="4968365039">
 <description>
 <category>application.demo</category>
 <author>John Doe</author>
 <timestamp> 27-Apr-04 9:51:14.06 GMT</timestamp>
 <version>1.0</version>
...
 </description>
 <dependencies>
 <query id="1" type="module">
 <name>TracingGlueWS</name>
 </query>
 <query id="2" type="module" startuporder="1"
 location="localhost">
 <name>WSBroker</name>
 </query>
 <query id="3" type="config" startuporder="1, 4"
 location="strategy_best">
 <name>PetStore</name>
 </query>
 <query id="4" type="config" startuporder="1"
 location="192.168.3.100">
 <name>PersistenceService</name>
 </query>
 </dependencies>
 <management>
 <instances min="0" max="1"/>
 <lifecycle/>
 </management>
 <tools/>
 <documentation/>
</configuration>

An example of a CDF is shown in Listing 2. The name and uid attribute are

equivalent to that described for MDFs, as are the description, dependencies,

management, etc. The number of instances allowed of this configuration among a
set of containers may be specified by instances if it does not conflict with the sum
of the underlying MDFs and CDFs constraints.

As to startup ordering, by default parallel or independent lifecycles are assumed
unless the startuporder attribute is included as an attribute specifying a sequen-
tial list of one or more queries that must first be successfully started. Different strate-
gies for the distribution of a configuration can be used. The location attribute in a
query is optional, and allows either an IP address to be specified, the name of a strat-
egy, e.g. strategy_best, or a DNS hostname. If no location is specified, then the
Container will decide based on its default strategy. For distributed configurations
with unspecified location attributes, the master or hosting Container (the first to start
the “init” transition) annotates the location information before distributing the con-
figuration, thus ensuring that other Containers can determine their responsibilities.

The lifecycle of configurations are equivalent to those of modules (see Fig. 3).

3.3 Containers

A Container non-intrusively manages the lifecycle its software modules or configura-
tions. As a form of bootstrapping, its CDF specifies its own core modules. It also
supplies its own MDF, as shown in Fig. 2, to describe its capabilities and states. Any
extensions to the Container are done as modules via MDFs, providing a plug-in capa-
bility. At a minimum (equivalent to an empty Container CDF), the Container con-
tains the software for parsing MDF/CDFs and lifecycle management, allowing it to be
lightweight for resource-constrained contexts. Containers can optionally interact via
the Container Discovery and related modules to support the distribution of metadata
and the discovery of remote configurations and modules. Any inter-Container inter-
action is done via XML-based protocols to better support interoperability with het-
erogeneous Container implementations.

4 Solution Realization

While the reference implementation is Java-based, the solution approach can be im-
plemented for a wide variety of platforms and languages while supporting interopera-
bility, due to the reliance on XML for metadata (MDFs and CDFs) and inter-
Container protocols (SOAP and JXTA [15]). The following provides insight into the
realization while elaborating the potential of this approach. The inclusion of various
modules listed below supports basic to enhanced framework configurations depend-
ing on the requirements.

4.1 Container

For each module that the Container manages, a Module Manager is allocated, shown
as MMn in Fig. 2. Likewise, for each configuration being managed, a Configuration

Manager (CCn in Fig. 2) is allocated. DOM4J was used to parse the needed MDF
and CDF information into Java objects. Dependencies are resolved to determine
lifecycle sequencing. Support for Apache Ant was integrated as a task type. A Con-
tainer shell allows command control of the container.

4.2 Modules

Over 50 module descriptions for various software artifacts were created in the current
FAST distribution, verifying that it can support many different types of modules.
Below are some examples of infrastructural modules, which can be viewed as a Con-
tainer extensibility mechanism:
� Container Discovery Module. Responsible for advertising the existence or

change of its modules and configurations to other Containers and detecting other
Containers and their state changes. Currently JXTA advertisements are used, how-
ever other discovery mechanisms, including registries, can be supported.

� Container Management Web Service Module. This optional module supports
remote management via SOAP, providing module and configuration descriptor re-
trieval.

� Deployer Service Module. This module supports the deployment of software as a
container-independent, distributed, transactional, discoverable deployment service
with adapters for various containers (JBoss, OSGi Oscar, Java VM, etc.). A GUI,
as shown in Fig. 4, provides operators insight into the location and dependencies
within deployment units.

� Web Services Broker (WSBroker) Module. An optional module that contains
an HTTP Proxy combined with an interception framework that includes the
Apache Bean Scripting Framework, allowing Java- or script-based interceptors
that provide a variation point for technically trained operators to perform routing,
logging, or other functions.

� Web Services Registry (WSRegistry) Module. This optional module contains a
UDDI-protocol-compliant mechanism to access Web Services.

� Tracing Web Service (TWS) Module. This optional module enables the moni-
toring of operational interactions between modules via built-in or interception
(e.g., WSBroker) mechanisms, and made available to tooling for the operational
view.

