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Abstract. As software capabilities increase and are delivered more frequently, 
further external software components (e.g., services, frameworks, platforms, or 
libraries) are incorporated. Thus, organizations and IT increasingly depend on 
more complex and dynamic Software Supply Chains (SSCs). Yet, the entire set 
of components involved are often opaque for end users, businesses, and even 
developers. Software Bill of Materials (SBOM) formats (SPDX, CycloneDX) 
provide essential information regarding components, yet their voluminous text 
and 2D tool visualization limitations obscure the underlying models and SSC. 
This paper contributes an immersive Virtual Reality (VR) solution concept VR-
SBOM towards holistic contextualized multi-layout visualization of SSCs with 
heterogeneous SBOMs. Our prototype implementation demonstrates its feasi-
bility, while a scenarios-based case study exhibits its potential and scalability. 

Keywords: Software Bill of Materials, SBOM, Software Supply Chain, Virtual 
Reality, Visualization, SPDX, CycloneDX. 

1 Introduction 

Modern software development is highly dependent on external components (e.g., 
libraries, packages, frameworks, Web APIs), yet often unmindful of its inclusion “un-
der the hood.” A 2024 industry analysis of 20K+ enterprise applications found [1]: 
180 component dependencies on average (10% having 400+), with modern commer-
cial software consisting of up to 90% Open-Source Software (OSS) components; 
6.6T+ downloads across 7M+ OSS projects/components involving 60M+ releases 
(averaging 16 per OSS project annually). As to deployment frequency due to Contin-
uous Delivery (CD) automation, already in 2012 estimated average daily deployments 
for Google were 5.5K and Amazon 23K [2][3]. A 2021 survey of 1200 professionals 
revealed elite performers (26%) were deploying on demand multiple times a day [4]. 
High dynamicity with more external component dependencies results in larger, more 
complex, and changing Software Supply Chains (SSCs). While SSC Management 
(SSCM) aims to plan, monitor, control, optimize, and analyze SSCs, the essential 
characteristics inherent in software’s nature, namely complexity, conformity, change-
ability, and invisibility [5], can be transmuted to SSCs. These characteristics, in con-
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junction with obscured external dependencies, make SSC transparency, comprehen-
sion, and analysis a challenge, and hence their management. 

A Bill of Materials (BOM) defines the material components necessary to produce a 
product, and can be used to assess costs, risks, supply and support aspects, etc. The 
associated material distribution flows and multi-stage production dependencies can be 
viewed as a supply chain, with each stage processing materials (goods or services) to 
a consumer. For product-centric businesses, modeling and analysis of supply chains 
are inherent and vital to the business. Applying the BOM paradigm to software acqui-
sition/development results in a Software BOM (SBOM) utilized by a SSC, which 
includes the components, libraries, tools, and activities needed to develop, build, pro-
cure, provision, and/or distribute some software artifact. As the need for SSC trans-
parency became evident to address security vulnerabilities and license conformance, a 
push towards SBOM formats and their adoption by software suppliers became appar-
ent. The System Package Data Exchange (SPDX) [6] (formerly Software Package 
Data Exchange) SBOM format by the Linux Foundation was released in 2011 and 
published in 2021 as ISO/IEC 5962 [7]. OWASP’s alternative SBOM format Cy-
cloneDX (CDX) [8] was published in 2018 and later as ECMA-424 [9]. As of 2023, 
GitHub offers an “Export SBOM” function, simplifying SBOM generation and in-
creasing the likelihood of further SBOM adoption. Over 72K SBOM’s were pub-
lished by the end of 2023 [1]. Hitherto, the lack of practical and accessible SBOM 
information and adoption had made SSC modeling impractical, a prerequisite for 
SSCM. Current SBOM/SSC tools lack comprehensive visualization, affecting model 
transparency, comprehension, and analysis. This, in turn, impacts the veracity and 
premises of software business models that count on coherent, correct, conformant, 
sufficient, and resilient SSCs - often only noticed after SSC disruptions occur. SSCM 
necessitates models offering transparency and insights that can address software’s 
complexity, conformity, changeability, invisibility, and external dependencies. 

