
SWS-ASE: Leveraging Web Service-based
Software Engineering

Ulrich Dinger
TU Dresden & Siemens AG

Hans-Grundig-Str. 25
01062 Dresden, Germany

dinger@rn.inf.tu-dresden.de

Roy Oberhauser
 Aalen University
Beethovenstr. 1

73430 Aalen, Germany
roy.oberhauser@htw-aalen.de

Christian Reichel
ETH Zurich & Siemens AG
Universitystr. 6, CAB F57

CH-8092 Zurich
christian.reichel@inf.ethz.ch

Abstract—Web Service (WS)-based integration is a broadly
accepted technique to address the heterogeneity in current
software systems. With regard to the growing complexity of state-
of-the-art software engineering (SE) processes, Semantic WS
(SWS) can be a strategy to manage the heterogeneous SE
software tools and inherent cross-dependencies in an automated
way. This paper presents an interoperable tool approach for
Automated Software Engineering (ASE) which comprises a
distributed SE process management framework based on SWS. It
includes plug-ins to visualize the generated workflows as well as
to manage the feature dependencies of SE choices, e.g., with
regard to quality criteria. Application of the SWS-ASE
infrastructure within industrial use cases yielded significant
improvements in areas such as reliability, usability, and
efficiency. Within this paper, the results of such a use case are
discussed and depicted in detail.

Keywords-Software Engineering; Semantic Web Services;
Software Automation; Reasoning; Ontology; Feature Modeling;
Software Tools; Computer-Aided Software Engineering

I. INTRODUCTION
In support of Service Oriented Architectures (SOAs)/WS

and the Semantic Web vision [1], the W3C, OASIS and other
organizations such as WSMO and the SWSI, SWSS, DAML
group, have developed specifications and approaches. Basic
efforts have focused on the automatic discovery and
composition of Semantic Web Services (SWS). The use of
semantic models for industry domains in combination with
semantically annotated web services (e.g., via WSDL-S [2],
OWL-S, WSML) makes it possible to derive logical inferences
via a reasoning process. For the software engineering (SE)
domain, the principles of the Semantic Web vision are
applicable and beneficial to various challenges it faces,
especially with regard to expressing a subset of SE information
in a machine-processable (and thus automatable) form [3].

There is a continuous and growing demand to produce
software in shorter cycles with higher productivity and better
quality. The heterogeneous toolchains (e.g., MDA and AOP
frameworks, build and deployment tools) common in SE create
difficulties when viewed holistically from an Automated
Software Engineering (ASE) perspective. Typically a large set
of explicit and implicit feature choices are made for a software
architecture and application during various SE process stages,

the effects of which are not always evident. Implicit
dependencies elsewhere in the toolchain workflow often affect
both SE product and process qualities. The paucity of
machine-processable feature classifications spans technology
and design choices to ISO 9126 [4] quality attribute tradeoffs.
As a tangible example, consider a security mechanism while
modeling - should it be implemented/generated, or may
runtime support already exist in the eventual application
server? Some issues resulting from the manual steps (or
manually-created toolchain workflows) between tools are
brittleness, hidden assumptions, and time-consuming
adaptation. Currently, semantic information about what a tool
does, the transformations it performs, what input formats are
expected, what output formats are generated, etc. are not easily
accessible or machine-processable. A further issue is the lack
of standardization, distribution, and efficient asset management
in the tool arena (e.g., search, compatibility issues, integration,
and update notifications), making tool software assets costly
and the process error-prone.

To address this situation, a unifying and comprehensive
approach called SWS-ASE is explored that automates the
selection and composition of tool functionality. The main ideas
are to attach semantic information to existing SE tools, to
create a tool registry of distributed and local services, to use
reasoning engines for automatic composition and, therewith, to
bootstrap Semantic Web Services for the SE process of WS-
based Applications. Using such an approach, yields significant
benefits by:

1. Integrating heterogeneous, distributed tool functionality
in a standardized way

2. Improving feature dependency selection support using a
classification system

3. Automating toolchain workflow composition and
execution

Although it is unrealistic to expect complete automation
under all circumstances, SWS-ASE enhances the engineer’s
capabilities and provides CASE-like benefits to the SE domain,
especially with regard to usability, reliability, and efficiency.

The remainder of this paper is structured as follows: section
II analyses an example scenario where state-of-the-art SE tools
are used. In section III, the SWS-ASE solution approach is

presented wherein the OWL-based ontology (domain model) is
introduced with the typical artifacts, procedures, and tasks for
software engineering and deployment. Moreover, the specific
parts of the overall SWS-ASE process (such as the analyzer,
partitioner, etc.) are described. Section IV evaluates the
solution results. Related work is discussed in section V. This
is concluded with a summary and a brief outline of future work.

II. MOTIVATING EXAMPLE
In order to elucidate current SE difficulties in the toolchain,

this section introduces an example scenario that is engineered
using several state-of-the-art technologies and methodologies.
The underlying use case was extracted from the TPC-W
benchmark [5], which depicts a retail store application where
customers can visit a web site, look at products, place an order,
request the status of an existing order, etc.

A. BookService Scenario
Fig. 1 shows a simplified sequence diagram for one

operation of the main application service (BookService) that
provides the business logic for an online book reseller.

