
VR-GitEvo+CI/CD: Visualizing the Evolution of Git Repositories
and CI/CD Pipelines in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract – Source code, together with its dependencies, is
constantly under change pressure, and hence the codebase,
typically stored and managed in a Git repository, evolves.
Similarly, the associated DevOps CI/CD (Continuous
Integration and Continuous Delivery) pipelines (automated
processes or workflows), which automate the preparation and
delivery of software artifacts, must adapt and evolve. However,
visualization of the evolution of both the codebase and the
associated CI/CD pipelines remains a challenge and hinders
comprehension, analysis, and collaboration among DevOps
stakeholders. To address this, our solution concept VR-
GitEvo+CI/CD contributes an immersive visualization of
codebases, dependencies, and CI/CD pipelines in Virtual Reality
(VR). Our prototype realization shows its feasibility, while a
case-based evaluation provides insights into its capabilities for
supporting comprehension and analysis of the state and
evolution of codebases and CI/CD pipelines.

Keywords – Git; DevOps; virtual reality; visualization;
software engineering; continuous integration; continuous
delivery; CI/CD pipelines; code evolution; automation workflows.

I. INTRODUCTION
This paper extends our VR-DevOps paper [1], focusing on

visualizing the evolution of both Git source code repositories
and CI/CD (Continuous Integration and Continuous Delivery)
pipelines [2] (a.k.a. DevOps pipelines); it incorporates VR
visualization of Git repository evolution and extends our
DevOps integration and capabilities.

“Everything moves on and nothing is at rest” is ascribed
by Plato to Heraclitus [3] and reformulated by others in
various ways; it essentially expresses that change or
dynamicity is the only constant in our world. And yet many if
not all of the restraints to change anchored in the physical
world are absent in the digital world that software inhabits. As
posited by F.P. Brooks Jr., software incurs essential
difficulties or challenges that relate to its essence (inherent in
its nature): complexity, conformity, changeability, and
invisibility [4]. Software is essentially infinitely changeable,
highly complex, exacting in conformance, and invisible. For
developers, the invisibility of software obscures the
underlying dependencies and complexity. This, in turn,
hinders its comprehension, analysis, and management during
the rapid evolution of both the codebase and the associated
CI/CD pipeline, which automates the transformation of code
into delivered (invokable) artifacts.

As to the degree of opaque dependencies, a 2024 industry
analysis [5] of over 20,000 enterprise applications found they

had 180 component dependencies on average (10% had over
400), with modern commercial software consisting of up to
90% Open-Source Software (OSS) components. As to change
and evolution frequency, 6.6 trillion downloads were expected
for 2024 across 7M OSS projects or components that
encompass over 60M releases (on average 16 releases per
OSS project annually) [5]. Already back in 2012, Google was
said to have an average deployment frequency of 5,500 times
a day [6][7], while Amazon was at 23,000 a day on average
[6]. While we cannot extrapolate to today’s rates for these IT
behemoths, a 2021 survey of 1200 professionals indicated
elite performers (26%) were deploying on demand multiple
times a day [8]. The complex and obscure dependencies and
rapid evolution of code and pipelines make comprehension
challenging.

DevOps [9][10] is a methodology that combines
development (Dev) and operations (Ops) with automation to
improve the quality and speed of software deliveries. While
there is no universally agreed to definition, key principles
include Continuous Integration (CI), Continuous Delivery
(CD), shared ownership, workflow automation, and rapid
feedback. Both the code and tool integration and automation
that DevOps addresses has become indispensable to modern
software development. It has been reported that 83% of
developers surveyed reported being involved in DevOps-
related activities [11]. Lately, Security (Sec) has often been
included in DevOps, denoted at the stage where it is primarily
considered, e.g., DevSecOps [12]. Despite the popularity of
DevOps, no modeling language nor visualization standard
currently exists for CI/CD pipelines; each platform and
vendor has their own, and it can thus be difficult for non-
developers to grasp - and hence collaborate regarding - the
current state of pipeline runs, and the processes involved in
software development, testing, and delivery.

With the increasing demand for software functionality,
large number of source code files are stored and managed in
code repositories using Version Control Systems (VCS) like
Git. GitHub has over 420M repositories with over 100M users
[13]. A repository can become very large and continually
evolve. For instance, in 2015 the Google monorepo shared by
25K developers contained 2B Lines of Code (LOC) across 9M
source files having a history of 35M commits with 40K
commits each workday [14], while the Linux kernel code
repository contains over 40M LOC [15] across 60K files. For
repositories, especially at such a scale, the dynamism of the
changes as the codebase evolves can challenge
comprehension and analysis.

Current visualization tools for Git repositories and CI/CD
pipelines face inherent visualization limitations. While The
potential of Virtual Reality (VR) to address both visual
scalability and dynamic evolution has as yet been
insufficiently explored. VR offers a mediated visual digital
environment created and then experienced as telepresence by
the perceiver. In contrast to a 2-dimensional (2D) space, VR
enables an unlimited immersive space for visualizing and
analyzing models and their interrelationships simultaneously
in a 3D spatial structure viewable from different perspectives.
In their systematic review of the DevOps field, Khan et al.
[16] identified a lack of collaboration and communication
among stakeholders as the primary critical challenge.
Towards addressing this collaboration challenge, our
contribution leverages VR towards enabling more intuitive
DevOps visualization and interaction capabilities for
comprehending and analyzing CI/CD pipelines, thereby
supporting enhanced collaboration and communication
among a larger spectrum of stakeholders. A further challenge
is the finding by Giamattei et al. [17] that the landscape for
DevOps tools is extremely fragmented, meaning stakeholders
access various custom webpages or logs. Hence, a further goal
of our solution concept is unifying the visualization and
information access across heterogeneous Git and CI/CD tools.

