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Abstract 
 

The growing complexity of software, combined with 
demands for greater productivity and shorter cycles, 
creates an increasing demand for more automation and 
integration within the software engineering (SE) domain.  
When viewed holistically, the heterogeneous nature, 
implicit feature cross-dependencies, and manual 
administration of the toolchain infrastructure results in 
unnecessary complexity, inefficiencies, and reduced 
reliability for the SE process.  A common infrastructure is 
missing that provides an interoperable and distributed 
tool environment, addresses feature dependency selection, 
and automates toolchain workflow composition and 
execution.  To address these challenges, this paper 
explores the practicality of a unifying Semantic Web 
Services approach towards Automated Software 
Engineering (SWS-ASE).   

 

1. Introduction 

The W3C, OASIS and several organizations, such as 
the SWSI, SWSS, DAML group and the WSMO 
organization, have developed various specifications and 
approaches in order to support Service Oriented 
Architectures (SOAs)/Web Services (WS) and the 
Semantic Web vision [1].  The basic principles of the 
Semantic Web vision are applicable and beneficial to 
certain challenges facing the software engineering (SE) 
domain, especially with regard to expressing a subset of 
SE information in a machine-processable (and thus 
automatable) form [2]. 

For the SE domain, there is a continuous and growing 
demand to produce software in shorter cycles with higher 
productivity and quality.  Currently, heterogeneous 
toolchains (e.g, MDA and AOP frameworks, build and 
deployment tools) common in SE creates difficulties 
when viewed holistically from an Automated Software 
Engineering (ASE) perspective.  For instance, the large 
set of explicit and implicit feature choices made during 
various SE process stages mean that their effects are not 
always apparent.  This is often due to implicit 
dependencies elsewhere in the toolchain workflow that in 

turn affect both SE product and process qualities.  The 
lack of machine-processable feature classifications spans 
technology and design choices to ISO 9126 quality 
attribute tradeoffs.  A further issue is that the manual steps 
(or manually-created toolchain workflows) between tools 
become brittle, include implicit assumptions, and are 
time-consuming to adapt.  Semantic information about 
what a tool does, the transformations it performs, what 
input formats are expected, what output formats are 
generated, etc. are not easily accessible or machine-
processable.  A third issue is the lack of standardization, 
distribution, and efficient asset management in the tool 
arena (e.g., search, compatibility issues, integration, and 
update notifications), making tool software assets costly, 
and the process error-prone.   

In order to improve this situation, a comprehensive and 
unifying approach called SWS-ASE is explored that 
automates the selection and composition of tool 
functionality.  The key ideas are to attach semantic 
information to existing SE tools, to create a tool registry 
of distributed and local services, to use reasoning engines 
for automatic composition and, therewith, to bootstrap 
Semantic Web Services for the SE process of WS-based 
applications.  Using such an approach yields significant 
benefits by: 

 

1) Amalgamating heterogeneous, distributed tool 
functionality in a standardized way 

2) Improving feature dependency selection support 
using a classification system 

3) Automating toolchain workflow composition and 
execution 

While it is unrealistic to expect complete automation 
under all circumstances, SWS-ASE enhances the 
engineer’s capabilities and provides CASE-like benefits 
to the SE domain, especially with regard to usability, 
reliability, and efficiency.  

2. The SWS-ASE domain model 

Ontologies for the SE domain are an ongoing research 
area [3].  The SWS-ASE ontology is currently divided 
into four sub-ontologies.  The first one represents the sub-



domain of target technologies that relate to execution 
environments.  The second ontology introduces the 
“feature” concept which is able to describe certain 
characteristics or qualities of a piece of software such as 
those defined in the ISO 9126 standard.  The 
“specification wrapper” ontology is the third ontology and 
provides the semantic links (wrappers) for existing 
programming languages and standards (such as Java, 
BPEL, and the Service Language Layer (SLL) [4] 
described later). The fourth ontology  describes the set 
concepts that relate to the “application logic” concept, 
e.g., workflow parts such as asynchronous or synchronous 
calls.  In order to decorate an application logic part (e.g., 
within a Java document) with specific characteristics, a 
feature list (e.g., security, profiling, etc.) can be attached.   