Figure 1. Sequence diagram (orderBook)

In this context, a customer is able to call the orderBook
operation of the BookService. The availability of the Order is
checked via an external Web Service call checkAvailability to
the SupplierService. As a result, the supplier responds with a
Report containing the availability information. If the products
are available, the operation getProducts of the ProductService
is called which sends back the detailed product description. In
the next step, the BookService calculates the final price of the
order. Afterwards, the SupplierService is called again to
trigger order shipping. In the end, an OrderConfirmation with
a transaction id is sent to the Customer.

B. State-of-the-art SE Process
To engineer the Book Web Service (which integrates the

existing Product- and Supplier- Services), various quality
attributes must be taken into consideration. A set of decisions
made during the SE process impact these quality attributes, for
instance the final Quality-of-Service (QoS) provided by the
BookService. One possible illustration of typical steps to
engineer the BookService involves:

1. Platform-independent modeling via UML (class diagram,
state diagram, etc.)

2. Feature decisions, e.g., asynchronous calls, profiling,
security such as message encryption, tracing

3. Usage of AOSD tools at development time, e.g., AspectJ, to
realize message encryption via static aspect weaving

4. Code and template generation decisions, e.g., EJB as the
target technology (using MDSD generators, Eclipse EMF,
etc.), asynchronous calls via Message-Driven Beans
(MDBs), Web Service enablement

5. Application logic implementation

6. Compilation, perhaps based on profiling parameters

7. Packaging tool tasks dependent on the target execution
environment and version, e.g., a J2EE application server
such as JBoss or a non-J2EE framework such as the Spring
Framework

8. Execution of a deployment file via ANT, which will depend
on the chosen target, configuration, parameterization for
profiling, etc.

As depicted, the state-of-the-art SE process includes several
manual sub-processes with limited to no automation between
the individual steps. For instance, there is currently no
infrastructure available to manage the overall SE process
(model transformations, deployment, etc.) with regard to the
implicit and associated dependencies that need to be considered
in the complex chain of singular SE decisions. As the size of
the application grows, so does the number of involved artifacts,
which has an exponential effect on the number of dependent
relationships and decisions that affect quality. Without
appropriate management support, the process becomes
unnecessarily error-prone, inefficient and unreliable. For
example, the feature choice of asynchronous messaging
impacts component types (e.g., MDBs vs. Session Beans)
which in turn affects certain QoS parameters such as response
times and throughput. Furthermore, the inherent complexity
due to the number of combinations makes it difficult to obtain
an optimal solution with regard to the matrix of theoretically
possible quality aspect permutations. Moreover, because of the
manual steps within the SE process, other engineers may not be
able to reliably reproduce the subsequent decision chain. This
could be detrimental when it is not obvious why special
decisions were made or what the consequences of these
decisions were, e.g., the QoS impact (such as flexibility,
performance) of the static weaving of aspects vs. runtime AOP
utilization in an application server. Additionally, as shown in
the BookService example, the lack of meta-information
constrains sub-process interoperability and therefore directly
limits the usability of the SE toolchain. As a result, inter-
activity CASE cannot be leveraged which in turn negatively
affects the efficiency of the underlying SE production cycle.

III. THE SWS-ASE APPROACH
To address the aforementioned challenges, a comprehensive

and unifying approach is required that can automate and
leverage semantic information to reliably compose the various
elements involved in the SE process.

This section introduces the SWS-ASE approach. First, an
optimized model for the SE domain is presented. Then, in
section III.B.1, a registry of exemplary services that tackles
typical domain tasks is described. The sections III.B.2 to
III.B.5 describe the process of information retrieval and
execution to solve the complex sets of SE requests. In section
III.C, advanced features of the underlying architecture with
regard to validation and optimized analysis are depicted.

A. Domain Models
In order to handle the artifacts of the SE domain, a model

for the domain must exist. In this context, several formats are
available such as the OMG’s Model Object Facility (MOF) and
the XML Schema standard. Within the semantic web world,
the Web Ontology Language (OWL) can be used to describe
the entities of the domain (concepts) and the relationships
among them in ontologies.

Fig. 2 provides an overview of an OWL-based ontology of
SE-specific concepts that serves this paper’s purposes with the
aforementioned online book reseller scenario. Ongoing work
on formal ontologies for SWEBOK [6] and related SE areas is
needed. The dark circles with the lighter inner circles represent
concepts while the single-color circles represent individuals
(instances) of concepts (e.g., the “JBoss” entity is an instance
of the “AppServer” concept). As shown, the ontology is
currently divided into four sub-ontologies.

Figure 2. Domain models

The first one (upper left of Fig. 2) represents the sub-
domain of target technologies that relate to execution
environments. The second ontology (upper right of Fig. 2)
introduces the “feature” concept which is able to describe
certain characteristics or qualities of a piece of software such as
those defined in the ISO 9126 [4] standard. The “Specification
Wrapper” ontology on the lower left of Fig. 2 is separated from
the other ones because the specification concept provides the

semantic links (wrappers) for existing programming languages
and standards (such as Java, BPEL, and the Service Language
Layer (SLL) [7] described later). For each language, a specific
sub-concept is created that points to an external XML
Schema/DTD or human-readable document that provides a
well-defined “external” semantic for the specific concept. The
usage of references reduces the mappings needed for the
semantic-based conversions between different specification
concepts (e.g., from SLL to BPEL or Java). The fourth
ontology (lower right of Fig. 3) describes the set concepts that
relate to the “application logic” concept, e.g., workflow parts
such as asynchronous or synchronous calls. In order to
decorate an application logic part (e.g., within a Java
document) with specific characteristics, a feature list (e.g.,
security, profiling, etc.) can be attached. The underlying
process (how to analyze and attach the features to specification
concepts) is explained in section III.B.4.

