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Abstract—Web Service (WS)-based integration is a broadly 
accepted technique to address the heterogeneity in current 
software systems. With regard to the growing complexity of state-
of-the-art software engineering (SE) processes, Semantic WS 
(SWS) can be a strategy to manage the heterogeneous SE 
software tools and inherent cross-dependencies in an automated 
way. This paper presents an interoperable tool approach for 
Automated Software Engineering (ASE) which comprises a 
distributed SE process management framework based on SWS. It 
includes plug-ins to visualize the generated workflows as well as 
to manage the feature dependencies of SE choices, e.g., with 
regard to quality criteria. Application of the SWS-ASE 
infrastructure within industrial use cases yielded significant 
improvements in areas such as reliability, usability, and 
efficiency. Within this paper, the results of such a use case are 
discussed and depicted in detail. 
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I.  INTRODUCTION  
In support of Service Oriented Architectures (SOAs)/WS 

and the Semantic Web vision [1], the W3C, OASIS and other 
organizations such as WSMO and the SWSI, SWSS, DAML 
group, have developed specifications and approaches.  Basic 
efforts have focused on the automatic discovery and 
composition of Semantic Web Services (SWS).  The use of 
semantic models for industry domains in combination with 
semantically annotated web services (e.g., via WSDL-S [2], 
OWL-S, WSML) makes it possible to derive logical inferences 
via a reasoning process.  For the software engineering (SE) 
domain, the principles of the Semantic Web vision are 
applicable and beneficial to various challenges it faces, 
especially with regard to expressing a subset of SE information 
in a machine-processable (and thus automatable) form [3]. 

There is a continuous and growing demand to produce 
software in shorter cycles with higher productivity and better 
quality.  The heterogeneous toolchains (e.g., MDA and AOP 
frameworks, build and deployment tools) common in SE create 
difficulties when viewed holistically from an Automated 
Software Engineering (ASE) perspective.  Typically a large set 
of explicit and implicit feature choices are made for a software 
architecture and application during various SE process stages, 

the effects of which are not always evident.  Implicit 
dependencies elsewhere in the toolchain workflow often affect 
both SE product and process qualities.  The paucity of 
machine-processable feature classifications spans technology 
and design choices to ISO 9126 [4] quality attribute tradeoffs.  
As a tangible example, consider a security mechanism while 
modeling - should it be implemented/generated, or may 
runtime support already exist in the eventual application 
server?  Some issues resulting from the manual steps (or 
manually-created toolchain workflows) between tools are 
brittleness, hidden assumptions, and time-consuming 
adaptation.  Currently, semantic information about what a tool 
does, the transformations it performs, what input formats are 
expected, what output formats are generated, etc. are not easily 
accessible or machine-processable.  A further issue is the lack 
of standardization, distribution, and efficient asset management 
in the tool arena (e.g., search, compatibility issues, integration, 
and update notifications), making tool software assets costly 
and the process error-prone.   

To address this situation, a unifying and comprehensive 
approach called SWS-ASE is explored that automates the 
selection and composition of tool functionality.  The main ideas 
are to attach semantic information to existing SE tools, to 
create a tool registry of distributed and local services, to use 
reasoning engines for automatic composition and, therewith, to 
bootstrap Semantic Web Services for the SE process of WS-
based Applications.  Using such an approach, yields significant 
benefits by: 

1. Integrating heterogeneous, distributed tool functionality 
in a standardized way 

2. Improving feature dependency selection support using a 
classification system 

3. Automating toolchain workflow composition and 
execution 

Although it is unrealistic to expect complete automation 
under all circumstances, SWS-ASE enhances the engineer’s 
capabilities and provides CASE-like benefits to the SE domain, 
especially with regard to usability, reliability, and efficiency.  

The remainder of this paper is structured as follows: section 
II analyses an example scenario where state-of-the-art SE tools 
are used.  In section III, the SWS-ASE solution approach is 



presented wherein the OWL-based ontology (domain model) is 
introduced with the typical artifacts, procedures, and tasks for 
software engineering and deployment.  Moreover, the specific 
parts of the overall SWS-ASE process (such as the analyzer, 
partitioner, etc.) are described.  Section IV evaluates the 
solution results.  Related work is discussed in section V.  This 
is concluded with a summary and a brief outline of future work. 

II. MOTIVATING EXAMPLE 
In order to elucidate current SE difficulties in the toolchain, 

this section introduces an example scenario that is engineered 
using several state-of-the-art technologies and methodologies.  
The underlying use case was extracted from the TPC-W 
benchmark [5], which depicts a retail store application where 
customers can visit a web site, look at products, place an order, 
request the status of an existing order, etc. 

A. BookService Scenario 
Fig. 1 shows a simplified sequence diagram for one 

operation of the main application service (BookService) that 
provides the business logic for an online book reseller. 

 
Figure 1.  Sequence diagram (orderBook) 

In this context, a customer is able to call the orderBook 
operation of the BookService.  The availability of the Order is 
checked via an external Web Service call checkAvailability to 
the SupplierService.  As a result, the supplier responds with a 
Report containing the availability information.  If the products 
are available, the operation getProducts of the ProductService 
is called which sends back the detailed product description.  In 
the next step, the BookService calculates the final price of the 
order.  Afterwards, the SupplierService is called again to 
trigger order shipping.  In the end, an OrderConfirmation with 
a transaction id is sent to the Customer. 