� Persistence Web Service Module. This optional module provides a generic Web
Service interface to persist data in different XML storage mechanisms.

5

Fig. 4. Screenshot of the FAST Deployer GUI

Solution Results

While many possible criteria could be used to evaluate the solution, tests were chosen
that would answer the following questions regarding practical suitability: Does dis-
tributed provisioning show significant performance advantages over local provision-
ing? How does the amount of time for software (re-)deployment (transfer) compare
to any potential gain via distribution? How fast does the infrastructure react to faults?
What is the memory footprint and scalability profile? How usable was the solution in
practice?

The hardware consisted of two Fujitsu Siemens Scenic W600, i8656 (model MTR-
D1567) PCs with dual 3GHz CPUs connected by a 100MBit Ethernet LAN and a
hub. PC100 had 512MB and PC101 768MB RAM. The software configuration was
Windows XP SP1, JXTA 2.2, WebMethods Glue 4.1.2, and Java JDK 1.4.2. Note
that no performance or memory tuning was done to the implementation, and for re-
source-constrained scenarios another XML-based discovery mechanism could be
used.

Table 1. Distributed Application Provisioning Test module startup times in milliseconds for a
diverse software configuration locally and distributed across 2 PCs.

Module name
(time in msec)

Local
PC100

Local
PC101

Distributed (PC100
except *=on PC101)

Demo Supplier Config. (start) 0 0 0
Jini 1.2.1 HttpServer 1234 2750 1594
Jini 1.2.1 RMIDaemon 1359 4391 1782
Jini 1.2.1 LookupServer 1390 5657 2063
Jini 1.2.1 TransactionManager 1468 6000 2328
James 2.1 Email Server* 4015 4641 5360
TracingWebService 6515 7391 5907
Jini 1.2.1 JavaSpaces 6687 7438 6282
ScriptService 12515 11047 11360
Apache Xindice XML DB 1.0 13234 8250 8750
SupplierOrderWebService 11734 12344 11938
WebServiceBroker* 6671 5797 5516
Jakarta Tomcat 5.0.16 25359 23625 18719
JBoss 3.2.1* 41156 35782 18938
Configuration ready 41656 35782 19375

Table 2. Maximum heap space used by the Container under various conditions

Container Condition
(WS=ContainerWebService)

Max Heap
Used

A: No modules loaded; WS and JXTA disabled 1MB
B: 50 modules loaded; WS and JXTA disabled 1.2MB
C: No modules loaded; WS enabled; JXTA disabled 2.2MB
D: No modules loaded; WS and JXTA enabled 7MB
E: No modules loaded; WS and JXTA enabled; Peer advertisement of
50 module states received from 2nd Container

7.5MB

The Distributed Application Provisioning Test (Table 1) used 13 modules in a

Configuration as shown in Table 1, first measuring their local startup times and then
the time when the configuration was distributed across both machines, showing
nearly a factor 2 improvement for the application to become ready. By making the
distribution of module locations easy, performance gains for startup and shutdown
can be reached (due to parallelism). This could improve development cycle efficien-
cies and application testing realism.

The Deployment Unit Transfer Test determines the amount of time needed to
transfer a file by the FAST Deployer into a remote EJB container. The time to re-
motely deploy from PC100 to PC101 a new 1236KB petstore.ear (modified to run on
JBoss) was measured to be 3.4 seconds. While this shows a need for improvement, it
does not invalidate the case for distributed provisioning when compared to the shown
performance gains for typical software artifacts.

Fig. 5. The FAST Cockpit showing a graphical representation of a configuration of modules
(as spheres) with directed lines of interactions and dependencies

The Failure Reconfiguration Test shows the reaction time of the infrastructure to a
module failure in a distributed configuration. The James Email Server process was
killed on PC100. The reaction time was 200ms from detection of a state change on
PC100 through sending of a state-changed advertisement, to receipt on PC101 to the
point where it begins to start its local James Email Server module. Thus the infra-
structure reaction time would not typically be the primary factor, but rather module
startup time.

In the Memory Footprint Test (Table 2), the heap space of the Container on PC100
was measured under various circumstances as shown in Table 2. The difference
between condition B and A shows that under most expected scenarios, managing
even a large number of modules does not affect the memory footprint significantly.
Thus the solution could potentially be applied to resource-constrained contexts.

Other criteria include the experience with usage of the solution realization within
the organization. A GUI tool, the FAST Cockpit (see Fig. 5), was developed to dem-
onstrate the operator-friendly possibilities once MDFs, CDFs, and Containers are
available. Configurations with their associated modules are listed in the top-left box
and can be created by drag-and-drop of installed modules - categorized both in the
bottom-left and with sphere colors. Animated tracing with playback is operated with
buttons on the top menu and the event slider at the bottom of the configuration. The

status of modules is represented with colored fonts and icons and module outputs are
available in separate windows.