B. SWS-ASE Process
Essentially, the complete SWS-ASE process comprises five

steps: Service Registration, Knowledge Retrieval, Request
Assembling, Workflow Planning, and Workflow Execution.
Fig. 3 will be used to illustrate the process. First, the service
provider generates and publishes a semantic service description
in the service registry. A reliability check validates this
description, explained in section III.B.4. At a later point in
time, a requestor (such as an engineer, deployer) formulates a
request (with the help of a software tool) that results in a
semantic request that is submitted to the semantic reasoner.
The reasoner then retrieves the information of all known
services (using the service registry) and plans the workflow(s)
that fulfill(s) the semantic request. The user can then submit
the planned workflow for execution by a workflow engine and
receives the result.

Figure 3. Activities/roles

The following sub-sections will describe each of the
aforementioned steps in detail.

1) Service Registration: The implementation of the
solution approach is based on a Service-Oriented Architecture
(SOA) with Web Services (WS). Thus, all created WS
encapsulate a certain piece of functionality that can be reused

within the SE process. Additionally, each service is annotated
with semantic information, which describes the pre-/post-
conditions (PRC/POC) and effects (E) of a specific service
operation. This information is stored in the service registry.

As an example for registered SWS, the AddTracingService
of Listing 1 provides semantic information for its addTracing
operation using SLL [7], which was developed as a special-
purpose, platform independent WS programming language,
e.g., to provide better mapping capabilities to different target
platforms and technologies. Other formats such as WSML and
OWL-S are conceivable. The first six lines import the XML
Schema file of the SLL specification, the ontology concepts
(for the semantic descriptions), and the semantic rules
(RuleML) for the SE domain. As shown on line 11, it takes an
SLL document (with the XSD complex type xsll:unit) and a
configuration document (tr:configuration) as input and returns
an SLL document (line 12).

Lines 15 to 43 provide a semantic description for the
addTracing operation. This includes the declaration of the
semantic signature (lines 16 and 17) which comprises in- and
output concepts. Lines 19-26 contain the mapping between the
semantic concept and the XML Schema data types using
variables and XQuery/SLL expressions (XSLT could also be
used). This is followed by the declaration of pre- and post
conditions as well as effects (Lines 28-40).

As shown in line 30, the operation precondition uses a rule
from the SE domain that states that the input concept I1 (SLL
program) must not have the op_call_tracing feature.
Additionally, the effect section states that the output O1 (SLL
program) inherits all features from the input (line 36) and the
feature op_call_tracing is added (line 38).

Listing 1. AddTracingService

Table I shows sample service registry entries needed for the
BookService scenario. Along with the service name,
operation-specific semantic input and output ids and concepts
(cp. the semantic signature of listing 1) are provided. The
semantic description includes the type as well as the facts/rules.
The following abbreviations of domain specific rules are used
in the last column: supportFeatures (sF), prohibitFeatures
(pF), hasMinimumOneFeature (hMOF), copyFeature (cF) and
addFeature (aF).

TABLE I. SERVICE REGISTRY ENTRIES

semantic inputs Semantic outputs semantic service name
id concept id concept type rules/facts

I1 bpel PRC sF(I1, [‘workflow’,...]) BPEL2SLL

I2 config

O1 sll

E cF (I1, O1)

I3 sll O2 depl_config E cF (I3, O3) SLL2EJB

I4 config O3 xjava* E aF (O3, [‘#ebj2.0’])

SLL2WSDLS I5 sll O4 wsdls E cF (I5, O4)

JavaCompile I6 xjava* O5 xclass* E cF (I6, O5)

PRC pF (I7, [‘#op_call_tracing’])

E cF (I7, O6)

AddTracing I7 xjava* O6 xjava*

E aF (I7, [‘#op_call_tracing’])

I8 sll PRC pF (I8, [‘#message_encryption’])

E cF (I8, O7)
AddSecurity

I9 config

O7 sll

E aF (O7, [‘ message_encryption’])

I10 depl_config PRC hMOF (I11, [‘#ejb2.0’,’#WS’,…])

PRC pF (I11, [‘#deployed’])

E cF (I10, O8)

Deployment

I11 bundle

O8 report

E aF (O8, [‘ #deployed’])

I12 xclass* PRC hF (I12, [‘#ejb2.0’])

PRC pF (I12, [‘#bundled’])

PRC cF I12, O9)

Bundling

I13 wsdls

O9 bundle

PRC aF (O9, [‘#bundled’])

All other services of the service registry are described
similarly. In order to avoid dependency on SLL for the
semantic service description, the syntactic and semantic parts
of SLL can be (and were) translated to WSDL-S [2].

2) Knowledge Retrieval: Fig. 4 depicts the underlying
workflow used by the current solution implementation to
extract the semantic information needed for the SWS-ASE
process. Service Descriptions, including semantic and non-
semantic information, serve as inputs to WSDL-S
descriptions, which in turn serve as inputs to the Knowledge
Base used by the reasoner. Additionally, Domain Facts/Rules
including Ontologies and automation Rules also serve as
inputs to the Knowledge Base.