B. State-of-the-art SE Process 
To engineer the Book Web Service (which integrates the 

existing Product- and Supplier- Services), various quality 
attributes must be taken into consideration.  A set of decisions 
made during the SE process impact these quality attributes, for 
instance the final Quality-of-Service (QoS) provided by the 
BookService.  One possible illustration of typical steps to 
engineer the BookService involves: 

1. Platform-independent modeling via UML (class diagram, 
state diagram, etc.) 

2. Feature decisions, e.g., asynchronous calls, profiling, 
security such as message encryption, tracing  

3. Usage of AOSD tools at development time, e.g., AspectJ, to 
realize message encryption via static aspect weaving 

4. Code and template generation decisions, e.g., EJB as the 
target technology (using MDSD generators, Eclipse EMF, 
etc.), asynchronous calls via Message-Driven Beans 
(MDBs), Web Service enablement 

5.  Application logic implementation 

6. Compilation, perhaps based on profiling parameters 

7. Packaging tool tasks dependent on the target execution 
environment and version, e.g., a J2EE application server 
such as JBoss or a non-J2EE framework such as the Spring 
Framework 

8. Execution of a deployment file via ANT, which will depend 
on the chosen target, configuration, parameterization for 
profiling, etc. 

As depicted, the state-of-the-art SE process includes several 
manual sub-processes with limited to no automation between 
the individual steps.  For instance, there is currently no 
infrastructure available to manage the overall SE process 
(model transformations, deployment, etc.) with regard to the 
implicit and associated dependencies that need to be considered 
in the complex chain of singular SE decisions.  As the size of 
the application grows, so does the number of involved artifacts, 
which has an exponential effect on the number of dependent 
relationships and decisions that affect quality.  Without 
appropriate management support, the process becomes 
unnecessarily error-prone, inefficient and unreliable.  For 
example, the feature choice of asynchronous messaging 
impacts component types (e.g., MDBs vs. Session Beans) 
which in turn affects certain QoS parameters such as response 
times and throughput.  Furthermore, the inherent complexity 
due to the number of combinations makes it difficult to obtain 
an optimal solution with regard to the matrix of theoretically 
possible quality aspect permutations.  Moreover, because of the 
manual steps within the SE process, other engineers may not be 
able to reliably reproduce the subsequent decision chain.  This 
could be detrimental when it is not obvious why special 
decisions were made or what the consequences of these 
decisions were, e.g., the QoS impact (such as flexibility, 
performance) of the static weaving of aspects vs. runtime AOP 
utilization in an application server.  Additionally, as shown in 
the BookService example, the lack of meta-information 
constrains sub-process interoperability and therefore directly 
limits the usability of the SE toolchain.  As a result, inter-
activity CASE cannot be leveraged which in turn negatively 
affects the efficiency of the underlying SE production cycle. 



III. THE SWS-ASE APPROACH 
To address the aforementioned challenges, a comprehensive 

and unifying approach is required that can automate and 
leverage semantic information to reliably compose the various 
elements involved in the SE process.  

This section introduces the SWS-ASE approach.  First, an 
optimized model for the SE domain is presented.  Then, in 
section III.B.1, a registry of exemplary services that tackles 
typical domain tasks is described.  The sections III.B.2 to 
III.B.5 describe the process of information retrieval and 
execution to solve the complex sets of SE requests.  In section 
III.C, advanced features of the underlying architecture with 
regard to validation and optimized analysis are depicted. 

A. Domain Models 
In order to handle the artifacts of the SE domain, a model 

for the domain must exist.  In this context, several formats are 
available such as the OMG’s Model Object Facility (MOF) and 
the XML Schema standard.  Within the semantic web world, 
the Web Ontology Language (OWL) can be used to describe 
the entities of the domain (concepts) and the relationships 
among them in ontologies. 

Fig. 2 provides an overview of an OWL-based ontology of 
SE-specific concepts that serves this paper’s purposes with the 
aforementioned online book reseller scenario.  Ongoing work 
on formal ontologies for SWEBOK [6] and related SE areas is 
needed. The dark circles with the lighter inner circles represent 
concepts while the single-color circles represent individuals 
(instances) of concepts (e.g., the “JBoss” entity is an instance 
of the “AppServer” concept).  As shown, the ontology is 
currently divided into four sub-ontologies. 