To address the comprehensive visualization of SBOM and SSC models, this paper 
proposes and investigates an immersive experience using Virtual Reality (VR). Our 
prior VR-related contributions in the Enterprise Architecture (EA) space include: VR-
EA+TCK [10] supports EA models, integrating enterprise repositories, Atlas, IT 
blueprints, and knowledge and content management systems, with VR-EvoEA+BP 
[11] animating enterprise evolution and Business Processes (BPs). In the Software 
Engineering (SE) area: VR-ISA [12] enables informed software architecture, VR-
SDLC [13] models development lifecycles, VR-GitCity [14] and VR-Git [15] model 
Git repos, VR-UML [16] for Unified Modeling Language models, and VR-DevOps 
[17] for CD pipeline models. This paper contributes VR-SBOM, a VR solution con-
cept for context-enhanced multi-layout visualization of SBOMs and SSCs, supporting 
comprehensive visualization and inter-model SSC analysis. Our realization demon-
strates its feasibility, while a scenario-based case study exhibits its potential and 
scalability. Furthering SSC transparency and comprehensibility enhances SSC man-
agement and optimization options. 

The paper is structured as follows: Section 2 discusses related work; Section 3 pre-
sents our solution concept; Section 4 details our realization; our evaluation is de-
scribed in Section 5, followed by a conclusion. 
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2 Related Work 

Work related to the visualization of SBOMs includes Jones and Tate [18] for interac-
tively comparing BOM graphs in 2D. DepVis [19] interactivelyto visualizes third-
party dependencies and vulnerabilities in 2D. V-Achilles [20] visualizes npm package 
vulnerabilities for GitHub in 2D. Google’s central repository Open Source Insights 
(OSI) [21] provides OSS package security information with 2D graph-based depend-
ency visualization. OWASP’s Dependency Track [22] is an intelligent component 
analysis platform for CDX files, offering a 2D dashboard with monitoring and risk 
analysis. OWASP CycloneDX Sunshine [23] visualizes CycloneDX files in 2D. Re-
garding SSC visualization, Kula et al. [24] propose a generalized model for 
visualizing library popularity, adoption, and diffusion via a software universe graph, 
library coexistence pairing heat maps, and dependents diffusion plots. We are una-
ware of any tools that currently offer 3D or VR-based SBOM and SSC visualization.  

Aside from visualization, work related to SBOM tooling includes Mirakhorli et al. 
[25], who conducted an extensive empirical analysis of 84 open-source and 
proprietary SBOM tools to assess the current landscape, highlighting many issues 
including interoperability, quality, and many having a niche focus and immaturity. 
Yousefnezhad and Costin [26] evaluated real-world SBOM tools with regard to 
DevSecOps, SSC, and compliance scenarios. Wang et al.’s book on SSCM [27] sur-
veys research literature and describes SSC modeling, analysis, issues, and techniques, 
yet SSC visualization is not addressed. 

Hence, further work is needed to investigate (immersive) SBOM/SSC visualization 
concepts to support various analysis, management, and collaboration scenarios.  

3 Solution Concept 

Our solution approach leverages VR for visualizing one or more SBOM models and 
relations simultaneously, mapped to a spatial structural model that can be 
immersively explored and experienced in 3D.  