Figure 4. Semantic knowledge extraction

Using the Knowledge Base, a directed services graph
G=(C, E) is created, where all I/O concepts of the service
operations are represented as a set of vertices C={c0,…,cn} and

all connections between the concepts as a set of edges
E={e0,…,em} such that E⊆[C]2,. In this scenario, a service
operation is represented as a sub-graph G’(C’, E’), with G’⊆ G,
C’⊆ C, E’⊆ E, the input concepts Ii∈C’, the output concepts
Oi∈C’ and the set of directed inner-operation edges
E’(I,O)={i0o0, i0o1, …,i0ok,i1i0,i2i1,…,inin-1). However, no real
connection between the inputs of an operation exist, thus (ref.
to Fig. 5) a requiresConnection (rC) rule is added to all inner-
edges of the first operation input (I3) in order to model the
requirement (transition dependency) that all inputs must be
connected. Fig. 5 shows an example Petri net and the
corresponding optimized internal graph representation of the
SLL2EJB service, whereby the vertex names correlate with the
id entries in Table I.

Figure 5. SLL2EJB inner-operation edges

Additionally, two vertices o (output) and i (input) of two
different operation sub-graphs of G are connected (adjacent) if
their concept types provide a match, meaning oi is an edge of
G. oi is called an outer-operation edge because it connects the
output of one service operation with the input of another
service operation. Fig. 6 exemplifies how the sub-graph of the
SLL2EJB service operation of Fig. 5 can be connected to the
concepts of other operations via outer-operation edges. Here
the outputs of the BPEL2SLL and AddSecurity services serve
as inputs to the SLL2EJB service, whose outputs serve as
inputs to the JavaCompile and Deployment services.

Figure 6. SLL2EJB inner-and outer operation edges

In order to include the rule handling (e.g., dependencies,
etc.) in the workflow planning phase, a set of rules
R={r1,…,rn} can be assigned to an edge e, as shown via the
example of the rC rule. Thereby, the function m:E→R
provides the set of assigned rules of an edge.

3) Request Assembling: In order to automatically convert
and deploy the BookService of section II, the requestor
formulates the desired objective as a semantic request. In this
context, the tuple Rq=(G, S, T, F) represents a request, where
G=(C, E) is the directed graph, S ⊆ C the set of start concepts,
T ⊆ C the set of target concepts with T∩S=∅, and F the set of
desired features. In the case of a deployment request for the
BookService, the following elements could be assigned:

S={dm#sll, dm#config}

T={dm#report}

F={dm#message_encryption, dm#profiling,

 dm#async_call, dm#deployment/target=#dm:JBoss}

The given inputs S={i0,,…,im} of the request are the sll
concept which correlates with the BookService document
instance, and a config concept which correlates with a
directives document instance. In this example, the output T
contains a report concept that provides details of the
deployment action. Additionally, the desired features
message_encryption, profiling, async_call, and deployment are
specified. In order to fulfill the request, a mapping function
Rq→W is needed which provides a workflow W for the given
request.

4) Workflow Planning: A workflow (path) is a special,
non-empty graph W=(C, E) which can be expressed via its
sequence of vertices W=c0c1..cn. The set of features
F={f1,…,fn} which are assigned to a specific workflow W can
be extracted via the function f:W→F. In the context of Web
service composition, the fundamental problems of planning
are addressed by various research efforts, such as AI planning
[8] [9] [10]. Solving a planning request can be viewed as a
search problem in the space of all possible combinations,
where the search algorithm starts with the set of start concepts
S and goals T and F. In the domain of SE, two typical
scenarios occur that must be covered by an algorithm:

1. The calculation of all workflow alternatives for a specific
request.

2. The calculation of an optimal workflow for the request
that fulfills a certain criterion (best calculation time,
shortest workflow, etc.).

However, both planning problems are NP-hard [11]. To
provide better performance, the underlying planning algorithm
can use case-specific strategies, including Hill-climbing and
heuristic methods. For example, in the current SWS-ASE
implementation, the evaluation of the planning state to
approximate the distance between the initial states S and the
target states T is realized via an integrated Relaxed Graphplan
heuristic [12]. In addition to heuristics, additional information
is calculated for each state (e.g., the set of helpful rules R).
This reduces the branching factor for typical SE scenarios
where a fast initial result is needed. Furthermore, specific
restrictions (e.g., max. 10 composite services, timeouts) and
prohibitions for certain workflow patterns (permutations,
sequential execution of independent services) are made. All
theoretical investigations on how to improve search and
planning algorithms are out of scope for this paper and
extensively covered via the efforts within the workflow and AI
planning research community (see section V). To illustrate
their practical impact, section IV shows promising results and
measurements for certain usage scenarios within the SE
domain.

5) Workflow Execution: The result of the preceding
planning phase is the generated graph W=(C, E) for a specific
semantic request, which connects a set of WS from the service
registry. Therefore, the graph W can be represented as a WS.
For the purpose of workflow description, several languages
such as BPEL or SLL [7] are available. One generated
workflow for the aforementioned BookService deployment
request is illustrated in Fig. 7.

Assuming the BookService was modeled in UML and
converted to SLL, the SLL document together with a
configuration document serve as input S to the workflow
(upper left boxes) where the output T is shown as a report box.
In the first step, the AddSecurityService is called in order to
weave in the message_encryption feature (as an aspect) in the
SLL program. The SLL2WSDLService generates a WSDL-S
description from the SLL service input. In parallel, the SLL
program is transformed into an EJB that comprises a set of Java
files. Then the set of Java files is compiled via the
JavaCompileService. The ProfilingService instruments the
class files to enable the requested profiling capabilities. All
class files along with the WSDL-S are bundled via the
BundlingService. In the last step, the EJB bundle is deployed
and registered using the DeploymentService. The output of the
last service is a concept called report containing information
about the deployment action.