 
Figure 2.  Domain models 

The first one (upper left of Fig. 2) represents the sub-
domain of target technologies that relate to execution 
environments.  The second ontology (upper right of Fig. 2) 
introduces the “feature” concept which is able to describe 
certain characteristics or qualities of a piece of software such as 
those defined in the ISO 9126 [4] standard.  The “Specification 
Wrapper” ontology on the lower left of Fig. 2 is separated from 
the other ones because the specification concept provides the 

semantic links (wrappers) for existing programming languages 
and standards (such as Java, BPEL, and the Service Language 
Layer (SLL) [7] described later).  For each language, a specific 
sub-concept is created that points to an external XML 
Schema/DTD or human-readable document that provides a 
well-defined “external” semantic for the specific concept.  The 
usage of references reduces the mappings needed for the 
semantic-based conversions between different specification 
concepts (e.g., from SLL to BPEL or Java).  The fourth 
ontology (lower right of Fig. 3) describes the set concepts that 
relate to the “application logic” concept, e.g., workflow parts 
such as asynchronous or synchronous calls.  In order to 
decorate an application logic part (e.g., within a Java 
document) with specific characteristics, a feature list (e.g., 
security, profiling, etc.) can be attached.  The underlying 
process (how to analyze and attach the features to specification 
concepts) is explained in section III.B.4. 

B. SWS-ASE Process 
Essentially, the complete SWS-ASE process comprises five 

steps: Service Registration, Knowledge Retrieval, Request 
Assembling, Workflow Planning, and Workflow Execution.  
Fig. 3 will be used to illustrate the process.  First, the service 
provider generates and publishes a semantic service description 
in the service registry.  A reliability check validates this 
description, explained in section III.B.4.  At a later point in 
time, a requestor (such as an engineer, deployer) formulates a 
request (with the help of a software tool) that results in a 
semantic request that is submitted to the semantic reasoner.  
The reasoner then retrieves the information of all known 
services (using the service registry) and plans the workflow(s) 
that fulfill(s) the semantic request.  The user can then submit 
the planned workflow for execution by a workflow engine and 
receives the result. 

 
Figure 3.  Activities/roles 

The following sub-sections will describe each of the 
aforementioned steps in detail. 

1) Service Registration: The implementation of the 
solution approach is based on a Service-Oriented Architecture 
(SOA) with Web Services (WS).  Thus, all created WS 
encapsulate a certain piece of functionality that can be reused 



within the SE process.  Additionally, each service is annotated 
with semantic information, which describes the pre-/post-
conditions (PRC/POC) and effects (E) of a specific service 
operation.  This information is stored in the service registry.  

As an example for registered SWS, the AddTracingService 
of Listing 1 provides semantic information for its addTracing 
operation using SLL [7], which was developed as a special-
purpose, platform independent WS programming language, 
e.g., to provide better mapping capabilities to different target 
platforms and technologies.  Other formats such as WSML and 
OWL-S are conceivable.  The first six lines import the XML 
Schema file of the SLL specification, the ontology concepts 
(for the semantic descriptions), and the semantic rules 
(RuleML) for the SE domain.  As shown on line 11, it takes an 
SLL document (with the XSD complex type xsll:unit) and a 
configuration document (tr:configuration) as input and returns 
an SLL document (line 12). 

Lines 15 to 43 provide a semantic description for the 
addTracing operation.  This includes the declaration of the 
semantic signature (lines 16 and 17) which comprises in- and 
output concepts.  Lines 19-26 contain the mapping between the 
semantic concept and the XML Schema data types using 
variables and XQuery/SLL expressions (XSLT could also be 
used).  This is followed by the declaration of pre- and post 
conditions as well as effects (Lines 28-40).   

As shown in line 30, the operation precondition uses a rule 
from the SE domain that states that the input concept I1 (SLL  
program) must not have the op_call_tracing feature.  
Additionally, the effect section states that the output O1 (SLL 
program) inherits all features from the input (line 36) and the 
feature op_call_tracing is added (line 38).     

 

 
Listing 1.  AddTracingService 

Table I shows sample service registry entries needed for the 
BookService scenario.  Along with the service name, 
operation-specific semantic input and output ids and concepts 
(cp. the semantic signature of listing 1) are provided.  The 
semantic description includes the type as well as the facts/rules.  
The following abbreviations of domain specific rules are used 
in the last column: supportFeatures (sF), prohibitFeatures 
(pF), hasMinimumOneFeature (hMOF), copyFeature (cF) and 
addFeature (aF). 

TABLE I.  SERVICE REGISTRY ENTRIES 

semantic inputs Semantic outputs semantic  service name 
id concept id concept type rules/facts 

I1 bpel PRC sF(I1, [‘workflow’,...]) BPEL2SLL 

I2 config 

O1 sll 

E cF (I1,  O1) 

I3 sll O2 depl_config E cF (I3, O3) SLL2EJB 

I4 config O3 xjava* E aF (O3, [‘#ebj2.0’]) 

SLL2WSDLS I5 sll O4 wsdls E cF (I5,  O4)  

JavaCompile I6 xjava* O5 xclass* E cF (I6,  O5)  

PRC pF (I7, [‘#op_call_tracing’]) 

E cF (I7, O6) 

AddTracing I7 xjava* O6 xjava* 

E aF (I7, [‘#op_call_tracing’]) 

I8 sll PRC pF (I8, [‘#message_encryption’]) 

E cF (I8, O7) 
AddSecurity 

I9 config 

O7 sll 

E aF (O7, [‘ message_encryption’]) 

I10 depl_config PRC hMOF (I11, [‘#ejb2.0’,’#WS’,…]) 

PRC pF (I11, [‘#deployed’]) 

E cF (I10, O8) 

Deployment 

I11 bundle 

O8 report 

E aF (O8, [‘ #deployed’]) 

I12 xclass* PRC hF (I12, [‘#ejb2.0’]) 

PRC pF (I12, [‘#bundled’]) 

PRC cF I12, O9) 

Bundling 

I13 wsdls 

O9 bundle 

PRC aF (O9, [‘#bundled’]) 

 

All other services of the service registry are described 
similarly.  In order to avoid dependency on SLL for the 
semantic service description, the syntactic and semantic parts 
of SLL can be (and were) translated to WSDL-S [2]. 