3.1 Grounding of our Solution Concept in VR-Related Research 

To address possible reservations about the appropriateness of VR in our solution 
concept, our reasoning is based on prior VR research in areas we view as related to 
modeling, analysis, and collaboration, some of which we highlight here. In their 
systematic meta-analysis, Akpan & Shanker [28] showed VR and 3D offer significant 
advantages in the area of discrete event modeling, including model development, 
analysis, and Verification and Validation (V&V). Of 23 articles examining 3D 
analysis, 95% concluded using 3D was more potent and lead to better analysis than 
2D, e.g., when evaluating a model’s behavior or performing a what-if analysis. They 
also found a consensus that 3D/VR can present results convincingly and 
understandably for decision-makers. 74% of 19 papers concluded that 3D/VR 
significantly improves the model development task (supporting teams and improving 
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precision and clarity). To investigate VR’s suitability for analytical tasks for an 
information architecture, Narasimha et al. [29] used a card sorting collaboration 
experiment. They found that VR was at least as good as in-person card sorting, and 
for certain variables VR was even better than both conventional and video-based 
conditions. Qualitative data evaluating awareness indicated that during collaborative 
interaction, participants were aware of their task, others, and their context, while 
collaborating similarly to an in-person setting. Additionally, the qualitative data 
showed evidence of positive views towards VR. The outcomes suggest that both a 
sense of presence and collaboration (equivalent to an in-person setting) is possible 
within VR.  A survey of Immersive Analytics (IA) by Fonnet & Prie [30] analyzed 
177 papers. They found concurring evidence that for graph and spatial data analysis, 
IA provides benefits vs. non-IA when the scene complexity exceeds the 2D display, 
while for multi-dimensional data, the advantages are more task-dependent. They re-
mark that while IA enables exploration of large-scale data worlds, context-aware 
navigation techniques are insufficiently exploited - although they are critical for users. 
We thus conclude that an immersive contextual VR experience has significant poten-
tial for comprehensively depicting large models in 3D while supporting awareness, 
modeling, analysis, V&V, decision support, stakeholder inclusion, and collaboration.  

3.2 Relation to Our Prior VR-Related Research 

Our solution map in Fig. 1 positions VR-SBOM relative to our other VR-based solu-
tions. Besides our own prior work introduced earlier, our generalized VR Modeling 
Framework (VR-MF), described in [31], provides a domain-independent hypermodel-
ing framework addressing key aspects for modeling in VR: visualization, navigation, 
interaction, and data. VR-EA [31] supports EA models in VR, including ArchiMate 
and BPMN via VR-BPMN [32]; VR-ProcessMine [33] supports process mining; VR-
EAT [34] integrates and models enterprise repositories and the Atlas EA tool and 
blueprints. In the SE and Systems Engineering (SysE) area, there is VR-V&V [35] for 
V&V, VR-TestCoverage [36] for test coverage. As SBOMs/SSCs can be relevant to 
at least two perspectives, we position VR-SBOM as spanning two broad areas: EA & 
BP from the IT perspective; and SE & SysE from the software development perspec-
tive. Broad holistic solutions would be feasible in combination with our other solu-
tions. None of our prior work has investigated the modeling of SBOM or SSCs in VR 
nor addressed their specific challenges. 

 

Fig. 1. VR solution concept map showing VR-SBOM (blue) in relation to our other concepts. 
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3.3 The VR-SBOM Solution Concept 

The contribution of this paper is a VR solution concept for context-enhanced multi-
layout visualization of SSCs and SBOMs. This solution concept is abstract, extensi-
ble, and independent of SBOM modeling format (SPDX, CDX). By annotating con-
textualized connected SBOM models, SSCs can be immersively visualized and expe-
rienced. Thus, the comprehension and analysis of SSCs becomes feasible, offering a 
larger picture of how various software artifacts relate to the SSC. Furthermore, 
accessibility, comprehension, and collaboration via concern-based (risk, resilience, 
security, etc.) perspectives for viewing and filtering a model for diverse stakeholders, 
such as software developers, enterprise architects, business analysts, quality 
assurance, IT administrators, security specialists, compliance auditors, or managers. 
These objectives are addressed as follows:  

Data. A Data Hub supports flexible data integration via ports and adapters in com-
bination with a data repository. SBOMs in both formats, CVEs, and any other SSC 
contextual data is integrated and stored in our JSON format. Alternatively, if data 
freshness is paramount, data can forego storage and be integrated live via Web APIs. 

