

VR-SBOM: Visualization of Software Bill of Materials
and Software Supply Chains in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]

Computer Science Dept., Aalen University, Aalen, Germany
roy.oberhauser@hs-aalen.de

Abstract. As software capabilities increase and are delivered more frequently,
further external software components (e.g., services, frameworks, platforms, or
libraries) are incorporated. Thus, organizations and IT increasingly depend on
more complex and dynamic Software Supply Chains (SSCs). Yet, the entire set
of components involved are often opaque for end users, businesses, and even
developers. Software Bill of Materials (SBOM) formats (SPDX, CycloneDX)
provide essential information regarding components, yet their voluminous text
and 2D tool visualization limitations obscure the underlying models and SSC.
This paper contributes an immersive Virtual Reality (VR) solution concept VR-
SBOM towards holistic contextualized multi-layout visualization of SSCs with
heterogeneous SBOMs. Our prototype implementation demonstrates its feasi-
bility, while a scenarios-based case study exhibits its potential and scalability.

Keywords: Software Bill of Materials, SBOM, Software Supply Chain, Virtual
Reality, Visualization, SPDX, CycloneDX.

1 Introduction

Modern software development is highly dependent on external components (e.g.,
libraries, packages, frameworks, Web APIs), yet often unmindful of its inclusion “un-
der the hood.” A 2024 industry analysis of 20K+ enterprise applications found [1]:
180 component dependencies on average (10% having 400+), with modern commer-
cial software consisting of up to 90% Open-Source Software (OSS) components;
6.6T+ downloads across 7M+ OSS projects/components involving 60M+ releases
(averaging 16 per OSS project annually). As to deployment frequency due to Contin-
uous Delivery (CD) automation, already in 2012 estimated average daily deployments
for Google were 5.5K and Amazon 23K [2][3]. A 2021 survey of 1200 professionals
revealed elite performers (26%) were deploying on demand multiple times a day [4].
High dynamicity with more external component dependencies results in larger, more
complex, and changing Software Supply Chains (SSCs). While SSC Management
(SSCM) aims to plan, monitor, control, optimize, and analyze SSCs, the essential
characteristics inherent in software’s nature, namely complexity, conformity, change-
ability, and invisibility [5], can be transmuted to SSCs. These characteristics, in con-

RO
This version of the contribution has been accepted for publication, after peer review but is not the Version of Record
and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-031-98033-6_4
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2

junction with obscured external dependencies, make SSC transparency, comprehen-
sion, and analysis a challenge, and hence their management.

A Bill of Materials (BOM) defines the material components necessary to produce a
product, and can be used to assess costs, risks, supply and support aspects, etc. The
associated material distribution flows and multi-stage production dependencies can be
viewed as a supply chain, with each stage processing materials (goods or services) to
a consumer. For product-centric businesses, modeling and analysis of supply chains
are inherent and vital to the business. Applying the BOM paradigm to software acqui-
sition/development results in a Software BOM (SBOM) utilized by a SSC, which
includes the components, libraries, tools, and activities needed to develop, build, pro-
cure, provision, and/or distribute some software artifact. As the need for SSC trans-
parency became evident to address security vulnerabilities and license conformance, a
push towards SBOM formats and their adoption by software suppliers became appar-
ent. The System Package Data Exchange (SPDX) [6] (formerly Software Package
Data Exchange) SBOM format by the Linux Foundation was released in 2011 and
published in 2021 as ISO/IEC 5962 [7]. OWASP’s alternative SBOM format Cy-
cloneDX (CDX) [8] was published in 2018 and later as ECMA-424 [9]. As of 2023,
GitHub offers an “Export SBOM” function, simplifying SBOM generation and in-
creasing the likelihood of further SBOM adoption. Over 72K SBOM’s were pub-
lished by the end of 2023 [1]. Hitherto, the lack of practical and accessible SBOM
information and adoption had made SSC modeling impractical, a prerequisite for
SSCM. Current SBOM/SSC tools lack comprehensive visualization, affecting model
transparency, comprehension, and analysis. This, in turn, impacts the veracity and
premises of software business models that count on coherent, correct, conformant,
sufficient, and resilient SSCs - often only noticed after SSC disruptions occur. SSCM
necessitates models offering transparency and insights that can address software’s
complexity, conformity, changeability, invisibility, and external dependencies.