2) Knowledge Retrieval: Fig. 4 depicts the underlying 
workflow used by the current solution implementation to 
extract the semantic information needed for the SWS-ASE 
process.  Service Descriptions, including semantic and non-
semantic information, serve as inputs to WSDL-S 
descriptions, which in turn serve as inputs to the Knowledge 
Base used by the reasoner.  Additionally, Domain Facts/Rules 
including Ontologies and automation Rules also serve as 
inputs to the Knowledge Base. 

 
Figure 4.  Semantic knowledge extraction 

Using the Knowledge Base, a directed services graph 
G=(C, E) is created, where all I/O concepts of the service 
operations are represented as a set of vertices C={c0,…,cn} and 



all connections between the concepts as a set of edges 
E={e0,…,em} such that E⊆[C]2,.  In this scenario, a service 
operation is represented as a sub-graph G’(C’, E’), with G’⊆ G, 
C’⊆ C, E’⊆ E, the input concepts Ii∈C’, the output concepts 
Oi∈C’ and the set of directed inner-operation edges 
E’(I,O)={i0o0, i0o1, …,i0ok,i1i0,i2i1,…,inin-1).  However, no real 
connection between the inputs of an operation exist, thus (ref. 
to Fig. 5) a requiresConnection (rC) rule is added to all inner-
edges of the first operation input (I3) in order to model the 
requirement (transition dependency) that all inputs must be 
connected.  Fig. 5 shows an example Petri net and the 
corresponding optimized internal graph representation of the 
SLL2EJB service, whereby the vertex names correlate with the 
id entries in Table I. 

 
Figure 5.  SLL2EJB inner-operation edges  

Additionally, two vertices o (output) and i (input) of two 
different operation sub-graphs of G are connected (adjacent) if 
their concept types provide a match, meaning oi is an edge of 
G.  oi is called an outer-operation edge because it connects the 
output of one service operation with the input of another 
service operation.  Fig. 6 exemplifies how the sub-graph of the 
SLL2EJB service operation of Fig. 5 can be connected to the 
concepts of other operations via outer-operation edges.  Here 
the outputs of the BPEL2SLL and AddSecurity services serve 
as inputs to the SLL2EJB service, whose outputs serve as 
inputs to the JavaCompile and Deployment services. 

 
Figure 6.  SLL2EJB inner-and outer operation edges 

In order to include the rule handling (e.g., dependencies, 
etc.) in the workflow planning phase, a set of rules 
R={r1,…,rn} can be assigned to an edge e, as shown via the 
example of the rC rule.  Thereby, the function m:E→R 
provides the set of assigned rules of an edge. 

3) Request Assembling: In order to automatically convert 
and deploy the BookService of section II, the requestor 
formulates the desired objective as a semantic request.  In this 
context, the tuple Rq=(G, S, T, F) represents a request, where 
G=(C, E) is the directed graph, S ⊆ C the set of start concepts, 
T ⊆ C the set of target concepts with T∩S=∅, and F the set of 
desired features.  In the case of a deployment request for the 
BookService, the following elements could be assigned: 

S={dm#sll, dm#config} 

T={dm#report} 

F={dm#message_encryption, dm#profiling,   

      dm#async_call, dm#deployment/target=#dm:JBoss} 

The given inputs S={i0,,…,im} of the request are the sll 
concept which correlates with the BookService document 
instance, and a config concept which correlates with a 
directives document instance.  In this example, the output T 
contains a report concept that provides details of the 
deployment action.  Additionally, the desired features 
message_encryption, profiling, async_call, and deployment are 
specified.  In order to fulfill the request, a mapping function 
Rq→W is needed which provides a workflow W for the given 
request. 

4) Workflow Planning: A workflow (path) is a special, 
non-empty graph W=(C, E) which can be expressed via its 
sequence of vertices W=c0c1..cn.  The set of features 
F={f1,…,fn} which are assigned to a specific workflow W can 
be extracted via the function f:W→F.  In the context of Web 
service composition, the fundamental problems of planning 
are addressed by various research efforts, such as AI planning 
[8] [9] [10].  Solving a planning request can be viewed as a 
search problem in the space of all possible combinations, 
where the search algorithm starts with the set of start concepts 
S and goals T and F.  In the domain of SE, two typical 
scenarios occur that must be covered by an algorithm: 

1. The calculation of all workflow alternatives for a specific 
request. 

2. The calculation of an optimal workflow for the request 
that fulfills a certain criterion (best calculation time, 
shortest workflow, etc.). 