3. SWS-ASE process 

Essentially, the complete SWS-ASE process comprises 
five steps: service registration, knowledge retrieval, 
request assembling, workflow planning, and workflow 
execution. First, the service provider generates and 
publishes a semantic service description in the service 
registry.  A reliability check validates this description. At 
a later point in time, a requestor (such as an engineer, 
deployer) formulates a request (with the help of a 
software tool) that results in a semantic request that is 
submitted to the semantic reasoner.  The reasoner then 
retrieves the information of all known services (using the 
service registry) and plans the workflow(s) that fulfills the 
semantic request.  The user can then submit the planned 
workflow for execution by a workflow engine and 
receives the result. 

3.1 Service registration 

The implementation of the solution approach is based 
on a SOA with WS.  Thus, all created WS encapsulate a 
certain piece of functionality that can be reused within the 
SE process.  Additionally, each service is annotated with 
semantic information, which describes the pre-/post-
conditions (PRC/POC) and effects (E) of a specific 
service operation.  This information is stored in the 
service registry.  

As an example for registered SWS, the 
AddSecurityService of Listing 1 provides semantic 
information for its addSecurity operation using SLL [4], 
which was developed as a special-purpose, platform 
independent WS programming language, e.g., to provide 
better mapping capabilities to different target platforms 
and technologies.     

As shown in line 30, the operation precondition uses a 
rule from the SE domain that states that the input concept 
I1 (SLL  program) must not have the message encryption 
feature.  Additionally, the effect section states that the 

output O1) inherits all features from the input (line 36) 
and the feature message encryption is added (line 38).     

 

Listing 1. AddSecurityService 
 
Table 1 shows some entries of the service registry.  

Along with the service name, operation-specific semantic 
input and output ids and concepts (cp. the semantic 
signature of listing 1) are provided.  The semantic 
description includes the type as well as the facts/rules.  
The following abbreviations of domain specific rules are 
used in the last column: supportFeatures (sF), 
prohibitFeatures (pF), hasMinimumOneFeature (hMOF), 
copyFeature(cF) and addFeature(aF). All other services 
of the service registry are described similarly. 

3.2 Request assembling 

In order to automatically convert and deploy a 
theoretical Service (BookService), the requestor 
formulates the desired objective as a semantic request.  
The tuple Rq=(G, S, T, F) represents a request, where 
G=(C, E) is the directed graph, S ⊆ C the set of start 
concepts, T ⊆ C the set of target concepts with T∩S=∅, 
and F the set of desired features.  In the case of a 
deployment request for the BookService, the following 
elements could be assigned: 

 
S={dm#sll, dm#config} 
T={dm#report} 
F={dm#message_encryption, dm#profiling, 
 dm#async_call, dm#deployment/target=#dm:JBoss} 



Table 1. Service registry entries 

3.3 Workflow planning 

In the context of Web service composition, ongoing 
research into the fundamental problems of workflow 
planning include AI planning [5] and the automatic 
composition of WS [6].  In the domain of SE, two typical 
scenarios occur that must be covered by an algorithm: a) 
The calculation of all workflow alternatives for a specific 
request b) The calculation of an optimal workflow for the 
request that fulfills a certain criterion (best calculation 
time, shortest workflow, etc.). 

However, both planning problems are NP-hard.  To 
provide better performance, the underlying planning 
algorithm can use case-specific strategies, including Hill-
climbing and heuristic methods.  For example, in the 
current SWS-ASE implementation, the evaluation of the 
planning state to approximate the distance between the 
initial states S and the target states T is realized via an 
integrated Relaxed Graphplan heuristic [7].  In addition to 
heuristics, additional information is calculated for each 
state (e.g., the set of helpful rules R).  This reduces the 
branching factor for typical SE scenarios where a fast 
initial result is needed.  Furthermore, specific restrictions 
(e.g., max. 10 composite services, timeouts) and 
prohibitions for certain workflow patterns (permutations, 
sequential execution of independent services) are made.   

3.4 Workflow execution 

The result of the preceding planning phase is the 
generated graph W=(C, E) for a specific semantic request, 
which connects a set of WS from the service registry.  
Therefore, the graph W can be represented as a WS 
written, e.g., in BPEL or SLL [4].  One generated 
workflow for the aforementioned BookService 
deployment request is illustrated in Figure 2. 

