
A Semantic Web Services Approach Towards Automated Software Engineering

Ulrich Dinger
TU Dresden

Hans-Grundig-Str. 25
01062 Dresden, Germany

dinger@rn.inf.tu-dresden.de

Roy Oberhauser
Aalen University
Beethovenstr. 1

73430 Aalen, Germany
roy.oberhauser@htw-aalen.de

Christian Reichel
ETH Zurich

Universitystr. 6, CAB F57
CH-8092 Zurich

christian.reichel@inf.ethz.ch

Abstract

The growing complexity of software, combined with
demands for greater productivity and shorter cycles,
creates an increasing demand for more automation and
integration within the software engineering (SE) domain.
When viewed holistically, the heterogeneous nature,
implicit feature cross-dependencies, and manual
administration of the toolchain infrastructure results in
unnecessary complexity, inefficiencies, and reduced
reliability for the SE process. A common infrastructure is
missing that provides an interoperable and distributed
tool environment, addresses feature dependency selection,
and automates toolchain workflow composition and
execution. To address these challenges, this paper
explores the practicality of a unifying Semantic Web
Services approach towards Automated Software
Engineering (SWS-ASE).

1. Introduction

The W3C, OASIS and several organizations, such as
the SWSI, SWSS, DAML group and the WSMO
organization, have developed various specifications and
approaches in order to support Service Oriented
Architectures (SOAs)/Web Services (WS) and the
Semantic Web vision [1]. The basic principles of the
Semantic Web vision are applicable and beneficial to
certain challenges facing the software engineering (SE)
domain, especially with regard to expressing a subset of
SE information in a machine-processable (and thus
automatable) form [2].

For the SE domain, there is a continuous and growing
demand to produce software in shorter cycles with higher
productivity and quality. Currently, heterogeneous
toolchains (e.g, MDA and AOP frameworks, build and
deployment tools) common in SE creates difficulties
when viewed holistically from an Automated Software
Engineering (ASE) perspective. For instance, the large
set of explicit and implicit feature choices made during
various SE process stages mean that their effects are not
always apparent. This is often due to implicit
dependencies elsewhere in the toolchain workflow that in

turn affect both SE product and process qualities. The
lack of machine-processable feature classifications spans
technology and design choices to ISO 9126 quality
attribute tradeoffs. A further issue is that the manual steps
(or manually-created toolchain workflows) between tools
become brittle, include implicit assumptions, and are
time-consuming to adapt. Semantic information about
what a tool does, the transformations it performs, what
input formats are expected, what output formats are
generated, etc. are not easily accessible or machine-
processable. A third issue is the lack of standardization,
distribution, and efficient asset management in the tool
arena (e.g., search, compatibility issues, integration, and
update notifications), making tool software assets costly,
and the process error-prone.

In order to improve this situation, a comprehensive and
unifying approach called SWS-ASE is explored that
automates the selection and composition of tool
functionality. The key ideas are to attach semantic
information to existing SE tools, to create a tool registry
of distributed and local services, to use reasoning engines
for automatic composition and, therewith, to bootstrap
Semantic Web Services for the SE process of WS-based
applications. Using such an approach yields significant
benefits by:

1) Amalgamating heterogeneous, distributed tool
functionality in a standardized way

2) Improving feature dependency selection support
using a classification system

3) Automating toolchain workflow composition and
execution

While it is unrealistic to expect complete automation
under all circumstances, SWS-ASE enhances the
engineer’s capabilities and provides CASE-like benefits
to the SE domain, especially with regard to usability,
reliability, and efficiency.

2. The SWS-ASE domain model

Ontologies for the SE domain are an ongoing research
area [3]. The SWS-ASE ontology is currently divided
into four sub-ontologies. The first one represents the sub-

domain of target technologies that relate to execution
environments. The second ontology introduces the
“feature” concept which is able to describe certain
characteristics or qualities of a piece of software such as
those defined in the ISO 9126 standard. The
“specification wrapper” ontology is the third ontology and
provides the semantic links (wrappers) for existing
programming languages and standards (such as Java,
BPEL, and the Service Language Layer (SLL) [4]
described later). The fourth ontology describes the set
concepts that relate to the “application logic” concept,
e.g., workflow parts such as asynchronous or synchronous
calls. In order to decorate an application logic part (e.g.,
within a Java document) with specific characteristics, a
feature list (e.g., security, profiling, etc.) can be attached.

3. SWS-ASE process

Essentially, the complete SWS-ASE process comprises
five steps: service registration, knowledge retrieval,
request assembling, workflow planning, and workflow
execution. First, the service provider generates and
publishes a semantic service description in the service
registry. A reliability check validates this description. At
a later point in time, a requestor (such as an engineer,
deployer) formulates a request (with the help of a
software tool) that results in a semantic request that is
submitted to the semantic reasoner. The reasoner then
retrieves the information of all known services (using the
service registry) and plans the workflow(s) that fulfills the
semantic request. The user can then submit the planned
workflow for execution by a workflow engine and
receives the result.