However, both planning problems are NP-hard [11].  To 
provide better performance, the underlying planning algorithm 
can use case-specific strategies, including Hill-climbing and 
heuristic methods.  For example, in the current SWS-ASE 
implementation, the evaluation of the planning state to 
approximate the distance between the initial states S and the 
target states T is realized via an integrated Relaxed Graphplan 
heuristic [12].  In addition to heuristics, additional information 
is calculated for each state (e.g., the set of helpful rules R).  
This reduces the branching factor for typical SE scenarios 
where a fast initial result is needed.  Furthermore, specific 
restrictions (e.g., max. 10 composite services, timeouts) and 
prohibitions for certain workflow patterns (permutations, 
sequential execution of independent services) are made.  All 
theoretical investigations on how to improve search and 
planning algorithms are out of scope for this paper and 
extensively covered via the efforts within the workflow and AI 
planning research community (see section V).  To illustrate 
their practical impact, section IV shows promising results and 
measurements for certain usage scenarios within the SE 
domain. 

5) Workflow Execution: The result of the preceding 
planning phase is the generated graph W=(C, E) for a specific 
semantic request, which connects a set of WS from the service 
registry.  Therefore, the graph W can be represented as a WS.  
For the purpose of workflow description, several languages 
such as BPEL or SLL [7] are available.  One generated 
workflow for the aforementioned BookService deployment 
request is illustrated in Fig. 7. 



Assuming the BookService was modeled in UML and 
converted to SLL, the SLL document together with a 
configuration document serve as input S to the workflow 
(upper left boxes) where the output T is shown as a report box.  
In the first step, the AddSecurityService is called in order to 
weave in the message_encryption feature (as an aspect) in the 
SLL program.  The SLL2WSDLService generates a WSDL-S 
description from the SLL service input.  In parallel, the SLL 
program is transformed into an EJB that comprises a set of Java 
files.  Then the set of Java files is compiled via the 
JavaCompileService.  The ProfilingService instruments the 
class files to enable the requested profiling capabilities. All 
class files along with the WSDL-S are bundled via the 
BundlingService.  In the last step, the EJB bundle is deployed 
and registered using the DeploymentService.  The output of the 
last service is a concept called report containing information 
about the deployment action.   

 
Figure 7.  BookService deployment workflow 

As previously mentioned, the generated workflow can be 
represented in various forms, such as SLL or BPEL, and 
executed on the specific interpreter, for instance, the XL-
platform [13] in the case of SLL or a BPEL engine. 

C. Feature Analysis Process 
A critical issue within the SE process relates to the 

extraction and creation of meta-information.  In the 
aforementioned BookService application scenario, the 
requestor manually adds meta-information to the input 
documents, which is error-prone.  For instance, it is not 
possible in the SWS-ASE process to automatically check 
whether the BookService input document already contains a 
special feature (e.g., message encryption) or not.  
Consequently, undetected features could cause errors in the 
SWS-ASE process, or at least needless overhead for the 
workflow execution phase when unnecessary services are 
included (e.g., the AddSecurityService). 

To address this issue, an additional analyzer entity is 
included.  The task of the analyzer entity is to scan an input 
document D (e.g., the BookService.sll document) of a certain 
concept type and to detect specific feature patterns P.  It 
provides a mapping a:(P, D) F.  The list of detected features 
{f1,…,fn}  can then be used in the sub-sequent planning phase.  

Fig. 8 shows the analysis result of the BookService.sll 
document. 

As shown, several features such as wrapper, workflow, 
message encryption, and data manipulation are detected.  The 
current analyzer implementation performs pattern matching on 
the XML language representations [7] via XSLT by using its 
template matching functionality with predefined patterns to 
create a list of semantic features that are then attached to the 
analyzed document and used within the planning phase. 

 
Figure 8.  BookService analysis result 

Another issue that is dependent on the analysis results 
relates to the complexity of a specific document.  In this 
context, the SLL programming language can provide an 
example: as a full WS programming language, it is more 
powerful than the BPEL language, which can only describe the 
workflow between Web Services.  Therefore, only limited parts 
of a complete SLL document can be mapped to a BPEL 
document (external service invocations, control flow, etc.) and 
others cannot (trigger and monitor clauses, explicit security 
handling, semantic descriptions, etc).  If no possibility to 
transform a complete SLL program to another target language 
exists, a promising strategy is to partition the SLL program into 
code blocks attached with a semantic description and “glue 
code” that combines these partitions.  Fig. 9 shows the analyzer 
in combination with the partitioner entity that realizes the 
partitioning of documents.  Basically, a partitioning function 
p:D A exists which maps a document D with a set of features 
F={f1,…,fn} to a set of partitions A={a1,…,an}, whereby each 
partition has at least one attached feature f∈F of D. 
Additionally, the current implementation accepts a set of 
strategies (splitting rules) as input, in order to define the most 
appropriate size of a partition. 

In this way, the partitioning of an input document (e.g., 
SLL) enables a larger set of possible service combinations 
(e.g., pieces that cannot be handled by BPEL alone can be 
delegated to other technologies). 



 
Figure 9.  Analysis/partitioning process 

IV. EVALUATION RESULTS 
Within this section, the SWS-ASE solution is evaluated 

with regard to selected quality criteria such as usability, 
reliability, efficiency, as well as to its applicability.  All 
measurements were performed on a single Pentium 4 (3GHz, 
512MB) PC with the Window XP (SP2) operating system.  
SWI Prolog 5.4.7 was used for all reasoning tasks. 