To address the comprehensive visualization of SBOM and SSC models, this paper
proposes and investigates an immersive experience using Virtual Reality (VR). Our
prior VR-related contributions in the Enterprise Architecture (EA) space include: VR-
EA+TCK [10] supports EA models, integrating enterprise repositories, Atlas, IT
blueprints, and knowledge and content management systems, with VR-EvoEA+BP
[11] animating enterprise evolution and Business Processes (BPs). In the Software
Engineering (SE) area: VR-ISA [12] enables informed software architecture, VR-
SDLC [13] models development lifecycles, VR-GitCity [14] and VR-Git [15] model
Git repos, VR-UML [16] for Unified Modeling Language models, and VR-DevOps
[17] for CD pipeline models. This paper contributes VR-SBOM, a VR solution con-
cept for context-enhanced multi-layout visualization of SBOMs and SSCs, supporting
comprehensive visualization and inter-model SSC analysis. Our realization demon-
strates its feasibility, while a scenario-based case study exhibits its potential and
scalability. Furthering SSC transparency and comprehensibility enhances SSC man-
agement and optimization options.

The paper is structured as follows: Section 2 discusses related work; Section 3 pre-
sents our solution concept; Section 4 details our realization; our evaluation is de-
scribed in Section 5, followed by a conclusion.

3

2 Related Work

Work related to the visualization of SBOMs includes Jones and Tate [18] for interac-
tively comparing BOM graphs in 2D. DepVis [19] interactivelyto visualizes third-
party dependencies and vulnerabilities in 2D. V-Achilles [20] visualizes npm package
vulnerabilities for GitHub in 2D. Google’s central repository Open Source Insights
(OSI) [21] provides OSS package security information with 2D graph-based depend-
ency visualization. OWASP’s Dependency Track [22] is an intelligent component
analysis platform for CDX files, offering a 2D dashboard with monitoring and risk
analysis. OWASP CycloneDX Sunshine [23] visualizes CycloneDX files in 2D. Re-
garding SSC visualization, Kula et al. [24] propose a generalized model for
visualizing library popularity, adoption, and diffusion via a software universe graph,
library coexistence pairing heat maps, and dependents diffusion plots. We are una-
ware of any tools that currently offer 3D or VR-based SBOM and SSC visualization.

Aside from visualization, work related to SBOM tooling includes Mirakhorli et al.
[25], who conducted an extensive empirical analysis of 84 open-source and
proprietary SBOM tools to assess the current landscape, highlighting many issues
including interoperability, quality, and many having a niche focus and immaturity.
Yousefnezhad and Costin [26] evaluated real-world SBOM tools with regard to
DevSecOps, SSC, and compliance scenarios. Wang et al.’s book on SSCM [27] sur-
veys research literature and describes SSC modeling, analysis, issues, and techniques,
yet SSC visualization is not addressed.

Hence, further work is needed to investigate (immersive) SBOM/SSC visualization
concepts to support various analysis, management, and collaboration scenarios.

3 Solution Concept

Our solution approach leverages VR for visualizing one or more SBOM models and
relations simultaneously, mapped to a spatial structural model that can be
immersively explored and experienced in 3D.