Visualization. A Directed Acyclic Graph (DAG) visualization paradigm was cho-
sen to generically and scalably visualize extensive SBOM and SSC models. SBOM 
elements are represented by spherical nodes, while relations (edges) are depicted as 
lines. Element types are differentiated by customizable node colors displayed via a 
legend. Node labels provide naming information, while detailed element metadata can 
be retrieved via our VR-Tablet concept. Labeled glass boxes enclose models to sup-
port model orientation, differentiation, and contextualization. Multiple DAG layout 
options are offered: 1) a spatially-dense 3D Sphere (or nexus) (Fig. 2a) with node 
placement on the sphere’s surface and all relations within, for comprehensive over-
view while minimizing spatial distances; 2) Category-and-Level (Fig. 2b) bundles 
nodes by type (category) on cylindrical layer surface (levels) positioned on vertical 
axis near layers having most relations with its type, for determining (un-)common 
types and relations; 3) Force-Directed Graph (Fig. 2c) positions nodes using attrac-
tive and repulsive forces to approximately equalize edge lengths while minimizing 
collisions, for ascertaining highly (dis-)connected nodes; 4) Radial Tidy Tree (Fig. 2d) 
orders nodes hierarchically along a vertical radial tree (cone-like) with ever larger 
lower rings, for navigating granularity and depth; 5) Stacking Radial Tree (shown 
later), like Radial Tidy Tree but stacking multiple rings within a category level, for 
reducing ring circumference, and 6) Custom placement. Thus, hitherto intangible 
SBOM elements and relations are flexibly visualized and graph-based visual compari-
sons support stakeholder concerns. 

Navigation. To reduce the potential for VR sickness symptoms during immersive 
navigation, our solution concept supports two navigation modes: 1) locomotion glid-
ing controls (default), enabling users to fly through the VR space and get an overview 
of the entire model from any angle they wish, or 2) teleporting permits a user to select 
a destination and be instantly placed there (i.e., moving the camera to that position), 
reducing movement through a virtual space. 
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Fig. 2. Visualization layouts for an SBOM containing 448 nodes: a) Sphere/nexus, b) Category-
and-Level, c) Force-directed, and d) Radial Tidy Tree. 

Interaction. The VR controllers and our VR-Tablet concept support interaction. 
Our VR-Tablet paradigm provides: interaction support, detailed information regarding 
a selected element, or browsing, filtering, searching, and settings. Any browser-based 
(multimedia) content could also be displayed as shown in our prior work [10]. 

4 Realization 

To determine the feasibility of our solution concept, we realized a prototype having 
the logical architecture in Fig. 3 and described below.  

 

Fig. 3. VR-SBOM Logical Architecture. 
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Data integration. The Data Hub integrates and stores data in a NoSQL document-
oriented local database MongoDB in JSON and offers endpoints (ports) to the VR 
frontend via the ASP.NET Core Web API. Adapters are used to convert SSC-relevant 
data in various SBOM formats such as SPDX, CDX, and non-SBOM data such as 
CVE data in the CVE Record Format [37]. MongoDB was used as a local database 
consisting of two collections, one for SBOM-specific data (SPDX, CDX, etc.) and 
another for non-SBOM (e.g., additional SSC) data (e.g., CVE records). 