3.1 Service registration

The implementation of the solution approach is based
on a SOA with WS. Thus, all created WS encapsulate a
certain piece of functionality that can be reused within the
SE process. Additionally, each service is annotated with
semantic information, which describes the pre-/post-
conditions (PRC/POC) and effects (E) of a specific
service operation. This information is stored in the
service registry.

As an example for registered SWS, the
AddSecurityService of Listing 1 provides semantic
information for its addSecurity operation using SLL [4],
which was developed as a special-purpose, platform
independent WS programming language, e.g., to provide
better mapping capabilities to different target platforms
and technologies.

As shown in line 30, the operation precondition uses a
rule from the SE domain that states that the input concept
I1 (SLL program) must not have the message encryption
feature. Additionally, the effect section states that the

output O1) inherits all features from the input (line 36)
and the feature message encryption is added (line 38).

Listing 1. AddSecurityService

Table 1 shows some entries of the service registry.

Along with the service name, operation-specific semantic
input and output ids and concepts (cp. the semantic
signature of listing 1) are provided. The semantic
description includes the type as well as the facts/rules.
The following abbreviations of domain specific rules are
used in the last column: supportFeatures (sF),
prohibitFeatures (pF), hasMinimumOneFeature (hMOF),
copyFeature(cF) and addFeature(aF). All other services
of the service registry are described similarly.

3.2 Request assembling

In order to automatically convert and deploy a
theoretical Service (BookService), the requestor
formulates the desired objective as a semantic request.
The tuple Rq=(G, S, T, F) represents a request, where
G=(C, E) is the directed graph, S ⊆ C the set of start
concepts, T ⊆ C the set of target concepts with T∩S=∅,
and F the set of desired features. In the case of a
deployment request for the BookService, the following
elements could be assigned:

S={dm#sll, dm#config}
T={dm#report}
F={dm#message_encryption, dm#profiling,
 dm#async_call, dm#deployment/target=#dm:JBoss}

Table 1. Service registry entries

3.3 Workflow planning

In the context of Web service composition, ongoing
research into the fundamental problems of workflow
planning include AI planning [5] and the automatic
composition of WS [6]. In the domain of SE, two typical
scenarios occur that must be covered by an algorithm: a)
The calculation of all workflow alternatives for a specific
request b) The calculation of an optimal workflow for the
request that fulfills a certain criterion (best calculation
time, shortest workflow, etc.).

However, both planning problems are NP-hard. To
provide better performance, the underlying planning
algorithm can use case-specific strategies, including Hill-
climbing and heuristic methods. For example, in the
current SWS-ASE implementation, the evaluation of the
planning state to approximate the distance between the
initial states S and the target states T is realized via an
integrated Relaxed Graphplan heuristic [7]. In addition to
heuristics, additional information is calculated for each
state (e.g., the set of helpful rules R). This reduces the
branching factor for typical SE scenarios where a fast
initial result is needed. Furthermore, specific restrictions
(e.g., max. 10 composite services, timeouts) and
prohibitions for certain workflow patterns (permutations,
sequential execution of independent services) are made.

3.4 Workflow execution

The result of the preceding planning phase is the
generated graph W=(C, E) for a specific semantic request,
which connects a set of WS from the service registry.
Therefore, the graph W can be represented as a WS
written, e.g., in BPEL or SLL [4]. One generated
workflow for the aforementioned BookService
deployment request is illustrated in Figure 2.

Figure 2. BookService Deployment Workflow

Assuming the BookService was modeled in UML and
converted to SLL, the SLL document together with a
configuration document serve as input S to the workflow
(upper left boxes) where the output T is shown as a report
box. In the first step, the AddSecurityService is called in
order to weave in the message_encryption feature (as an
aspect) in the SLL program. The SLL2WSDLService
generates a WSDL-S description from the SLL service
input. In parallel, the SLL program is transformed into an
EJB that comprises a set of Java files. This set of Java
files is compiled via the JavaCompileService. The
ProfilingService instruments the class files to enable the
requested profiling capabilities. All class files along with
the WSDL-S are bundled via the BundlingService. In the
last step, the EJB bundle is deployed and registered using
the DeploymentService. The output of the last service is a
concept called report containing information about the
deployment action.

3.5 Feature configurator

Figure 3 shows the graphical user interface for the
specification of desired application features (feature
modeling) in the context of workflow planning and
execution. The given input (BookService, configuration)
and desired output concepts (report) of a specific SE
planning request can be added as boxes on the left. In this
state, the composite SE process is not yet planned and
available (cp. Figure 2). On the right, the feature
configurator is shown, which allows a tree-based and
explicit selection of the desired application features.
When the feature selection is completed, the “Generate

semantic
inputs

Semantic
outputs

semantic service
name

id concept id concept type rules/facts
I1 bpel PRC sF(I1, [‘workflow’,...])BPEL2

SLL I2 config
O1 sll

E cF (I1, O1)
I3 sll O2 depl_co

nfig
E cF (I3, O3) SLL2E

JB
I4 config O3 xjava* E aF (O3, [‘#ebj2.0’])