A. Usability 
In order to improve the usability aspects of the SE 

toolchain, SWS-ASE introduced several views, which provide 
a higher-level of abstraction for the underlying SWS-ASE 
processes and thereby hide unnecessary complexity.  To give 
an example, Fig. 10 shows the graphical user interface for the 
specification of desired application features (feature modeling) 
in the context of workflow planning and execution.  

As shown in Fig. 10, the given input (BookService, 
configuration) and desired output concepts (report) of a specific 
SE planning request can be added as boxes on the left.  In this 
state, the composite SE process is not yet planned and available 
(cp. Fig. 7).  On the right, the feature configurator is shown, 
which allows a tree-based and explicit selection of the desired 
application features. 

Additional feature selection is facilitated using an iterative 
approach, whereby the list of possible features combinations 
available in the next step is updated and calculated 
dynamically.  When the feature selection is completed, the 
“Generate workflow(s)” link launches the SWS-ASE process 
and automatically generates a valid workflow based on the 
given strategy parameters.  Within the BookService scenario, 
the productivity of the SE process was significantly enhanced 
via feature modeling view and other views (such as depicting 
validation and registration).  Compared to the traditional result 
times (using a manual engineering process), significantly 
improved engineering times and cycles were observable 
(deployment request creation, automated workflow planning 
phase, deployment execution).  Other results showed that 
usability improvements occurred with regard to overall 
application management and maintainability.  The transparent 
dependency/relation checks and automated composition 
process provided a more simplified engineering process, which 
reduced the cognitive demands on user/developer.  
Additionally, as shown in the BookService scenario and 
through usage within Siemens AG, SWS-ASE resulted in less 
error-prone and more reliable SE processes. 

 
Figure 10.  Feature configurator view 

B. Reliability 
To enhance reliability, the SWS-ASE approach reuses and 

combines functionality provided as SWS.  As observed in the 
examined use case scenarios, the reliability of the generated 
workflows depends fundamentally on the accuracy of the 
semantic service descriptions.  In order to improve reliability 
and accuracy, SWS descriptions are tested and partially 
validated with the analyzer tool of Fig. 9 at the point of 
registration.  Accuracy tests are comprised that a start 
document D (which is assigned to the vertex c0) is analyzed 
before the execution of the service and a result document D’ 
(vertex c1) is analyzed after the execution.  In order to validate 
the semantic description, the set of detected features after 
service execution F’:=a(P, D’)  is compared with the result of 
the union F1∪F2=F,  whereby  F1:=a(P, D) and F1:= f(W), 
W=c0c1.  If they do not match, the applied rules R, which are 
used in the workflow W via the function f, are invalid.  If so, 
the service description is invalid and was excluded from further 
workflows.   

Additionally, SWS-ASE provides the capability of 
indicating the direction and degree of influence to quality 
characteristics of any given feature choice given the 
appropriate ontology and rules, thus allowing the impact of a 
choice to be seen as to how it affects the overall quality 
choices.  For example, the choice of asynchronicity potentially 
enhances scalability and efficiency, while potentially reducing 
response time and maintainability.  These quality tradeoffs 
could thus be weighed more explicitly by an engineer, and 
various quality priorities and optimizations could be selected to 
achieve a certain goal. 

Other aspects that affected SE reliability included the SWS-
ASE process and strategies, the domain ontology, SWS-ASE 
infrastructure (e.g., the service registry), and the reliability of 
any given tool service.  Although not all of these aspects were 
addressed and covered by the solution, a general improvement 
in the reliability of the created application software was 



observed.  Compared with a manual SE process, fewer 
deployment and runtime errors occurred, due to the 
aforementioned dependency and relation checks within the 
creation phase of SE toolchain. 

C. Efficiency 
Response time and scalability measurements were applied 

to two typical search problems that occur in the planning phase:  

- Find the first workflow that fulfills the request. 

- Find the set of all possible workflows. 

The underlying complexity and methodology of these 
request types was described in the preceding sections.  As 
shown in Table II, the series of measurements for the 
BookService deployment request investigates the response 
times for the first reasoning result.   In this test scenario, the 
service registry contains a set of 50 typical SE services.  
Additionally, the number of possible services within a 
workflow is restricted to a maximum of 10. 

TABLE II.  REASONING MEASUREMENTS (1) 

Features 
op_call 
tracing 

profiling sync 
call 

async 
call 

message 
encrypt 

deploy 
JBoss 

deploy 
.NET 

1st 
result 

time [s]

No. of valid 
workflow 

alternatives
- - - - - - - 0.26 530 
- - - - - x - 0.30 162 
x - x - x x - 0.92 22 
- x - x x - x 0.89 24 
- - - - - x x n.a. 