Visualization. VR support was realized in C# with Unity 2022.3.21f1, accessing 
the Data Hub via REST (REpresentational State Transfer) and retrieving JSON data. 
Nodes are depicted as spheres, key-value pairs as text or as a popout tooltip, and ref-
erences as lines. For directional lines, the darker (closer) end (blue/red) is the enclos-
ing source and the lighter (aqua/pink) end the point referred to, reducing the clutter 
arrowheads would create while providing direction. Multiple SBOM graphs can be 
depicted concurrently and are labeled and contextually distinguished via boundary 
(transparent glass) boxes, which are labeled on the bottom by SBOM name/ID and 
indicate node metrics in the upper left corner (Fig. 4a). The graph layouts (Sphere, 
Category-and-Level, Radial Tidy Tree, Force-directed Graph, and Stacking Radial 
Tree) can be switched to support a different focus (Fig. 4b). For the Sphere (nexus) 
layout, all nodes are placed on the sphere’s surface equidistant from each other, while 
all lines (connections) are inside the sphere. For Category-and-Level, the nodes are 
first segregated by category (type) and then positioned along a vertical line based on 
its level. For the Radial Tidy Tree layout, a vertical hierarchy is used with each lower-
layer ring placed even further out in the x/z direction (even if the level is sparse), 
causing it to typically be wider than higher. In the Force-directed Graph layout, con-
nected nodes receive an attractive force, while unconnected nodes receive a repelling 
force; the vectors are then combined to determine a node’s position, causing the most 
highly-connected nodes to be more centric. Stacking Radial Tree reduces ring radius 
by stacking multiple rings at the same level. The implementation can be readily ex-
tended to support additional graph visualization types and store Custom placement. A 
legend of the node types and their randomly-assigned colors is placed on top of (or in 
proximity of) the boundary box. To reduce visual clutter, by default when nodes have 
the same property values, they are merged, but this can be toggled. Storing custom 
layout adjustments was not yet implemented due to time constraints. 

Navigation. Both locomotion and teleporting are supported, including teleporting 
to a search result. 

Interaction. Interaction is supported with our VR-Tablet. To prevent the VR-
Tablet from interfering with comprehension or navigation, it is hidden and appears 
when the left controller is rotated outwards by about 90 degrees. It offers a menu 
consisting of three tabs: Main, Search and Options, as shown in Fig. 4: 
a) Main offers: a slider “Show Layers” for adjusting the maximum graph layer 

depth, a dropdown for desired layout type, and a scroll view of SBOM names or 
object IDs. In Scroll View, the selection acts as a toggle: if the SBOM is already 
depicted (green), then it is hidden (red), otherwise it is loaded.  

b) The dropdown Graph Types offers various graph layouts (Sphere, Category-and-
Level, Radial Tidy Tree, Force-Directed Graph, and Stacking Radial Tree),  
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Fig. 4. VR-Tablet menu showing tab sections: a) Main, b) Layout options, c) Compare Ver-
sions submenu, d) Search/Filter, e) Search Results, and f) Options. 

 

Fig. 5. Selecting top left green node opens JSON position panel (bottom right) in VR-Tablet. 
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c) “Compare Versions” submenu is offered when two graphs are selected; if 
checked, the SBOM node differences are highlighted as a colored ring, with 
green/red indicating new/missing node (can ghost rest). 

d) Search offers both searching and filtering based on an input field that offers a 
pop-up prefab platform-independent MRTK keyboard to enter a search string. 
The search includes both types and values and ghosts (makes transparent) all el-
ements not in the result set. Different search and filter types are supported: 
“Search Only Within Selected Type” searches nodes within type, “Search 
Hierarchies Filtered by Selection” to search nodes of a subgraph, and “Search 
Dependencies Filtered by Selection” to search dependencies of a subgraph. 

e) Search results are displayed in a separate extra VR-Tablet pane with scrollable 
search results, which may be numbered based on the hierarchy level (1 = top-
level). Selecting a result offers a Tooltip to the right of the selection indicating 
node name, etc. Teleporting to any search result is supported. 

f) Options offers these additional settings:  
- “Show CVE” depicts CVE data related to a loaded SBOM as separate graphs in 
bounded glass boxes, with a red connection to its location in the SBOM graph. 
- “Show duplicate Nodes” will depict all nodes separately, since by default all 
nodes with the same property values are depicted by a single node. 
- “Ball Size Depending On Relation Count” will cause the node size to be larger 
when it has more relations relative to other nodes. 
- “Enable Glow For Every Layer” 
- “Comparison: Ghost Nodes with no Changes” causes unchanged nodes to be 
ghosted (transparent) to reduce visual clutter during comparison analysis. 
- “Text Length”: constrains the allowable max text length of labels. 