In our prior VR work, VR-Git [18] and VR-GitCity [19]
focused on Git support in VR with a vertical commit plane or
city metaphor respectively, whereas VR-DevOps [1] focused
on VR support for depicting pipelines. This paper contributes
our solution concept VR-GitEvo+CI/CD, which provides an
immersive visualization in VR of the state and evolution of
both codebases, dependencies, and cross-platform CI/CD
pipelines. Our prototype realization shows its feasibility, and
a case-based evaluation provides insights into its potential
towards supporting comprehension, analysis, and
collaboration among DevOps stakeholders.

This paper is organized as follows: the next section
discusses related work. Section III presents our solution
concept. Section IV describes our realization, followed by an
evaluation in Section V. Finally, a conclusion is drawn.

II. RELATED WORK
Work on VR-based visualization of Git includes our own

prior work VR-Git [18] and VR-GitCity [19]: VR-Git uses
consecutive vertical commit planes on a hyperplane to
represent commits, whereas VR-GitCity uses a city metaphor
to convey code sizes across files.. Bjørklund [20], who used a
directed acyclic graph visualization in VR using the Unreal
Engine, with a backend using NodeJS, Mongoose, and
ExpressJS, with SQLite used to store data. GitHub Skyline
[21] provides a VR Ready 3D contribution graph as an
animated skyline that can be annotated. VRGit by Zhang et al.
[22] depicts the non-linear version history via a history graph
anchored to the user’s arm, where each node is a 3D miniature
of that version highlighting changed objects.

As to non-VR based Git visualization, Git-Truck [23]
hierarchical visualizations (i.e., Treemaps, Circle packing) to
represent files nested in folders, with code metrics mapped to
size and color; GitTruck@Duck [24] extends this further for
filtering polymetric views scoped to time intervals. Gource

[25] and CodeFlower [26] use an animated tree with
directories as branches and files as leaves. Githru, [27] enables
interactive scalable exploration of large Git commit graphs
using graph reconstruction, clustering, and context-preserving
squash merge. Evo-Clocks [28] represents repository
evolution with each node history depicted as a separate disk
clock. RepoVis [29] offers a comprehensive visual overview
and search facilities using a 2D JavaScript-based web
application and Ruby-based backend with a CouchDB. Githru
[30] utilizes graph reconstruction, clustering, and context-
preserving squash merge to abstract a large-scale commit
graph, providing an interactive summary view of the
development history. VisGi [31] utilizes tagging to aggregate
commits for a coarse group graph, and Sunburst Tree Layout
diagrams to visualize group contents. It is interesting to note
that the paper states “showing all groups at once overloads the
available display space, making any two-dimensional
visualization cluttered and uninformative. The use of an
interactive model is important for clean and focused
visualizations.” UrbanIt [32] utilizes an iPad to support
mobile Git visualization aspects, such as an evolution view.
Besides the web-based visualization interfaces of Git cloud
providers, various desktop Git tools, such as Sourcetree and
Gitkracken, provide typical 2D branch visualizations.

Regarding VR-based DevOps-related work, VIAProMa
[33] provides a visual immersive analytics framework for
project management. DevOpsUseXR is mentioned in the
paper as an eXtended Reality (XR) approach for incorporating
end users to allow them to directly provide feedback in Mixed
Reality (MR) regarding their experience when using a specific
MR app. In contrast, our solution concept is independent of
the software type being built in the pipeline, and is purely
virtual, remaining consistent, app-independent, and focusing
on visualizing and collaborating with regard to the DevOps
pipeline. The systematic review of DevOps tools by Giamattei
et al. [17] does not mention any VR, XR, or MR tools.

Non-VR based DevOps work includes DevOpsML [34], a
platform modeling language and conceptual framework for
modeling and configuring DevOps engineering processes and
platforms. DevOpsUse [35] expands DevOps to collaborate
more closely with end users. The authors also state that there
is in general a research gap in applying information
visualization to software engineering data, and that this needs
further investigation. This concurs with our view, as we were
not able to find much VR or non-VR work related to DevOps
visualization. Zampetti et al. [2] analyzed the pipeline
evolution of 4,644 projects in 8 programming languages using
Travis-CI, creating a taxonomy of 34 CI/CD pipeline
restructuring actions and metric extractor of 16 indicators of
how a pipeline evolves.

In contrast to the above work, VR-GitEvo+CI/CD focuses
on immersively visualizing the dynamic evolution of both the
codebase in Git repositories and heterogeneous CI/CD
pipelines.

III. SOLUTION CONCEPT
Our solution approach leverages VR for visualizing the

evolution of codebases and CI/CD pipelines via models that
can be immersively explored and experienced in 3D.

A. Grounding in VR-Related Research
Our rationale for integrating VR into our solution concept

stems from existing VR research in fields we consider relevant
to modeling, analysis, and collaboration, several of which are
summarized here. Akpan and Shanker [36] in their systematic
meta-analysis demonstrate that VR and 3D provide marked
advantages in discrete event modeling, including model
development, analysis, and Verification and Validation
(V&V), with common findings pointing to the positive impact
of 3D/VR model analysis and V&V. Across 23 studies on 3D
analysis, 95% found 3D more effective and conducive to
enhanced analysis compared to 2D, notably when assessing
model behavior or conducting what-if scenarios; there was
broad agreement that 3D/VR effectively communicates
results to decision-makers with clarity and conviction; 74% of
19 papers concluded that 3D/VR significantly enhances model
development tasks, benefiting team support, and sharpening
precision and clarity. In exploring VR applicability for
analytical tasks within an information architecture, Narasimha
et al. [37] conducted a card sorting collaboration study. Their
findings indicated VR matched or exceeded in-person card
sorting for certain variables, surpassing both traditional and
video-based settings. Qualitative insights on awareness
suggested that during collaboration, participants maintained
awareness of tasks, people, and the environment, mimicking
in-person interactions, with positive perceptions of VR. These
findings indicate that VR facilitates a sense of presence and
collaboration akin to face-to-face settings. Fonnet and Prie's
[38] survey of Immersive Analytics (IA) reviewed 177 papers
and found that for complex graph and spatial data, IA offers
advantages over non-IA methods, though for multi-
dimensional data, benefits vary with the task. They highlight
that while IA supports the exploration of extensive data
environments, the underutilization of context-aware
navigation techniques is problematic, despite their importance
to users. Müller et al. [39] compared VR vs. 2D for a software
analysis task, finding no significant decrease for VR in
comprehension and analysis time. While interaction time was
less efficient, VR improved the user experience, was more
motivating, less demanding, more inventive/innovative, and
more clearly structured.