Figure 7. BookService deployment workflow

As previously mentioned, the generated workflow can be
represented in various forms, such as SLL or BPEL, and
executed on the specific interpreter, for instance, the XL-
platform [13] in the case of SLL or a BPEL engine.

C. Feature Analysis Process
A critical issue within the SE process relates to the

extraction and creation of meta-information. In the
aforementioned BookService application scenario, the
requestor manually adds meta-information to the input
documents, which is error-prone. For instance, it is not
possible in the SWS-ASE process to automatically check
whether the BookService input document already contains a
special feature (e.g., message encryption) or not.
Consequently, undetected features could cause errors in the
SWS-ASE process, or at least needless overhead for the
workflow execution phase when unnecessary services are
included (e.g., the AddSecurityService).

To address this issue, an additional analyzer entity is
included. The task of the analyzer entity is to scan an input
document D (e.g., the BookService.sll document) of a certain
concept type and to detect specific feature patterns P. It
provides a mapping a:(P, D) F. The list of detected features
{f1,…,fn} can then be used in the sub-sequent planning phase.

Fig. 8 shows the analysis result of the BookService.sll
document.

As shown, several features such as wrapper, workflow,
message encryption, and data manipulation are detected. The
current analyzer implementation performs pattern matching on
the XML language representations [7] via XSLT by using its
template matching functionality with predefined patterns to
create a list of semantic features that are then attached to the
analyzed document and used within the planning phase.

Figure 8. BookService analysis result

Another issue that is dependent on the analysis results
relates to the complexity of a specific document. In this
context, the SLL programming language can provide an
example: as a full WS programming language, it is more
powerful than the BPEL language, which can only describe the
workflow between Web Services. Therefore, only limited parts
of a complete SLL document can be mapped to a BPEL
document (external service invocations, control flow, etc.) and
others cannot (trigger and monitor clauses, explicit security
handling, semantic descriptions, etc). If no possibility to
transform a complete SLL program to another target language
exists, a promising strategy is to partition the SLL program into
code blocks attached with a semantic description and “glue
code” that combines these partitions. Fig. 9 shows the analyzer
in combination with the partitioner entity that realizes the
partitioning of documents. Basically, a partitioning function
p:D A exists which maps a document D with a set of features
F={f1,…,fn} to a set of partitions A={a1,…,an}, whereby each
partition has at least one attached feature f∈F of D.
Additionally, the current implementation accepts a set of
strategies (splitting rules) as input, in order to define the most
appropriate size of a partition.

In this way, the partitioning of an input document (e.g.,
SLL) enables a larger set of possible service combinations
(e.g., pieces that cannot be handled by BPEL alone can be
delegated to other technologies).

Figure 9. Analysis/partitioning process

IV. EVALUATION RESULTS
Within this section, the SWS-ASE solution is evaluated

with regard to selected quality criteria such as usability,
reliability, efficiency, as well as to its applicability. All
measurements were performed on a single Pentium 4 (3GHz,
512MB) PC with the Window XP (SP2) operating system.
SWI Prolog 5.4.7 was used for all reasoning tasks.

A. Usability
In order to improve the usability aspects of the SE

toolchain, SWS-ASE introduced several views, which provide
a higher-level of abstraction for the underlying SWS-ASE
processes and thereby hide unnecessary complexity. To give
an example, Fig. 10 shows the graphical user interface for the
specification of desired application features (feature modeling)
in the context of workflow planning and execution.

As shown in Fig. 10, the given input (BookService,
configuration) and desired output concepts (report) of a specific
SE planning request can be added as boxes on the left. In this
state, the composite SE process is not yet planned and available
(cp. Fig. 7). On the right, the feature configurator is shown,
which allows a tree-based and explicit selection of the desired
application features.

Additional feature selection is facilitated using an iterative
approach, whereby the list of possible features combinations
available in the next step is updated and calculated
dynamically. When the feature selection is completed, the
“Generate workflow(s)” link launches the SWS-ASE process
and automatically generates a valid workflow based on the
given strategy parameters. Within the BookService scenario,
the productivity of the SE process was significantly enhanced
via feature modeling view and other views (such as depicting
validation and registration). Compared to the traditional result
times (using a manual engineering process), significantly
improved engineering times and cycles were observable
(deployment request creation, automated workflow planning
phase, deployment execution). Other results showed that
usability improvements occurred with regard to overall
application management and maintainability. The transparent
dependency/relation checks and automated composition
process provided a more simplified engineering process, which
reduced the cognitive demands on user/developer.
Additionally, as shown in the BookService scenario and
through usage within Siemens AG, SWS-ASE resulted in less
error-prone and more reliable SE processes.