[213.21]
0 

 

Within the table, the Features columns represent possible 
random feature selections that are included in five variants of 
the BookShop deployment scenario, where ‘x’ means that a 
certain feature is requested.  For example, the ‘x’ in row 2 and 
column 6 limits the deployment to a JBoss application server.  
For each variant, the “1st result time” shows the time in 
seconds until the first workflow for a specific scenario was 
created, whereby the “No. of valid workflow alternatives” 
gives the overall number of workflows that could theoretically 
fulfill the request.  As expected, the table illustrates that as 
more features are requested, more time is needed to calculate a 
workflow.  Additionally, as shown on the last row, the parallel 
deployment on two different platforms was defined as an 
illegal feature combination, which causes an initial result time 
of 213.21 sec.  This occurs because all possible combinations 
of services have to be checked before the reasoner can decide 
that no valid workflow exists.  In a practical scenario, a timeout 
(e.g., 5s) is introduced which makes use of the observation that 
an initial workflow variant is usually available quite early.  

The second measurement series illustrates the scalability 
properties of the search algorithm with respect to the number of 
services based on the feature set in the 3rd variant (row) of 
Table II.  In this scenario, the 1st column of Table III contains 
the number of services within the service registry which now 
varies from 15 to 50.  The 2nd column states the response time 
until the first valid workflow was found.  Additionally, the 3rd 
and 4th columns provide the time required until all possible 
workflow variants were available, whereby the 4th column 

does not restrict the number of services to 10 within a 
workflow in order to illustrate the effect of planning strategy 
constraints. 

As depicted in Table III and from section III.B.4, the 
calculation time grows exponentially with the number of 
services that are included in the workflow-planning phase.  In 
the BookService planning scenario, the complexity for the 
calculation of all workflows causes unacceptable results when 
more than 15 services are included.  In contrast, an initial 
workflow variant is available after an acceptable period of time 
(e.g., 0.92sec for 50 services), which would be sufficient for 
most purposes. 

TABLE III.  REASONING MEASUREMENTS (2) 

time [s] to calculate all workflow 
variants  

No. of 
Services 

in 
Registry

time [s] to 
calculate the 1st 
workflow result Max. 10 

services in 
workflow 

No restriction 
(unlimited 
services) 

15 0.41 6.69 7.67 
20 0.48 51.09 113.78 
25 0.56 80.01 285.70 
30 0.64 109.97 n.a. 
40 0.78 159.54 n.a. 
50 0.92 210.12 n.a. 

 

Table IV addresses the performance aspects of the analysis 
process that is described in section III.B.4.  In this context, 
several tests where applied using 3, 9 and 15 feature types in 
combination with document sizes of 250, 500, 1000 and 2500 
lines of code (LOC).  The measurements show that the time to 
analyze documents is independent of the number of found 
feature instances.  The process of detecting feature patterns 
grows linearly with the number of available feature types and 
with the LOC of the input document.  Thus, the underlying 
process of feature recognition scales well and is not a critical 
part within the overall SWS-ASE process. 

TABLE IV.  ANALYSIS PROCESS MEASUREMENTS 

250 LOC 500 LOC  1000 LOC  2500 LOC  No. of 
feature
types 

Time 
[ms]

Feature
instances

found 

Time 
[ms]

Feature 
instances 

found 

Time 
[ms] 

Feature
instances

found 

Time 
[ms]

Feature
instances

found 
3 102 0 172 0 329 0 682 0 
9 105 12 179 25 343 12 706 12 
15 110 36 189 75 350 36 727 36 

D. Applicability 
To achieve the Semantic Web SE domain grand vision of 

the global integration of the tool infrastructure, new areas of 
difficulty must still be addressed by the Semantic Web and SE 
community.  Fundamentally, all of the open issues in the 
intersection of the Semantic Web and Automated SE affect the 
general applicability of the presented SWS-ASE approach.  
Such issues include, e.g., versioning management of software 
artifacts/assets and their related ontologies and interdependency 
rules, e.g. with respect to compatibility.  For workflow 
planning, the NP-hard issue remains, although improved 
heuristics and algorithms could help.  Moreover, SWS 
workflows are currently tied to WSDL documents that could 



change over time and cause the generated workflows to 
become stale.  In the context of SWS-based distributed 
workflows, security and trust play a significant role.  Other 
current issues include QoS, SLAs, registering/finding services 
globally, usage license agreements, and business models for 
service providers.  Additionally, standardization work is 
needed for semantic descriptions (e.g., WSDL-S) and 
upper/lower ontologies within the SE process.  Thus, the 
general applicability of the SWS-ASE approach depends on the 
widespread adoption and usage of the SWS paradigm to 
aggregate tool functionality and achieve greater automation.  
Nevertheless, the SWS-ASE results show that the use such an 
approach can yield promising quality improvements for 
common SE tasks (such as automated toolchain composition 
and execution), that major parts of the SWS-ASE underlying 
vision can already be applied. 

V. RELATED WORK 
SWS-ASE combines technologies from various research 

areas and thus facilitates interdisciplinary collaboration.  
Within this section, several approaches and technologies are 
presented that cover certain parts of the SE process and/or that 
could help within the context of the presented solution. 