Consequently, we infer that an immersive, context-rich
VR experience holds significant promise for comprehensively
depicting 3D models while enhancing comprehension,
awareness, analysis, and the inclusion of and collaboration
with stakeholders.

B. Prior VR-Related Research
Our VR-GitEvo+CI/CD solution concept is highlighted in

blue relative to our other VR solutions in Figure 1. It is based
on our generalized VR Modeling Framework (VR-MF),
detailed in [40], which provides a VR-based domain-
independent hypermodeling framework addressing four
aspects requiring special attention when modeling in VR:
visualization, navigation, interaction, and data
retrieval/integration.

Our VR-based solutions specific to the SE and Systems
Engineering (SysE) areas include: VR-DevOps [1], which this
paper extends; VR-Git [18] and VR-GitCity [19] visualize Git

repositories; VR-SDLC (Software Development LifeCycle)
[41] visualizes lifecycle activities and artefacts in software
and systems development; VR-SBOM [42] for Software Bill
of Materials and Supply Chain visualization; VR-ISA [43] for
visualizing an Informed Software Architecture; VR-V&V
(Verification and Validation) [36], for visualizing aspects
related to quality assurance; VR-TestCoverage [45] for
visualizing in VR which tests cover what test target artefacts;
VR-UML [46] supports visualizing UML models; and VR-
SysML [47] supports Systems Modeling Language (SysML)
models.

In the Enterprise Architecture (EA) and Business Process
(BP) space (EA & BP), we developed VR-EA [48] to support
mapping EA models to VR, including both ArchiMate as well
as BPMN via VR-BPMN [39]; VR-EAT [49] adds enterprise
repository integration (Atlas and IT blueprint integration);
VR-EA+TCK [50] adds knowledge and content integration;
VR-EvoEA+BP [51] adds EA evolution and Business Process
animation; while VR-ProcessMine [52] supports process
mining in VR. Since DevOps (or DevSecOps or DevOpsUse)
can be viewed as inter-disciplinary, for software organizations
we view both the EA and BP areas as potentially applicable
for VR-GitEvo+CI/CD to support synergies, more holistic
insights, and enhanced collaboration across the enterprise and
organizational space.

Figure 1. Conceptual map of our various published VR solution concepts
with VR-GitEvo+CI/CD highlighted in blue.

C. Visualization in VR
A pipeline is represented as a horizontal pipeline

hyperplane, holding vertical semi-transparent colored boxes
called run planes (see Figure 2), which are ordered
chronologically left to right. A run plane represents a pipeline
run, which is colored based on status (green=success,
yellow=in progress, red=error, grey= aborted). Hyperplanes
also enable inter-project pipeline differentiation for larger
portfolio scenarios involving multiple pipelines. The bottom
of each run plane encloses a directed graph of sequential
stages (cubes) of the pipeline between a start (black sphere)
and an end (black sphere), while vertically stacked smaller
cubes linked with lines above each stage show the internal
steps within a stage. A cube with black borders is used to
represent the entire run, and is all that is shown when a run is
collapsed (e.g., to reduce visual clutter); on its front various
details are depicted (ID, run duration, circular percentage of
stages with status). The visualization form remains consistent
across DevOps tools.

Pipeline hyperplane

Figure 3. A nexus portraying artifact dependencies in a Git repository.

A Git code repository is depicted as a 3D graph, whereby
the spherical nodes, representing artifacts (files), are placed on
the surface of a 3D nexus sphere and edges connecting the
nodes represent dependencies, as shown in Figure 3. Such a
3D nexus is spatially compact for navigating to and between
nodes with the inside showing all dependencies. A 3D radial
tree layout depicts child nodes as hierarchically-layered
dependencies; here, all child nodes and their dependencies
extend radially outwards from the nexus, leaving only the
highest-level (parent or independent) artifacts in the nexus
(reducing the number of nodes within the nexus), as shown in
Figure 4. This permits dependency groupings and levels to be
more easily followed. A separate Lines of Code (LOC) nexus
is used to depict the relative sizes of source code files, as this
graph structure represents a containing folders tree hierarchy
rather than code dependencies; the node size corresponds to
the LOC in that file for a selected commit. This LOC box can

stand for any metric of interest and could easily be switched
to any other. We used LOC to exemplify this, since all text
files have this relevant metric.

Figure 4. Child dependencies extracted as 3D radial tree from nexus.

D. Navigation in VR
Two navigation modes are incorporated in our solution:

default gliding controls for fly-through VR, while teleporting
instantly places the camera at a selected position via a
selection on the VR-Tablet. Teleporting is potentially
disconcerting, but may reduce the likelihood of VR sickness.