An internal distribution among colleagues in the organization has enabled the op-
eration of complex configurations of distributed applications without the operator
necessarily being aware of the infrastructural issues and dependencies involved.
Based on feedback, a significant improvement in the time required to specify, com-
pose, and instantiate distributed applications has been observed as well as compre-
hension benefits. Note that the amount of time needed to create an MDF depends on
the person’s skills and the familiarity with the software being described and MDF
concepts, but times of less than 15 minutes have been measured. The time to create a
CDF using the Cockpit is a matter of drag-and-drop of modules and any startup se-
quence dependency specification. Thus, the investment in the one-time MDF crea-
tion typically pays off quickly, analogous to the investment in a makefile.

The feasibility, suitability, and advantages of this approach were hereby validated,
and future work will continue to improve these results.

6 Conclusion

Despite the growing marketplace competitiveness and pressure for faster software
delivery schedules, the challenges with regard to composing, configuring, deploying,
and operating distributed applications in a diverse software landscape have not re-
ceived adequate attention. There remains no unifying, widely adopted, practical, and
economic solution.

While the current FAST realization has shown good results, ongoing and future
work includes determining to what degree the security, policies, QoS and Service-
Level-Agreements can be addressed without annulling the current simplicity and
interoperability; correctness; concurrent configuration conflict checking; addressing
any single-points-of-failure; performance and memory tuning; a repository for MDF
and CDF propagation; a wizard for MDF creation; evaluating the issue of semantics
in MDFs and CDFs; and efforts towards more prevalent, standard, or unified software
artifact metadata.

FAST presents a practical solution to the current gap with regard to both the goal
of distributed application composition in this diverse landscape and given constraints
such as effort, cost, and others. A comprehensive solution could be realized by uni-
versal software standardization efforts for flexible-granularity and flexible-aspect
(e.g. operational) software metadata, in combination with platform, development
environment, and tool vendor support for utilizing this metadata.

7 Acknowledgements

The author would like to thank the following individuals for their efforts with regard
to various aspects of FAST: Ulrich Dinger, Emmanuel Gabbud, Christoph Huter,
Klaus Jank, Josef Pichler, Christian Reichel, and Martin Saler.

References

1. Anderson, P., Beckett, G., Kavoussanakis, K., Mecheneau, G., Toft, P.: Experiences and
Challenges of Large-Scale System Configuration. (2003)
http://www.epcc.ed.ac.uk/gridweaver/

2. Oberleitner, J., Gschwind, T., Jazayeri, M.: The Vienna Component Framework: Enabling
Composition Across Component Models. Proceedings of the 25th International Conference
on Software Engineering (ICSE). IEEE Press (2003)

3. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J., Wagner, R., Wendehals, L.,
Zuendorf, A.: Tool Integration at the Meta-Model Level within the FUJABA Tool Suite. In
Proc. of the Workshop on Tool-Integration in System Development (TIS), ESEC/FSE 2003
Workshop 3. Helsinki, Finland (2003)

4. Lüer, C., van der Hoek, A.: Composition Environments for Deployable Software Compo-
nents. Technical Report 02-18. Department of Information and Computer Science, Univer-
sity of California, Irvine (2002)

5. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: SmartFrog: Con-
figuration and Automatic Ignition of Distributed Applications. HP OVUA (2003)

6. Jini Rio: http://rio.jini.org/
7. Object Management Group: Model-Driven Architecture (MDA) - A Technical Perspective,

ormsc/2001-07-01 edition (2001)
8. Gokhale, A., Schmidt, D., Natarajan, B., Wang, N.: Applying Model-Integrated Computing

to Component Middleware and Enterprise Applications. Special issue of Communications
of ACM on Enterprise Components, Services, and Business Rules, Vol 45, No 10, Oct
(2002)

9. Wang, N., Natarajan, B., Schmidt, D., Gokhale, A.: Using Model-Integrated Computing to
Compose Web Services for Distributed Real-time and Embedded Applications.
www.cs.wustl.edu/~schmidt/PDF/webservices.pdf

10. Gokhale, A., Natarjan, B., Schmidt, D., Wang, N., Neema, S., Bapty, T., Parsons, J., Gray,
J., Nechypurenko, A.: CoSMIC: An MDA Generative Tool for Distributed Real-time and
Embdedded Component Middleware and Applications. In Proceedings of the OOPSLA
2002 Workshop on Generative Techniques in the Context of Model Driven Architecture.
ACM, Nov. (2002)

11. Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L., Campbell, R.: Monitor-
ing, Security, and Dynamic Configuration with the dynamicTAO Reflective ORB. In Pro-
ceedings of the Middleware 2000 Conference. ACM/IFIP, Apr. (2000)

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In Proceedings of the 11th European Conference on Object-
Oriented Programming, June (1997)

13. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications and High Performance
Computing, 15(3) (2001)

14. WS-Resource Framework (WSRF) http://www.globus.org/wsrf/
15. JXTA: http://www.jxta.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