Figure 10. Feature configurator view

B. Reliability
To enhance reliability, the SWS-ASE approach reuses and

combines functionality provided as SWS. As observed in the
examined use case scenarios, the reliability of the generated
workflows depends fundamentally on the accuracy of the
semantic service descriptions. In order to improve reliability
and accuracy, SWS descriptions are tested and partially
validated with the analyzer tool of Fig. 9 at the point of
registration. Accuracy tests are comprised that a start
document D (which is assigned to the vertex c0) is analyzed
before the execution of the service and a result document D’
(vertex c1) is analyzed after the execution. In order to validate
the semantic description, the set of detected features after
service execution F’:=a(P, D’) is compared with the result of
the union F1∪F2=F, whereby F1:=a(P, D) and F1:= f(W),
W=c0c1. If they do not match, the applied rules R, which are
used in the workflow W via the function f, are invalid. If so,
the service description is invalid and was excluded from further
workflows.

Additionally, SWS-ASE provides the capability of
indicating the direction and degree of influence to quality
characteristics of any given feature choice given the
appropriate ontology and rules, thus allowing the impact of a
choice to be seen as to how it affects the overall quality
choices. For example, the choice of asynchronicity potentially
enhances scalability and efficiency, while potentially reducing
response time and maintainability. These quality tradeoffs
could thus be weighed more explicitly by an engineer, and
various quality priorities and optimizations could be selected to
achieve a certain goal.

Other aspects that affected SE reliability included the SWS-
ASE process and strategies, the domain ontology, SWS-ASE
infrastructure (e.g., the service registry), and the reliability of
any given tool service. Although not all of these aspects were
addressed and covered by the solution, a general improvement
in the reliability of the created application software was

observed. Compared with a manual SE process, fewer
deployment and runtime errors occurred, due to the
aforementioned dependency and relation checks within the
creation phase of SE toolchain.

C. Efficiency
Response time and scalability measurements were applied

to two typical search problems that occur in the planning phase:

- Find the first workflow that fulfills the request.

- Find the set of all possible workflows.

The underlying complexity and methodology of these
request types was described in the preceding sections. As
shown in Table II, the series of measurements for the
BookService deployment request investigates the response
times for the first reasoning result. In this test scenario, the
service registry contains a set of 50 typical SE services.
Additionally, the number of possible services within a
workflow is restricted to a maximum of 10.

TABLE II. REASONING MEASUREMENTS (1)

Features
op_call
tracing

profiling sync
call

async
call

message
encrypt

deploy
JBoss

deploy
.NET

1st
result

time [s]

No. of valid
workflow

alternatives
- - - - - - - 0.26 530
- - - - - x - 0.30 162
x - x - x x - 0.92 22
- x - x x - x 0.89 24
- - - - - x x n.a.

[213.21]
0

Within the table, the Features columns represent possible
random feature selections that are included in five variants of
the BookShop deployment scenario, where ‘x’ means that a
certain feature is requested. For example, the ‘x’ in row 2 and
column 6 limits the deployment to a JBoss application server.
For each variant, the “1st result time” shows the time in
seconds until the first workflow for a specific scenario was
created, whereby the “No. of valid workflow alternatives”
gives the overall number of workflows that could theoretically
fulfill the request. As expected, the table illustrates that as
more features are requested, more time is needed to calculate a
workflow. Additionally, as shown on the last row, the parallel
deployment on two different platforms was defined as an
illegal feature combination, which causes an initial result time
of 213.21 sec. This occurs because all possible combinations
of services have to be checked before the reasoner can decide
that no valid workflow exists. In a practical scenario, a timeout
(e.g., 5s) is introduced which makes use of the observation that
an initial workflow variant is usually available quite early.

The second measurement series illustrates the scalability
properties of the search algorithm with respect to the number of
services based on the feature set in the 3rd variant (row) of
Table II. In this scenario, the 1st column of Table III contains
the number of services within the service registry which now
varies from 15 to 50. The 2nd column states the response time
until the first valid workflow was found. Additionally, the 3rd
and 4th columns provide the time required until all possible
workflow variants were available, whereby the 4th column

does not restrict the number of services to 10 within a
workflow in order to illustrate the effect of planning strategy
constraints.

As depicted in Table III and from section III.B.4, the
calculation time grows exponentially with the number of
services that are included in the workflow-planning phase. In
the BookService planning scenario, the complexity for the
calculation of all workflows causes unacceptable results when
more than 15 services are included. In contrast, an initial
workflow variant is available after an acceptable period of time
(e.g., 0.92sec for 50 services), which would be sufficient for
most purposes.

TABLE III. REASONING MEASUREMENTS (2)

time [s] to calculate all workflow
variants

No. of
Services

in
Registry

time [s] to
calculate the 1st
workflow result Max. 10

services in
workflow

No restriction
(unlimited
services)

15 0.41 6.69 7.67
20 0.48 51.09 113.78
25 0.56 80.01 285.70
30 0.64 109.97 n.a.
40 0.78 159.54 n.a.
50 0.92 210.12 n.a.

Table IV addresses the performance aspects of the analysis
process that is described in section III.B.4. In this context,
several tests where applied using 3, 9 and 15 feature types in
combination with document sizes of 250, 500, 1000 and 2500
lines of code (LOC). The measurements show that the time to
analyze documents is independent of the number of found
feature instances. The process of detecting feature patterns
grows linearly with the number of available feature types and
with the LOC of the input document. Thus, the underlying
process of feature recognition scales well and is not a critical
part within the overall SWS-ASE process.