E. Interaction in VR
User-element interaction is supported primarily through

VR controllers and a VR-Tablet. The VR-Tablet is used to
provide detailed context-specific element information.
Accordion visual elements permit more detailed information
to be offered when desired. It includes a virtual keyboard for
text entry via laser pointer key selection. On a hyperplane
corner, an anchor sphere affordance (labeled with its pipeline
ID) supports moving, hiding (collapsing), or showing
(expanding) hyperplanes, as shown in the bottom left of
Figure 2.

Figure 2. Hyperplane (annotated) of SprintBootExamaple Jenkins pipeline showing vertical colored run planes on a pipeline hyperplane.

IV. REALIZATION
The logical architecture for our prototype realization is

shown in Figure 5. In our realization, the VR visualization
aspects were implemented using Unity. It is supported by a
Data Hub implemented in Python that integrates various Git
and CI/CD data sources and stores them in JSON. All
integrations with DevOps tools use their Web APIs via our
tool-specific Adapters in our Data Hub for data conversion
into our internal JSON format. MongoDB (locally or remotely
using Atlas) is used for storage and is accessed via the
MongoDB .NET/C# Driver from Unity or PyMongo from
Python. To demonstrate the CI/CD tool/platform
independence (i.e., heterogeneity) of our solution concept, it
integrates with a local Jenkins [53] pipeline running in
Docker, exemplifying a private cloud CI/CD server, as well as
remote Semaphore [54] and Drone [55] CI servers to
exemplify public cloud CI/CD tool integration using Web
APIs.

Figure 5. VR-GitEvo+CI/CD logical architecture.

The GitPython library is used to extract Git commit data:
commit hash, author, timestamp, message, changed files, and
changed files and metrics (insertions, deletions, lines). For Git
commits, within the nexus, nodes outlined in red indicate new
files while turquoise indicates changed files. Dependencies
within JavaScript projects were extracted using the Node.js
package manager “npm ls --all” command. For the 3D radial
tree visualization, the various depth layers are colored to help
differentiate them (yellow, light green, dark green, turquoise,
blue, purple, pink, etc.). In the nexus layout, to highlight files
affected by a commit, red indicates added and turquoise
updated. In the LOC boundary box, black nodes are
directories and files are red.

A CD pipeline is an automated expression of the process
for preparing software for delivery. A Jenkins pipeline is a set
of Jenkins plugins with a set of instructions specified in a text-
based Jenkins file using Groovy syntax. It can be written in a
scripted or declarative syntax, and typically defines the entire
build process, including building, testing, and delivery.
Concepts involved can include agents (executors), nodes
(machines), stages (subset of tasks), and steps (a single task).
Both Semaphore and Drone pipelines are described via a
YAML syntax. We created our own common generic JSON
format to store pipeline information, see Figure 6. A pipeline
instance refers to a run. The refresh rates can be configured
for Data Hub state retrieval from Unity and for each Adapter’s
Web APIs calls.

Figure 6. Snippet of VR-GitEvo+CI/CD common run representation in
JSON.

V. EVALUATION
For the evaluation of our solution concept, we refer to

design science method and principles [56], in particular a
viable artifact, problem relevance, and design evaluation
(utility, quality, efficacy). A scenario-based case study is used
in evaluating the Git and CI/CD pipeline aspects separately to
address these particular stakeholder concerns (for various
stakeholders, not just developers):

1) Status scenario: focuses primarily on conveying
status information, so that stakeholders can readily
determine the current state,

2) Analysis scenario: focuses primarily on supporting
analysis and investigation tasks via the provisioning
of information towards understanding essential
features, relations, constituent elements, issue
identification, issue resolution, etc., and

3) Evolution scenario: focuses primarily on supporting
comprehension of the evolution of the underlying
structure (Git repository or CI/CD pipeline) via the
provisioning of time-based change information to
support comprehension regarding structural
differences.

A. Git Code Repositories
1) Evaluation Setup

A very simple Vite-based HelloWorld Node.js app was
used for the evaluation, the metrics shown in Figure 7. The
app includes 477 Node modules that consist of 18K files and
1.8M LOC. Since one is often oblivious to all included
modules, perhaps explicitly including some, which in turn
include multiple others, we utilize Node.js to demonstrate the
VR-GitEvo+CI/CD concept, in particular the 3D hierarchical
radial tree, since such modules exhibit a much deeper
dependency hierarchy then what is explicitly specified via
inclusion. If modules or their dependencies are not of interest,
then these can be hidden.

3D Environment

Laser Pointer
via Controller

Selec5on
Menu

Structure
Visualiza5on

3D Object
Selec5on

ScriptsAssets

Unity

CI/CD Pipelines
Local (Docker)

Data Hub

MongoDB
.NET/C# Driver

PyMongo

MongoDB

Python
Adapters

Jenkins
Remote

Drone…

Semaphore

GitPython

Local/Remote
Repo

Git

Figure 7. Git vite project language, directory, and file metrics.

2) Git Status Scenario
To determine the state of the Git repository, the LOC

nexus on the right shows the files that are included in the
project, the edges between them showing the relation between
the containing directory and that file, with node size indicating
relative LOC size, as shown on the right in Figure 8. In the
boundary box on the left, the dependencies are shown between
files and modules are shown, making apparent the many
(often hidden) dependencies between included modules.

Figure 8. Git Dependency nexus (left) and LOC nexus (right).

To view details about the state of a specific commit, the
Commit Tab on the VR-Tablet is shown in Figure 9. It
provides commit status information as to the repository,
specific commit info, author, date, total files and lines
changed, and a scrollable list of the files making up the
commit, which with an accordion can be expanded to show
additional metrics of lines inserted, lines deleted, and total
LOC size. The Dependencies Nexus on the top left shows
highlighted nodes, red for files added and turquoise for files
updated by this commit.

Figure 9. VR-Tablet: Git Commit Tab: Details.