Selecting a node will keep its node type opaque, while ghosting all other nodes of 
different types and lines unassociated with a node of that type. Node-specific JSON 
information is displayed on an additional freely movable pane, offering a dropdown 
list of all positions of the node in the SBOM file, as shown in Fig. 5.  

The evaluation then demonstrates how these realized capabilities are utilized. 

5 Evaluation 

For the evaluation of our solution concept with our prototype realization, we refer to 
the design science method and principles [38], in particular, a viable artifact, problem 
relevance, and design evaluation (utility, quality, efficacy). For this, a scenario-based 
case study focuses on supporting SBOM and SSC comprehension, analysis, and con-
textualization, the scenarios being: Heterogeneous Multi-SBOM Interoperability, 
Comparison and Dependency Analysis, License (search/filtering) Analysis, Security 
and SSC Analysis, and Scalability. Further SBOM use cases can be readily mapped to 
these scenarios (provenance, foreign ownership, outdated components, etc.). Abbrevi-
ations referred to for the SBOM files utilized in the evaluation scenarios are given in 
Table 1. Further SBOMs were also tested but are not listed. 
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Table 1. SPDX and CDX files used in evaluation. 

Name Abbrev. Nodes (w/o 
duplicates) 

Types Lines Format Modifications 

Dropwizard1 DW (3038) 38 10621 CDX 2.0.2 3 CVEs linked 
Acme Application2 AA 129(88) 21 154 SPDX 3.0 - 
Acme Application New2 AAN 132(88) 35  SPDX 3.0 +/- 3 nodes 
1 https://github.com/CycloneDX/bom-examples/blob/master/SBOM/dropwizard-1.3.15/bom.json 
2 https://github.com/spdx/spdx-examples/blob/master/software/example13/spdx3.0/example13.spdx3.json 

5.1 Multiple Heterogeneous SBOM Interoperability Scenario 

To be practical, SSCs must be able to view multiple SBOMs having differing formats 
simultaneously. For this scenario, SBOM interoperability support is demonstrated by 
depicting multiple heterogeneous SBOM models, with DW based on a CDX model in 
the left boundary box and AA based on an SPDX model on the right in Fig. 6.  

 
Fig. 6. Multiple heterogeneous SBOMs loaded (green) (DW CDX left, AA SPDX right). 
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5.2 Comparison and Dependency Analysis Scenario 

This scenario demonstrates comparison analysis support via a visual delta of graphs, 
in particular selecting SBOM versions in VR-Tablet (Fig. 4c). As shown in Fig. 7, 
green rings highlight additions, red rings deletions (modifications use both). Depend-
ency analysis is supported via node size based on relation count (Fig. 7 right) - rele-
vant, e.g., if high relation risk is a concern. Dependency navigation is shown later. 

 
Fig. 7. AA SBOM version comparison (left) highlighting additions/deletions (green/red ring) 
and ghosting “Nodes with no Changes”; on right, “Ball Size Depending on Relation Count”. 

5.3 License (Search/Filtering) Analysis Scenario 

A license analysis scenario is a typical SBOM use case. We use search and filtering 
capabilities to demonstrate how this scenario is supported, yet these capabilities can 
support further scenarios and stakeholder concerns (security, risk, compliance, etc.). 