ASE and integrated toolchains are currently being 
approached on various levels.  IDEs such as Microsoft Visual 
Studio and the IBM Websphere Studio support the vision 
behind software factories [14].  Integrating various 
development tools into one homogeneous adaptable and 
configurable CASE tool environment requires the usage of 
standardized interchange and description formats and a well-
defined meaning on which each component can rely.  Although 
Eclipse relies on OSGi, which furthers a standards-based, 
customizable, and potentially distributed development 
environment, the usage of SWS-ASE and the underlying 
semantic web technologies in this context could enhance 
collaboration and interoperability between SE tools.  
Distributed tool infrastructure is gaining in popularity, for 
instance Apache Maven.  While Maven provides consistent 
conventions and dependency management across Java projects, 
its underlying metadata and process is not standardized and 
interoperable across platforms.  Additional research work in the 
area of integrated, distributed toolchains include meta-model 
[15], peer-to-peer [16], and agent [17] approaches.  While 
addressing integration between tools at different levels, SWS-
ASE has a strong focus on semantic and automatic 
composition. 

OMG’s MDA and other MDSD approaches provide 
support for automation and generation from the model through 
the execution cycle.  Currently, MDA does not address the 
feature dependency implications that correlate with toolchain 
interactions.  With regard to this issue, SWS-ASE can support 
MDA’s vision via structural and behavioral dependency and 
relation analysis of the toolchain context with a standardized, 
distributed, and interoperable SWS approach. 

In the context of this paper, feature modeling supports the 
conceptual abstraction and description of relationships between 
distinguishing characteristics of SE artifacts or assets.  
Implementations such as XFeature and pure:variants support 

variant management and product families, but because they do 
not use semantic-based interoperable standards such as OWL 
and SWS, they are limited in the degree of automation and 
distributed inter-platform operability. 

Related Semantic Web research involves composition and 
ontologies.  For example, AI Planning research for automated 
composition includes rule-based or Hierarchical Task Network 
(HTN) approaches.  Although pure HTN planners such as 
SHOP2 perform well in certain scenarios, scalability can 
become an issue for complex knowledge bases.  An HTN-
related approach that uses additional heuristics [12] to address 
complexity is OWLS-Xplan [9], which shows that better 
solutions are possible for certain problem spaces.  [18] gives an 
overview of the current state-of-the-art and evolving AI 
Planning methods, which could enlarge the spectrum of 
planning strategies available to the SWS-ASE approach to 
handle the complexity inherent in the SE domain.  Another 
Semantic Web and SE issue is the lack of available SE domain 
ontologies, which is currently being pursued [19]. 

For workflow description, possibilities include BPEL4WS 
and Microsoft Windows Workflow Foundation (WWF).  
Ideally, workflows across SE toolchains should be able to 
handle dynamic aspects (consider AO4BPEL [20]) and be 
capable of self-adaptation, for which synergies with stochastic 
optimization [21], AI planning and autonomic computing 
research are conceivable. 

VI. CONCLUSION & FUTURE WORK 
Due to the multiple challenges confronting SE, there is a 

demand for greater automation and better toolchain integration.  
Currently, the missing semantic annotation as well as limited 
use of the interoperability paradigms makes it difficult to 
aggregate the underlying parts and thereby achieve a higher-
level automated SE process.  Despite advances in this area, 
multiple and often hidden dependencies, implicit decisions, and 
manual steps comprise a typical part of the current engineering 
cycle.  The ensuing mistakes, needless complexity, 
inefficiencies, and unmanageability affect the quality of the 
software product and the development process.   

In this paper, we presented the SWS-ASE approach.  By 
preparing and registering tool functionality as SWS, an 
automated SE process was introduced that is able to provide a 
way of amalgamating heterogeneous, distributed tool 
functionality in a standardized way.  The basic applicability of 
this approach was shown via the BookService example 
scenario.  In this context, user-specific views such as the 
Feature Configurator were provided to improve usability by 
hiding technology-specific details and enabling feature-driven 
application development.  The results showed that typical 
feature selections could be reasonably handled when the 
appropriate algorithms and heuristics are applied together with 
constraints that reduce the set of possible combinations.  
Fundamentally, the enhanced automation of the SE process 
yielded improved usability, reliability, and efficiency.     

Some inherent risks of the SWS-ASE are that the quality of 
the overall process strongly depends on the correctness of the 
syntactic and semantic descriptions, and that the number of 
relationships (regarding possible I/O connections, feature 



cross-dependencies, etc.) increases exponentially with the 
number of involved services.  To mitigate these risks, it is 
necessary, e.g., that the SE community provide a standardized 
process for the creation and maintenance of SE domain models 
(e.g., to handle different versions).  Additional research (i.e., 
improved strategies and algorithms) of the SWS community is 
needed in the field of workflow planning and complexity 
handling, where the NP-hard criterion remains an issue.  
Nevertheless, the SE domain has much to gain from the SWS 
vision and the enhanced automation capabilities it could bring.  
In this context, by improving the integration of the software 
tool infrastructure with semantically-enhanced tools, and by 
automating the planned workflows based on desired features, 
the SWS-ASE approach shows that significant benefits are 
realizable that support the overall quality of the software 
product and process.    

Future work in the context of SWS-ASE will include the 
improvement of the tool automation spectrum for semantic 
analysis, pattern matching, partitioning, and description 
generation.  To enable more dynamic and adaptable workflows, 
new strategies for dynamic semantic queries will be explored 
as well as the application of transactional approaches. 
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