The Dependencies Tab on the VR-Tablet is shown in
Figure 10. It lists the explicit (first degree) included modules,
and, using the accordion, one can drill down and, in turn,
determine the included modules of each of these.

Figure 10. VR-Tablet: Git Dependencies Tab: General status.

The Settings Tab on the VR-Tablet is shown in Figure 11.
With it, the repository, the boundary box layout, and the depth
limit can be specified. For a different repository (vite-
project2), the sliders max layer limit and number of commits
available are adjusted accordingly, as shown in Figure 12.

Figure 11. VR-Tablet: Git Settings Tab: selected repo, layout, and layer
limit option status.

Figure 12. VR-Tablet: Git Settings Tab: selecting another repo adjusts
commits available.

3) Git Analysis Scenario
To support analysis of Git repositories, multiple options

are offered. By default, the Dependency Nexus shows all
dependencies to make one aware of the entire set of
dependencies, as shown in Figure 13.

Figure 13. Git: Nexus: closeup of dependencies before node selection.

When a single node is selected, non-related dependencies
and nodes are ghosted (to minimize visual clutter) and help
focus on its specific dependencies, as shown in Figure 14.
Moreover, the Deps Tab switches to Selected and offers
specific information on that node and its dependencies. A
view from further out shows the highlighted selected nodes
and the ghosted can still be faintly seen, as depicted in Figure
15.

Figure 14. Git: Nexus: selecting a node leaves tree of dependencies and
toggles ghosting of rest; VR-Tablet offers detailed information.

Figure 15. Git: Nexus: selected dependencies and rest of nexus ghosted.

Contingent on the depth of the dependencies, it may be
beneficial to view the dependencies hierarchically and
limiting the layers, as shown with our 3D radial tree layout
(Circle in VR-Tablet) with the slider set to 2 layers of depth,
as shown in Figure 16.

Figure 16. Git: 3D Radial Tree (Circle) layout with depth limit 2.

In contrast, with the setting to its maximum depth (reaches
9 for this repo at a certain commit date) is shown in Figure 17.
These dependencies can be hierarchically navigated, with
certain nodes having n-m incoming and outgoing
dependencies.

Figure 17. Git: 3D Radial (Circle) with depth limit 9.

Furthermore, to assist with analysis, a subset of
dependencies can be highlighted (ghosting other nodes and
dependencies) by selecting a specific node of interest, as
exemplified with the jest node in Figure 18.

Figure 18. Git: Radial Layout: selecting node shows dependencies and
toggles ghosting of rest.

A subset of dependencies can be highlighted (ghosting
other nodes and dependencies) by selecting a specific node of
interest, as exemplified with the jest node in Figure 18. This
can also be done by selecting an element of interest via the
VR-Tablet. The full set of dependencies can also be viewed
and navigated in the VR-Tablet, as shown Figure 19.

Figure 19. VR-Tablet: Git Dependencies Tab: Selected Dependencies.

If one wishes to analyze the size of the files (or any other
metric of interest if it were implemented), one can select a
node of interest in the nexus in the LOC boundary box and the
corresponding data is then shown in the VR-Tablet, as seen in
Figure 20. The relation of a file (red node) to its containing
directory (black nodes) is shown via edges within the nexus,
while the relative size is conveyed via the sphere size, as
shown in Figure 21.

Figure 20. VR-Tablet: Git Files Tab: Files contained in selected src folder.

Figure 21. Git: Lines of Code nexus.

4) Git Evolution Scenario
For the evolution scenario, changes and time are of interest

to the stakeholders. For this, the VR-Tablet offers on the
Home Tab a list of all commits with the commit messages,
author, date, and a slider showing the total number of
commits, as shown in Figure 22. By moving this slider, the
contents in the boundary boxes are redrawn to show the state
at that evolution point and the changes to the repo by that
commit, as shown in Figure 23. Hence, by sliding the slider,
the history of changes of these nexuses are redrawn and thus
animated and changes are dynamically apparent. Similarly,
the changes to dependencies can be viewed as a 3D radial tree
and time-adjusted, as shown in Figure 24.

Figure 22. VR-Tablet: Home Tab: Git commit messages

Figure 23. Git: Nexus: new (red) and updated (turquoise) nodes in commit.

Figure 24. Git: 3D radial: dependencies as 3D radial tidy trees.

The detailed changes to dependencies can also be viewed
in the VR-Tablet in the Deps Tab under Changes providing
further details, as shown in Figure 25. If more interested in
File changes, then in the VR-Tablet in the Files Tab under
Changes further details are provided there, including changes
to metrics, as shown in Figure 26.

Figure 25. VR-Tablet: Git Dependencies Tab: Changes.

Figure 26. VR-Tablet: Git Files Tab: Changes.

B. CI/CD Pipelines
To demonstrate the heterogeneity of the solution, various

screenshots of runs from Jenkins, Semaphore, or Drone are
used interchangeably.

1) Evaluation Setup
For Jenkins, the SpringBoot PetClinic example pipeline

[57] includes 39 Java files and 1335 Lines of Code (LOC). For
pipeline error illustration purposes, an additional step with an
artificial error was inserted into the SpringBoot example in a
second version of the CI/CD pipeline, as shown in the listing
in Figure 27. For Semaphore, the Android App example
pipeline includes 13 Kotlin files and 287 LOC, as shown in
the listing in Figure 28.

Figure 27. SpringBoot PetClinic Jenkins pipeline in Groovy (snippet).