TABLE IV. ANALYSIS PROCESS MEASUREMENTS

250 LOC 500 LOC 1000 LOC 2500 LOC No. of
feature
types

Time
[ms]

Feature
instances

found

Time
[ms]

Feature
instances

found

Time
[ms]

Feature
instances

found

Time
[ms]

Feature
instances

found
3 102 0 172 0 329 0 682 0
9 105 12 179 25 343 12 706 12
15 110 36 189 75 350 36 727 36

D. Applicability
To achieve the Semantic Web SE domain grand vision of

the global integration of the tool infrastructure, new areas of
difficulty must still be addressed by the Semantic Web and SE
community. Fundamentally, all of the open issues in the
intersection of the Semantic Web and Automated SE affect the
general applicability of the presented SWS-ASE approach.
Such issues include, e.g., versioning management of software
artifacts/assets and their related ontologies and interdependency
rules, e.g. with respect to compatibility. For workflow
planning, the NP-hard issue remains, although improved
heuristics and algorithms could help. Moreover, SWS
workflows are currently tied to WSDL documents that could

change over time and cause the generated workflows to
become stale. In the context of SWS-based distributed
workflows, security and trust play a significant role. Other
current issues include QoS, SLAs, registering/finding services
globally, usage license agreements, and business models for
service providers. Additionally, standardization work is
needed for semantic descriptions (e.g., WSDL-S) and
upper/lower ontologies within the SE process. Thus, the
general applicability of the SWS-ASE approach depends on the
widespread adoption and usage of the SWS paradigm to
aggregate tool functionality and achieve greater automation.
Nevertheless, the SWS-ASE results show that the use such an
approach can yield promising quality improvements for
common SE tasks (such as automated toolchain composition
and execution), that major parts of the SWS-ASE underlying
vision can already be applied.

V. RELATED WORK
SWS-ASE combines technologies from various research

areas and thus facilitates interdisciplinary collaboration.
Within this section, several approaches and technologies are
presented that cover certain parts of the SE process and/or that
could help within the context of the presented solution.

ASE and integrated toolchains are currently being
approached on various levels. IDEs such as Microsoft Visual
Studio and the IBM Websphere Studio support the vision
behind software factories [14]. Integrating various
development tools into one homogeneous adaptable and
configurable CASE tool environment requires the usage of
standardized interchange and description formats and a well-
defined meaning on which each component can rely. Although
Eclipse relies on OSGi, which furthers a standards-based,
customizable, and potentially distributed development
environment, the usage of SWS-ASE and the underlying
semantic web technologies in this context could enhance
collaboration and interoperability between SE tools.
Distributed tool infrastructure is gaining in popularity, for
instance Apache Maven. While Maven provides consistent
conventions and dependency management across Java projects,
its underlying metadata and process is not standardized and
interoperable across platforms. Additional research work in the
area of integrated, distributed toolchains include meta-model
[15], peer-to-peer [16], and agent [17] approaches. While
addressing integration between tools at different levels, SWS-
ASE has a strong focus on semantic and automatic
composition.

OMG’s MDA and other MDSD approaches provide
support for automation and generation from the model through
the execution cycle. Currently, MDA does not address the
feature dependency implications that correlate with toolchain
interactions. With regard to this issue, SWS-ASE can support
MDA’s vision via structural and behavioral dependency and
relation analysis of the toolchain context with a standardized,
distributed, and interoperable SWS approach.

In the context of this paper, feature modeling supports the
conceptual abstraction and description of relationships between
distinguishing characteristics of SE artifacts or assets.
Implementations such as XFeature and pure:variants support

variant management and product families, but because they do
not use semantic-based interoperable standards such as OWL
and SWS, they are limited in the degree of automation and
distributed inter-platform operability.

Related Semantic Web research involves composition and
ontologies. For example, AI Planning research for automated
composition includes rule-based or Hierarchical Task Network
(HTN) approaches. Although pure HTN planners such as
SHOP2 perform well in certain scenarios, scalability can
become an issue for complex knowledge bases. An HTN-
related approach that uses additional heuristics [12] to address
complexity is OWLS-Xplan [9], which shows that better
solutions are possible for certain problem spaces. [18] gives an
overview of the current state-of-the-art and evolving AI
Planning methods, which could enlarge the spectrum of
planning strategies available to the SWS-ASE approach to
handle the complexity inherent in the SE domain. Another
Semantic Web and SE issue is the lack of available SE domain
ontologies, which is currently being pursued [19].

For workflow description, possibilities include BPEL4WS
and Microsoft Windows Workflow Foundation (WWF).
Ideally, workflows across SE toolchains should be able to
handle dynamic aspects (consider AO4BPEL [20]) and be
capable of self-adaptation, for which synergies with stochastic
optimization [21], AI planning and autonomic computing
research are conceivable.

VI. CONCLUSION & FUTURE WORK
Due to the multiple challenges confronting SE, there is a

demand for greater automation and better toolchain integration.
Currently, the missing semantic annotation as well as limited
use of the interoperability paradigms makes it difficult to
aggregate the underlying parts and thereby achieve a higher-
level automated SE process. Despite advances in this area,
multiple and often hidden dependencies, implicit decisions, and
manual steps comprise a typical part of the current engineering
cycle. The ensuing mistakes, needless complexity,
inefficiencies, and unmanageability affect the quality of the
software product and the development process.

In this paper, we presented the SWS-ASE approach. By
preparing and registering tool functionality as SWS, an
automated SE process was introduced that is able to provide a
way of amalgamating heterogeneous, distributed tool
functionality in a standardized way. The basic applicability of
this approach was shown via the BookService example
scenario. In this context, user-specific views such as the
Feature Configurator were provided to improve usability by
hiding technology-specific details and enabling feature-driven
application development. The results showed that typical
feature selections could be reasonably handled when the
appropriate algorithms and heuristics are applied together with
constraints that reduce the set of possible combinations.
Fundamentally, the enhanced automation of the SE process
yielded improved usability, reliability, and efficiency.