Search: A basic search finding all occurrences of a given string across all nodes. 
Filtered by Type: Searching only within a certain property type, e.g., name, de-

scription, id. As shown in Fig. 8, selecting the node type “id”, enabling “Search Only 
Within Selected Type”, and providing with search string “MIT” shows a results panel 
listing any nodes of type “id” containing the string MIT (ghosting others). Selecting a 
specific search result teleports to that node, with the panel then showing that node’s 
hierarchical path to the root node grasp its context. Hovering over any hierarchy ele-
ment shows a tooltip to the right providing that node’s name. Selecting a path element 
teleports to it. Via the top panel arrow, one can return to the previous search results to 
pick another.  
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Fig. 8. Left: selecting type “id”, with “Search Only Within Selected Type” for “MIT” searches 
all nodes of that type containing that string, providing a “Search Results” panel; selecting any 
search result then teleports to it, which then shows its contextual path to its root node (right). 

 
Fig. 9. Left: selecting node “licenses” then “Search Hierarchies Filtered by Selection” for 
“Apache” gives search results only within the license subhierarchy (independent of type); se-
lecting a search result (e.g., name:) teleports to it (right), showing its contextual path to its root 
node; hovering on result shows tooltip with the component’s name (here log4j-over-slf4j). 

Filtered Node Hierarchy. This type of search filter can be useful, e.g., when con-
cerned only about a selected component or some subgraph hierarchy. Conceivable 
search examples include determining if some database is the open source or enterprise 
version, or the version of some library within a software component. For our license 
analysis case example in Fig. 9, “Search Hierarchies Filtered by Selection” was ena-
bled and the “license” node selected (ghosting all nodes outside hierarchy). Then the 
search string “Apache” is entered via the virtual keyboard, which shows the search 
results panel listing all matching hierarchically deeper nodes in the SBOM (ignoring 
any higher up or parallel hierarchies or relations). While we selected the license hier-
archy here, we could have selected any component hierarchy. Selecting a search result 
teleports to that node, whereafter the panel shows the complete path to the root node 
(with tooltip support), to help contextualize it.  
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Fig. 10. Left: selecting node “license,” then “Search Dependencies Filtered by Selection” for 
“GNU” gives search results for nodes directly related to “license” and containing “GNU”; 
selecting any search result teleports to it (right) then showing contextual path to root node; 
hovering on result shows tooltip that provides node name (here component name logback-core). 

Filtered Dependencies: Via this search type, directly related dependencies are 
searched/filtered. This can find any nodes across all components as long as they di-
rectly relate to a node of interest. For our license scenario shown in Fig. 10, “Search 
Hierarchies Filtered by Selection” was enabled, the “license” node selected, and the 
search string “GNU” given via the virtual keyboard. The search results panel shows 
any nodes directly related to the node (license) containing the string “GNU” inde-
pendent of its hierarchical position. Hence, no GNU components are shown that don’t 
relate to license. Selecting any search result teleports to that node, whereafter the 
panel shows the complete contextual path from that node to the root node. This con-
text hierarchy can then be explored by hovering over any result, causing a tooltip to 
pop out on the right that provides its element name, in our example “logback-core”. 
Selecting an element causes one to teleport to it. The top panel arrow returns to the 
previous search results.  

5.4 Security Analysis and SSC Analysis Scenario 

SSCs necessitate chaining (linking) elements and incorporating supplementary data. 
While SBOMs are standardized, SSC models as such are not, yet SBOMs foresee and 
provide link support (e.g., via references). Both CDX (e.g., via BOM-Link, exter-
nalReferences) and SPDX (e.g., via ExternalRef) support flexible intra- or inter-
linking of various type-specific data (SBOMs, models, Web APIs, documentation, 
etc.). Due to space constraints, as the security analysis scenario involves linking, it 
serves to demonstrate support for both analysis cases; linking non-SBOM CVE vul-
nerability models can represent linking to any extrinsic data/models for an SSC. In 
this case, the original DW SBOM was modified to fictionally link three extrinsic CVE 
JSON records from CVE List Downloads [39], consisting of two general ones (CVE-
2020-11002 and CVE-2020-5245) and one specific to the Log4j component (CVE-
2021-44228), as shown in Fig. 11. Each CVE record model was placed in its own 
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boundary box linked via red lines to applicable SBOMs (Fig. 12, Fig. 13 left). Select-
ing any “CVE” search result shows its context path (Fig. 13 right), which can be used 
for teleporting to get more detailed (CVE) data. The CVE references demonstrate how 
other references to data/models could be included to support SSCs and their analysis. 