2) CI/CD Pipeline Status Scenario
In 2D, dashboards are typically available for assessing a

selected CI/CD pipeline instance state, yet each tool has its
own unique interface, as exemplified for the Jenkins tool in
Figure 29. The equivalent for Semaphore is shown in Figure
30. In our VR-GitEvo+CI/CD, a unified interface for
heterogeneous CI/CD pipelines is provided, such that a
stakeholder can readily comprehend and assess the current
status and state of multiple pipeline runs. Any particular run
may execute different steps and stages (e.g., due to an abort,
error, option, etc.). Fully collapsed run planes provide a high-
level overview, with black-lined cubes representing any
pipeline instance and conveying details, as shown in Figure 34
and Figure 35.

Figure 28. Semaphore Android App pipeline in YAML format

Figure 29. Jenkins tool web screenshot.

Figure 30. Semaphore tool web screenshot.

3) CI/CD Pipeline Analysis Scenario
VR-GitEvo+CI/CD supports analysis of issues via

immersive visual patterns and contrasts, visually revealing
differences in the detailed steps executions, as shown for the
Android App in Figure 31. Here, each run plane represents a
pipeline run, which is colored based on status (green=success,
yellow=in progress, red=error, grey= aborted). The contrasts
with a YAML (YAML Ain't Markup Language) pipeline
definition, which contains many details that are difficult for
certain stakeholders to grasp, while lacking status info, as in
Figure 28. Alternatively, a web-based graphical status may be
offered, yet lack comprehensive details for analysis, as seen in
Figure 29 and Figure 30.

Figure 31. Immersive analysis via visual colored run comparison of
stage/step status (for Semaphore pipeline).

Furthermore, to assist with analysis tasks, the VR-Tablet
supports information retrieval, including additional context-
specific metadata and error messages about a particular block
as seen Figure 32.

Figure 32. VR-Tablet shows contextual element details: metadata and
instructions/description.

The pipeline stage or step task instructions can be viewed,
as shown in Figure 35.

Figure 35. VR-Tablet shows contextual element details: instructions or
description.

Raw pipeline log information is available, as shown in
Figure 36.

Figure 36. VR-Tablet offers raw file access to log.

Figure 33. Pipeline run status for a set of Semaphore pipeline runs showing expanded step details and an aborted process in grey on the far right.

Figure 34. Collapsed Semaphore runs on a pipeline hyperplane with stages expanded (and steps collapsed) for a selected run.

The raw pipeline code specification can also be viewed
directly in the VR-Tablet, as seen in Figure 37.

Figure 37. VR-Tablet offers raw file access to pipeline definition.

This consolidation of information in the VR-Tablet, in
conjunction with visual context in VR, could improve the
utility and efficacy of analysis tasks, especially when
considering increasing pipeline complexity, pipeline versions,
and large scale-out of runs.

4) CI/CD Pipeline Evolution Scenario
To support pipeline evolution scenarios, changes and time

are factors for stakeholder. To view versioning changes to
stages or steps, an immersive visual differentiation of runs can
be performed by choosing a perspective and alignment, as
shown for the PetClinic pipeline in Figure 38.
Comprehending the pipeline structure and any delta via its
Groovy file would be more difficult for non-developer
stakeholders. Visual depiction and differentiation can help
support the inclusion of non-tech-savvy stakeholders,
improving the speed of assessments and the quality of analysis
tasks via the inclusion of diverse stakeholders.

Figure 38. Immersive analysis of pipeline evolution via visual alignment of
stage/steps (for Jenkins pipeline).

Moreover, any issues with pipelines over time can be
readily viewed via the status of all instances. The status details
of each run can be individually collapsed or expanded as
desired for the analysis, shown in Figure 34 and Figure 35.
Furthermore, the timeline slider on the VR-Tablet can be used
to bring any specific pipeline instance to the forefront. This is
shown for a specific failure case in Figure 40. The equivalent
for a successful case is shown in Figure 41.

Figure 39. Timeline slider can be used to view history of all pipeline
instances shown.

Figure 40. Timeline slider can be used to select a single execution.

Figure 41. Timeline slider can be used to select a single.

C. Discussion
The scenario-based case study using our prototype

realization showed the ability of the GitEvo+CI/CD solution
concept to address DevOps stakeholders concerns regarding
both Git codebase repositories and CI/CD pipelines. These
scenarios included a status scenario, analysis scenario, and
evolution scenario. The use of VR supports a collaborative,
immersive experience without visual limitations, enabling it
to scale across large projects and multiple projects
concurrently with a relatively intuitive and simple
homogeneous interface to diverse local and remote Git
repository providers and CI/CD providers.

VI. CONCLUSION
Visualizing the evolution of both Git codebases and

CI/CD pipelines remains a challenge and hinders
comprehension, analysis, and collaboration among DevOps
stakeholders. VR-GitEvo+CI/CD offers an immersive
visualization solution concept for codebases, their
dependencies, and CI/CD pipelines in VR. The realization
prototype showed its feasibility, while the case-based
evaluation showed its potential to support comprehension in
typical scenarios such as status, analysis, and evolution. The
solution concept is DevOps tool-independent, hiding the
differences that the fragmented DevOps tool landscape might
present to non-tech-savvy stakeholders. It thus provides a way
towards broader inclusion of various DevOps stakeholders,
and can thus support greater collaboration and communication
to address a significant challenge facing DevOps.

For future work, we see the potential for more holistic
DevOps insights via a deeper integration with our other
existing VR solutions. Additional future work includes:
support for GitOps, Infrastructure as Code, VR-native
developer support, collaboration and annotation capabilities,
and a comprehensive industrial empirical study.

ACKNOWLEDGMENT
The authors would like to thank Pascal Rene May,

Maximilian Stricker, and Maximilian Zeger for his assistance
with the design, implementation, and evaluation.

REFERENCES
[1] R. Oberhauser, “VR-DevOps: Visualizing and Interacting with

DevOps Pipelines in Virtual Reality,” In: Proc. 19th
International Conference on Software Engineering Advances,
pp. 43-48, 2024.