Some inherent risks of the SWS-ASE are that the quality of
the overall process strongly depends on the correctness of the
syntactic and semantic descriptions, and that the number of
relationships (regarding possible I/O connections, feature

cross-dependencies, etc.) increases exponentially with the
number of involved services. To mitigate these risks, it is
necessary, e.g., that the SE community provide a standardized
process for the creation and maintenance of SE domain models
(e.g., to handle different versions). Additional research (i.e.,
improved strategies and algorithms) of the SWS community is
needed in the field of workflow planning and complexity
handling, where the NP-hard criterion remains an issue.
Nevertheless, the SE domain has much to gain from the SWS
vision and the enhanced automation capabilities it could bring.
In this context, by improving the integration of the software
tool infrastructure with semantically-enhanced tools, and by
automating the planned workflows based on desired features,
the SWS-ASE approach shows that significant benefits are
realizable that support the overall quality of the software
product and process.

Future work in the context of SWS-ASE will include the
improvement of the tool automation spectrum for semantic
analysis, pattern matching, partitioning, and description
generation. To enable more dynamic and adaptable workflows,
new strategies for dynamic semantic queries will be explored
as well as the application of transactional approaches.

ACKNOWLEDGMENT
We would like to thank Klaus Jank (Siemens AG), Donald

Kossmann (ETH Zurich) and Alexander Schill (TUD) for their
continuous support of our research work.

REFERENCES
[1] Berners-Lee, T., Fischetti, M.: Weaving the Web – The original design

and ultimate destiny of the World Wide Web, by its inventor, Harper
San Francisco; 1st edition, September 1999.

[2] Akkiraju, R., Farrell, J., Miller, J.A., Nagarajan, M., Schmidt M-T.,
Sheth, A., Verma, K. Web Service Semantics - WSDL-S, Technical
Note, Version 1.0, April 2005,
http://www.alphaworks.ibm.com/g/g.nsf/img/semanticsdocs/$file/wssem
antic_annotation.pdf

[3] Tetlow, P., et al.: Ontology Driven Architectures and Potential Uses of
the Semantic Web in Systems and Software Engineering, W3C Working
Draft, Oktober 2005,
http://www.w3.org/2001/sw/BestPractices/SE/ODA/ .

[4] International Standard ISO/IEC 9126. Information technology --
Software product evaluation -- Quality characteristics and guidelines for

their use, International Organization for Standardization, International
Electrotechnical Commission, 1991, Geneva.

[5] Smith, W.D., TPC-W: Benchmarking An Ecommerce Solution, Revision
1.2, http://www.tpc.org/tpcw/TPC-W_wh.pdf.

[6] Software Engineering Body of Knowledge (SWEBOK),
http://www.swebok.org, Access date: November 1st, 2005.

[7] Kossmann, D., Reichel, C.: SLL: Running my Web Services on Your
WS Platforms, Proceedings of ICWS 2005, Industry Track, July 2005.
Also see www.open-xl.org.

[8] Medjahed, B., et al.: Composing Web services on the Semantic Web.
The VLDB Journal, Volume 12 , Issue 4, November 2003, pp. 333 –
351.

[9] Klusch, M.; et al.: Semantic Web Service Composition, Planning with
OWLS-Xplan. 1st Intl. AAAI Fall Symposium on Agents and the
Semantic Web, Arlington VA, USA, 2005.

[10] Sirin, E., et al.: HTN Planning for Web Service Composition Using
SHOP2, Journal of Web Semantics, Volume 1, Issue 4, 2004.

[11] T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1-2):165--204, 1994.

[12] J. Hoffmann, B. Nebel: The FF Planning System: Fast Plan Generation
Through Heuristic Search, Journal of Artificial Intelligence Research,
Volume 14, 2001, pp. 253 - 302.

[13] Florescu, D., et al.: XL: An XML Programming Language for Web
Service Specification and Composition, Computer Networks Journal,
Volume 42, Issue 5, August 2003.

[14] Greenfield, J.: Software Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools, Wiley, 1st edition,
August 2004.

[15] Burmester, S., et al.: Tool integration at the meta-model level: the
Fujaba approach, STTT, Volume 6, Number 3, August 2004, pp. 203-
218.

[16] Hansen, K.: Activity-centred tool integration. Using Type-Based
Publish/Subscribe for Peer-to-Peer Tool Integration, Proceedings of the
ESEC Tool Integration Workshop, 2003.

[17] Corradini, F., et al.: An agent-based approach to tool integration, STTT
journal, Volume 6, Number 3, August 2004, pp. 231-244.

[18] Rao, J., Su, X.: A Survey of Automated Web Service Composition
Methods, In Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition, SWSWPC 2004,
San Diego, California, USA, July 6th, 2004.

[19] Wongthongtham, P.: Software Engineering Ontologies and Their
Implementation, Proceedings of the IASTED Conference on Software
Engineering, 2005, pp. 208-213.

[20] Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition with
AO4BPEL, Proceedings of ECOWS 2004, LNCS 3250. September
2004.

[21] Doshi, Prashant, et al: Dynamic Workflow Composition using Markov
Decision Processes, ICWS’04, p. 576