 
Fig. 11. SBOM modifications to DW CDX linking CVE vulnerabilities: CVE-2021-44228 
specific to component library log4j and two additional CVEs appended to entire library bundle. 

 
Fig. 12. Left: three juxtaposed CVEs boxes; Right: inter-relations (red) with SBOM shown. 

 
Fig. 13. CVEs-SBOMs inter-linked via red lines (left); CVE search result context (right). 
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5.5 Scalability Scenario 

To evaluate visualization scalability, we depict SBOMs of varying sizes and layouts, 
each supporting a different stakeholder focus. The DW SBOM has 3038 non-
duplicated nodes, 38 types, and 7 layers of depth. It is displayed as a Sphere (compact 
nexus) and Stacking Radial Tree (hierarchically-stacked) layouts in Fig. 14. The 
smaller AA SBOM is shown with Category-and-Level (type-bundled) and Force-
directed Graph (dependency-centric) layouts in Fig. 15. To support comprehension at 
scale, the Limit Layers slider reduces unwanted layer depth, while layer glows (cu-
bes) support layer orientation when navigating large models (especially when ghost-
ing), as shown with AA SBOM in Fig. 16. Adjusting the Text Length slider would 
reduce text label clutter. 

 
Fig. 14. Large DW SBOM as a Sphere (left) and Stacking Radial Tree (right). 

 
Fig. 15. AA SBOM as Category-and-Level (left) and Force-directed Graph (right). 
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Fig. 16. AA SBOM in Radial Tidy Tree layout with Limit Layers slider on 3 (left) and without 
a Layer Limit (right). The colored layer glows support layer orientation. 

5.6 Discussion 

VR-SBOM supports various SBOM visual analysis scenarios immersively, scalably, 
and flexibly. In contrast, current 2D SBOM visualization tools offer limited graph 
layout visualizations. VR offers the ability to more readily comprehend the full extent 
of large SSC or SBOM models, while exploring relations using various graph layout 
structures. SBOM models can be concurrently analyzed and SSC issues collaborative-
ly discussed with stakeholders. Also, substructures and (unexpected or undesired) 
patterns within the data may be more readily evident versus extensive textual formats. 

6 Conclusion 

VR-SBOM contributes an immersive VR solution concept for context-enhanced mul-
ti-layout visualization of SBOMs and SSCs. Its comprehensive visualization supports 
both intra- and inter-model SSC analysis, portraying multiple SBOM models concur-
rently with contextual enhancement. Our implementation demonstrated its feasibility. 
The evaluation, based on a case study using SPDX/CDX models, showed its support 
for various scenarios: Heterogeneous Multi-SBOM Interoperability, Comparison and 
Dependency Analysis, License (Search/Filtering) Analysis, Security and SSC Analy-
sis, and Scalability. Its immersive experience and space further SSC transparency and 
comprehensibility in a readily accessible and intuitive way, supporting SSC manage-
ment, optimization, and stakeholder collaboration. Further, a combination with our 
other prior VR work in the EA/SE areas offers the potential for to gain more holistic 
insights and assess risks and opportunities for all who depend on software and SSCs. 

Future work includes: realizing support for further SPDX profiles, CDX xBOM 
capabilities, highlighting relational differences, and a comprehensive empirical study. 

Acknowledgements. The author would like to thank Rafael Konecsni for his assis-
tance with the design, implementation, evaluation, and figures.  
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