[2] Zampetti, F., Geremia, S., Bavota, G., and Di Penta, M.,
“CI/CD pipelines evolution and restructuring: A qualitative
and quantitative study,” In: 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME)
(pp. 471-482). IEEE, 2021.

[3] J. M. Robinson, “An introduction to early Greek philosophy:
The chief fragments and ancient testimony, with connecting
commentary,” Advanced Reasoning Forum, p. 90, Fragment
5.14, 2021.

[4] F. P. Brooks, Jr., The Mythical Man-Month, Boston, MA:
Addison-Wesley Longman Publ. Co., Inc., 1995.

[5] Sonatype, “State of the Software Supply Chain,” 2024,
https://sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-
optimized.pdf 2025.05.10

[6] IT Revolution, “DevOps Guide: Selected Resources to Start
Your Journey,” The IT Revolution, 2015. [Online]. Available
from: https://web.archive.org/web/20211010072856/http://
images.itrevolution.com/documents/ITRev_DevOps_Guide_5
_2015.pdf 2025.05.10

[7] J. Micco, “Tools for continuous integration at google scale,”
Google Tech Talk, Google Inc., 2012.

[8] DevOps Research and Assessment (DORA) Team, “Accelerate
State of DevOps report,” 2021. [Online]. Available from:
https://services.google.com/fh/files/misc/state-of-devops-
2021.pdf 2025.05.10

[9] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, "DevOps,"
in IEEE Software, vol. 33, no. 3, pp. 94-100, May-June 2016.

[10] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s
Perspective, Addison-Wesley Professional, 2015.

[11] L. Dodd and B. Noll, “State of CI/CD Report 2024: The
Evolution of Software Delivery Performance,” SlashData and
the Continuous Delivery Foundation, 2024.

[12] GitLab, “A Maturing DevSecOps Landscape,” 2021. [Online].
Available from: https://about.gitlab.com/images/developer-
survey/gitlab-devsecops-2021-survey-results.pdf 2025.05.10

[13] J. D'Souza, “GitHub Statistics By Developers, Git Pushes and
Facts” [Online]. Available from:
https://web.archive.org/web/20250226132029/https://www.co
olest-gadgets.com/github-statistics/ 2025.05.10

[14] R. Potvin and J. Levenberg, “Why Google stores billions of
lines of code in a single repository,” In: Communications of the
ACM, 59(7), pp.78-87, 2016. https://doi.org/10.1145/2854146

[15] M. Tyson, “Linux kernel source expands beyond 40 million
lines – it has doubled in size in a decade,” Tom's Hardware,
January 26, 2025. [Online]. Available from:
https://www.tomshardware.com/software/linux/linux-kernel-
source-expands-beyond-40-million-lines-it-has-doubled-in-
size-in-a-decade 2025.05.10

[16] M. S. Khan, A. W. Khan, F. Khan, M. A. Khan, and T. K.
Whangbo, "Critical Challenges to Adopt DevOps Culture in
Software Organizations: A Systematic Review," in IEEE
Access, vol. 10, pp. 14339-14349, 2022.

[17] L. Giamattei et al., “Monitoring tools for DevOps and
microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 208, 2024, p.111906.

[18] R. Oberhauser, "VR-Git: Git Repository Visualization and
Immersion in Virtual Reality," 17th International Conference
on Software Engineering Advances (ICSEA 2022), IARIA,
2022, pp. 9-14.

[19] R. Oberhauser, “VR-GitCity: Immersively Visualizing Git
Repository Evolution Using a City Metaphor in Virtual
Reality,” International Journal on Advances in Software, 16 (3
& 4), 2023, pp. 141-150.

[20] H. Bjørklund, “Visualisation of Git in Virtual Reality,”
Master’s thesis, NTNU, 2017.

[21] GitHub Skyline [Online]. Available from:
https://skyline.github.com 2025.05.10

[22] L. Zhang, A. Agrawal, S. Oney, and A. Guo, “VRGit: A
Version Control System for Collaborative Content Creation in
Virtual Reality,” In: Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI '23).
Association for Computing Machinery, New York, NY, USA,
Article 36, pp. 1–14, 2023.
https://doi.org/10.1145/3544548.3581136

[23] K. Højelse, T. Kilbak, J. Røssum, E. Jäpelt, L. Merino, and M.
Lungu, "Git-Truck: Hierarchy-Oriented Visualization of Git
Repository Evolution," 2022 Working Conference on Software
Visualization (VISSOFT), Limassol, Cyprus, 2022, pp. 131-
140, doi: 10.1109/VISSOFT55257.2022.00021.

[24] A. Hoff, T. H. Kilbak, L. Merino, and M. Lungu,
"GitTruck@Duck - Interactive Time Range Selection in

Hierarchy-Oriented Polymetric Visualization of Git Repository
Evolution," 2024 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2024, pp. 853-857, doi:
10.1109/ICSME58944.2024.00090.

[25] https://gource.io, last accessed 2025.05.10
[26] CodeFlower [Online]. Available from:

https://github.com/fzaninotto/CodeFlower 2025.05.10
[27] Y. Kim et al., “Githru: Visual Analytics for Understanding

Software Development History Through Git Metadata
Analysis,” IEEE Transactions on Visualization and Computer
Graphics, vol. 27, 2021.

[28] C. V. Alexandru, S. Proksch, P. Behnamghader, and H. C. Gall,
“Evo-Clocks: Software Evolution at a Glance,” in 2019
Working Conference on Software Visualization (VISSOFT).
IEEE, 2019.

[29] J. Feiner and K. Andrews, “Repovis: Visual overviews and
full-text search in software repositories,” In: 2018 IEEE
Working Conference on Software Visualization (VISSOFT),
IEEE, 2018, pp. 1-11.