SLL2
WSDL
S

I5 sll O4 wsdls E cF (I5, O4)

JavaCo
mpile

I6 xjava* O5 xclass* E cF (I6, O5)

PRC pF (I7,
[‘#op_call_tracing’])

E cF (I7, O6)

AddTra
cing

I7 xjava* O6 xjava*

E aF (I7,
[‘#op_call_tracing’])

I8 sll PRC pF (I8,
[‘#message_encryption
’])

E cF (I8, O7)

AddSe
curity

I9 config

O7 sll

E aF (O7, [‘
message_encryption’])

I12 xclass* PRC hF (I12, [‘#ejb2.0’])
PRC pF (I12, [‘#bundled’])
PRC cF (I12, O9)

Bundli
ng I13 wsdls

O9 bundle

PRC aF (O9, [‘#bundled’])

workflow(s)” link launches the SWS-ASE process and
automatically generates a valid workflow based on the
given strategy parameters.

Figure 3. Feature configurator view

4. Results and conclusion

The SWS-ASE results show that such an approach
yields promising quality improvements for common SE
tasks (such as automated toolchain composition and
execution) and that major parts of the SWS-ASE
underlying vision can already be applied. By preparing
and registering tool functionality as SWS, an automated
SE process was realized that is able to provide a way of
amalgamating heterogeneous, distributed tool
functionality in a standardized way. In this context, user-
specific views such as the Feature Configurator were
created to improve usability by hiding technology-specific
details and enabling feature-driven application
development.

SWS-ASE provides the capability for indicating the
direction and degree of influence to quality characteristics
of any given feature choice (given the appropriate
ontology and rules), thus illuminating the impact of a set
of feature choices to the overall quality. For example, the
choice of asynchronicity potentially enhances scalability
and efficiency, while potentially reducing response time
and maintainability. These quality tradeoffs can thus be
weighed more explicitly by an engineer, and various
quality priorities and optimizations are selectable to
achieve a certain quality goal. Thus, compared with a
manual SE process, fewer deployment and runtime errors
occur due to the inherent dependency and relation checks
within the creation phase (reasoning) of the SE toolchain.

To measure efficiency, various measurement sets were
executed, including response time and scalability
measurements for two typical search problems that occur
in the planning phase:

a) Find the first workflow that fulfills the request.

b) Find the set of all possible workflows.

In this context, the scalability measurement sets, which
are not illustrated here, showed that the calculation of all
possible workflow combinations would cause
unacceptable results for a typical registry size of 50
services. However, an initial/next workflow variant was
available after an acceptable period of time (e.g., 0.92sec
for 50 services) sufficient for most SE planning tasks.
Additionally, SWS-ASE shows that typical SE feature
selections can be reasonably handled when the
appropriate algorithms and heuristics are applied together
with constraints that reduce the set of possible
combinations. Fundamentally, the enhanced automation
of the SE process yields improved usability, reliability,
and efficiency.

Some inherent risks of the SWS-ASE are that the
overall process quality strongly depends on the
correctness of the semantic descriptions, and that the
number of relationships (regarding possible I/O
connections, feature cross-dependencies, etc.) increases
exponentially with the number of involved services.
Nevertheless, the SE domain has much to gain from the
SWS vision and the enhanced automation capabilities it
could bring. By improving the integration of the software
tool infrastructure with semantically-enhanced tools while
planning and automating workflows based on desired
features, the SWS-ASE approach shows that significant
benefits are realizable that support and enhance the
quality of software engineering products and processes.

5. References

[1] Berners-Lee, T., Fischetti, M.: “Weaving the Web – The
original design and ultimate destiny of the World Wide Web, by
its inventor, Harper San Francisco; 1st edition, September 1999.

[2] Tetlow, P., et al., “Ontology Driven Architectures and
Potential Uses of the Semantic Web in Systems and Software
Engineering”, W3C Working Draft, Oct. 2005.

[3] Wongthongtham, P., “Software Engineering Ontologies and
Their Implementation”, Proceedings of the IASTED Conference
on Software Engineering, 2005, pp. 208-213.

[4] Kossmann, D., Reichel, C., “SLL: Running my Web
Services on Your WS Platforms”, Proceedings of ICWS 2005,
Industry Track, July 2005. Also see www.open-xl.org.

[5] Medjahed, B., et al. “Composing Web services on the
Semantic Web,” The VLDB Journal, Volume 12, Issue 4,
November 2003, pp. 333 – 351.

[6] B. Aleman-Meza, I. B. Arpinar, and R. Zhang, “Automatic
Composition of Semantic Web Services”, in Proceedings of
ICWS03, pgs: 38-41, Las Vegas, USA, 23-26 June, 2003.

[7] J. Hoffmann, B. Nebel, “The FF Planning System: Fast Plan
Generation Through Heuristic Search”, Journal of Artificial
Intelligence Research, Volume 14, 2001, pp. 253 - 302.