 

 
Figure 2. BookService Deployment Workflow 

Assuming the BookService was modeled in UML and 
converted to SLL, the SLL document together with a 
configuration document serve as input S to the workflow 
(upper left boxes) where the output T is shown as a report 
box.  In the first step, the AddSecurityService is called in 
order to weave in the message_encryption feature (as an 
aspect) in the SLL program.  The SLL2WSDLService 
generates a WSDL-S description from the SLL service 
input.  In parallel, the SLL program is transformed into an 
EJB that comprises a set of Java files. This set of Java 
files is compiled via the JavaCompileService.  The 
ProfilingService instruments the class files to enable the 
requested profiling capabilities. All class files along with 
the WSDL-S are bundled via the BundlingService.  In the 
last step, the EJB bundle is deployed and registered using 
the DeploymentService.  The output of the last service is a 
concept called report containing information about the 
deployment action.   

3.5 Feature configurator 

Figure 3 shows the graphical user interface for the 
specification of desired application features (feature 
modeling) in the context of workflow planning and 
execution. The given input (BookService, configuration) 
and desired output concepts (report) of a specific SE 
planning request can be added as boxes on the left.  In this 
state, the composite SE process is not yet planned and 
available (cp. Figure 2).  On the right, the feature 
configurator is shown, which allows a tree-based and 
explicit selection of the desired application features.  
When the feature selection is completed, the “Generate 

semantic 
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Semantic 
outputs 
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O9 bundle 

PRC aF (O9, [‘#bundled’]) 



workflow(s)” link launches the SWS-ASE process and 
automatically generates a valid workflow based on the 
given strategy parameters. 

 

 
Figure 3. Feature configurator view 

4. Results and conclusion 

The SWS-ASE results show that such an approach 
yields promising quality improvements for common SE 
tasks (such as automated toolchain composition and 
execution) and that major parts of the SWS-ASE 
underlying vision can already be applied. By preparing 
and registering tool functionality as SWS, an automated 
SE process was realized that is able to provide a way of 
amalgamating heterogeneous, distributed tool 
functionality in a standardized way.  In this context, user-
specific views such as the Feature Configurator were 
created to improve usability by hiding technology-specific 
details and enabling feature-driven application 
development.  

SWS-ASE provides the capability for indicating the 
direction and degree of influence to quality characteristics 
of any given feature choice (given the appropriate 
ontology and rules), thus illuminating the impact of a set 
of feature choices to the overall quality.  For example, the 
choice of asynchronicity potentially enhances scalability 
and efficiency, while potentially reducing response time 
and maintainability.  These quality tradeoffs can thus be 
weighed more explicitly by an engineer, and various 
quality priorities and optimizations are selectable to 
achieve a certain quality goal. Thus, compared with a 
manual SE process, fewer deployment and runtime errors 
occur due to the inherent dependency and relation checks 
within the creation phase (reasoning) of the SE toolchain. 

To measure efficiency, various measurement sets were 
executed, including response time and scalability 
measurements for two typical search problems that occur 
in the planning phase:  

 

a) Find the first workflow that fulfills the request. 

b) Find the set of all possible workflows. 
 

In this context, the scalability measurement sets, which 
are not illustrated here, showed that the calculation of all 
possible workflow combinations would cause 
unacceptable results for a typical registry size of 50 
services. However, an initial/next workflow variant was 
available after an acceptable period of time (e.g., 0.92sec 
for 50 services) sufficient for most SE planning tasks. 
Additionally, SWS-ASE shows that typical SE feature 
selections can be reasonably handled when the 
appropriate algorithms and heuristics are applied together 
with constraints that reduce the set of possible 
combinations.  Fundamentally, the enhanced automation 
of the SE process yields improved usability, reliability, 
and efficiency.     

Some inherent risks of the SWS-ASE are that the 
overall process quality strongly depends on the 
correctness of the semantic descriptions, and that the 
number of relationships (regarding possible I/O 
connections, feature cross-dependencies, etc.) increases 
exponentially with the number of involved services.  
Nevertheless, the SE domain has much to gain from the 
SWS vision and the enhanced automation capabilities it 
could bring.  By improving the integration of the software 
tool infrastructure with semantically-enhanced tools while 
planning and automating workflows based on desired 
features, the SWS-ASE approach shows that significant 
benefits are realizable that support and enhance the 
quality of software engineering products and processes.    
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