[30] Y. Kim et al., “Githru: Visual analytics for understanding
software development history through git metadata analysis,”
IEEE Transactions on Visualization and Computer Graphics,
27(2), IEEE, 2020, pp.656-666.

[31] S. Elsen, “VisGi: Visualizing git branches,” In IEEE Working
Conf. on Software Visualization, IEEE, 2013, pp. 1-4.

[32] A. Ciani, R. Minelli, A. Mocci, and M. Lanza, “UrbanIt:
Visualizing repositories everywhere,” In 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2015, pp. 324-326.

[33] B. Hensen and R. Klamma, “VIAProMa: An Agile Project
Management Framework for Mixed Reality,” In: Augmented
Reality, Virtual Reality, and Computer Graphics (AVR 2021),
LNCS, vol 12980, Springer, Cham, 2021, pp. 254-272.

[34] A. Colantoni, L. Berardinelli, and M. Wimmer, “DevopsML:
Towards modeling devops processes and platforms,” In: 23rd
ACM/IEEE International Conference Model Driven
Engineering Languages and Systems: Companion Proc., ACM,
2020, pp. 1-10.

[35] I. Koren, “DevOpsUse: A Community-Oriented Methodology
for Societal Software Engineering,” In: Ernst Denert Award for
Software Engineering 2020, Springer, 2022, pp. 143-165.

[36] I. J. Akpan and M. Shanker, "The confirmed realities and myths
about the benefits and costs of 3D visualization and virtual
reality in discrete event modeling and simulation: A descriptive
meta-analysis of evidence from research and practice,"
Computers & Industrial Engineering, vol. 112, pp. 197-211,
2017.

[37] S. Narasimha, E. Dixon, J. W. Bertrand, and K. C. Madathil,
"An empirical study to investigate the efficacy of collaborative
immersive virtual reality systems for designing information
architecture of software systems," Applied Ergonomics, vol.
80, pp. 175-186, 2019.

[38] A. Fonnet and Y. Prie, "Survey of immersive analytics," IEEE
Transactions on Visualization and Computer Graphics, vol. 27,
no. 3, pp. 2101-2122, 2019.

[39] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, "How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations," In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36.

[40] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) Business Modeling and Software Design (BMSD
2018), LNBIP, vol. 319, Springer, 2018, pp. 83–97,
https://doi.org/10.1007/978-3-319-94214-8_6.

[41] R. Oberhauser, "VR-SDLC: A Context-Enhanced Life Cycle
Visualization of Software-or-Systems Development in Virtual
Reality," In: Business Modeling and Software Design (BMSD

2024), LNBIP, vol 523, Springer, Cham, 2024, pp. 112-129,
https://doi.org/10.1007/978-3-031-64073-5_8.

[42] R. Oberhauser, "VR-SBOM: Visualization of Software Bill of
Materials and Software Supply Chains in Virtual Reality," In:
Business Modeling and Software Design (BMSD 2025),
LNBIP, Springer, Cham, 2025.

[43] R. Oberhauser, “VR-ISA: Immersively Visualizing Informed
Software Architectures Using Viewpoints Based on Virtual
Reality," In: International Journal on Advances in Software,
Vol. 17, No. 3 & 4, pp. 282-300, IARIA, ISSN: 1942-2628.

[44] R. Oberhauser, “VR-V&V: Immersive Verification and
Validation Support for Traceability Exemplified with ReqIF,
ArchiMate, and Test Coverage,” International Journal on
Advances in Systems and Measurements, 16 (3 & 4), 2023, pp.
103-115.

[45] R. Oberhauser, “VR-TestCoverage: Test Coverage
Visualization and Immersion in Virtual Reality,” In: Proc.
Fourteenth International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2022), IARIA,
2022, pp. 1-6.

[46] R. Oberhauser, “VR-UML: The unified modeling language in
virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design (BMSD 2021), Springer, Cham, 2021, pp. 40-58,
doi.org/10.1007/978-3-030-79976-2_3

[47] R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[48] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Business Modeling and Software
Design (BMSD 2019), LNBIP, vol. 356, Springer, Cham,
2019, pp. 170-187, https://doi.org/10.1007/978-3-030-24854-
3_11.

[49] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Business Modeling and Software Design
(BMSD 2020), LNBIP, vol 391, Springer, 2020, pp. 221-239.
https://doi.org/10.1007/978-3-030-52306-0_14.

[50] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality," In: Business Modeling and Software
Design (BMSD 2022), LNBIP, vol 453, Springer, 2022, pp.
122-140. https://doi.org/10.1007/978-3-031-11510-3_8.

[51] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EvoEA+BP:
Using Virtual Reality to Visualize Enterprise Context
Dynamics Related to Enterprise Evolution and Business
Processes," In: Business Modeling and Software Design
(BMSD 2023), LNBIP, vol 483, Springer, 2023, pp. 110-128,
https://doi.org/10.1007/978-3-031-36757-1_7.

[52] R. Oberhauser, "VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality," Fourteenth
International Conf. on Information, Process, and Knowledge
Management (eKNOW 2022), IARIA, 2022, pp. 29-36.

[53] https://www.jenkins.io, last accessed 2025.05.10
[54] https://semaphore.io, last accessed 2025.05.10
[55] https://www.drone.io, last accessed 2025.05.10
[56] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science

in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105.

[57] B. Wilson. Jenkins Pipeline Tutorial For Beginners. [Online].
Available from: https://devopscube.com/jenkins-pipeline-as-
code/ 2025.05.10

[58] GitHub. Semaphore demo CI/CD pipeline for Android.
[Online]. Available from: https://github.com/Semaphore-
demos/semaphore-demo-android/ 2025.05.