3.1 Grounding of our Solution Concept in VR-Related Research

To address possible reservations about the appropriateness of VR in our solution
concept, our reasoning is based on prior VR research in areas we view as related to
modeling, analysis, and collaboration, some of which we highlight here. In their
systematic meta-analysis, Akpan & Shanker [28] showed VR and 3D offer significant
advantages in the area of discrete event modeling, including model development,
analysis, and Verification and Validation (V&V). Of 23 articles examining 3D
analysis, 95% concluded using 3D was more potent and lead to better analysis than
2D, e.g., when evaluating a model’s behavior or performing a what-if analysis. They
also found a consensus that 3D/VR can present results convincingly and
understandably for decision-makers. 74% of 19 papers concluded that 3D/VR
significantly improves the model development task (supporting teams and improving

4

precision and clarity). To investigate VR’s suitability for analytical tasks for an
information architecture, Narasimha et al. [29] used a card sorting collaboration
experiment. They found that VR was at least as good as in-person card sorting, and
for certain variables VR was even better than both conventional and video-based
conditions. Qualitative data evaluating awareness indicated that during collaborative
interaction, participants were aware of their task, others, and their context, while
collaborating similarly to an in-person setting. Additionally, the qualitative data
showed evidence of positive views towards VR. The outcomes suggest that both a
sense of presence and collaboration (equivalent to an in-person setting) is possible
within VR. A survey of Immersive Analytics (IA) by Fonnet & Prie [30] analyzed
177 papers. They found concurring evidence that for graph and spatial data analysis,
IA provides benefits vs. non-IA when the scene complexity exceeds the 2D display,
while for multi-dimensional data, the advantages are more task-dependent. They re-
mark that while IA enables exploration of large-scale data worlds, context-aware
navigation techniques are insufficiently exploited - although they are critical for users.
We thus conclude that an immersive contextual VR experience has significant poten-
tial for comprehensively depicting large models in 3D while supporting awareness,
modeling, analysis, V&V, decision support, stakeholder inclusion, and collaboration.

3.2 Relation to Our Prior VR-Related Research

Our solution map in Fig. 1 positions VR-SBOM relative to our other VR-based solu-
tions. Besides our own prior work introduced earlier, our generalized VR Modeling
Framework (VR-MF), described in [31], provides a domain-independent hypermodel-
ing framework addressing key aspects for modeling in VR: visualization, navigation,
interaction, and data. VR-EA [31] supports EA models in VR, including ArchiMate
and BPMN via VR-BPMN [32]; VR-ProcessMine [33] supports process mining; VR-
EAT [34] integrates and models enterprise repositories and the Atlas EA tool and
blueprints. In the SE and Systems Engineering (SysE) area, there is VR-V&V [35] for
V&V, VR-TestCoverage [36] for test coverage. As SBOMs/SSCs can be relevant to
at least two perspectives, we position VR-SBOM as spanning two broad areas: EA &
BP from the IT perspective; and SE & SysE from the software development perspec-
tive. Broad holistic solutions would be feasible in combination with our other solu-
tions. None of our prior work has investigated the modeling of SBOM or SSCs in VR
nor addressed their specific challenges.

Fig. 1. VR solution concept map showing VR-SBOM (blue) in relation to our other concepts.

5

3.3 The VR-SBOM Solution Concept

The contribution of this paper is a VR solution concept for context-enhanced multi-
layout visualization of SSCs and SBOMs. This solution concept is abstract, extensi-
ble, and independent of SBOM modeling format (SPDX, CDX). By annotating con-
textualized connected SBOM models, SSCs can be immersively visualized and expe-
rienced. Thus, the comprehension and analysis of SSCs becomes feasible, offering a
larger picture of how various software artifacts relate to the SSC. Furthermore,
accessibility, comprehension, and collaboration via concern-based (risk, resilience,
security, etc.) perspectives for viewing and filtering a model for diverse stakeholders,
such as software developers, enterprise architects, business analysts, quality
assurance, IT administrators, security specialists, compliance auditors, or managers.
These objectives are addressed as follows:

Data. A Data Hub supports flexible data integration via ports and adapters in com-
bination with a data repository. SBOMs in both formats, CVEs, and any other SSC
contextual data is integrated and stored in our JSON format. Alternatively, if data
freshness is paramount, data can forego storage and be integrated live via Web APIs.

Visualization. A Directed Acyclic Graph (DAG) visualization paradigm was cho-
sen to generically and scalably visualize extensive SBOM and SSC models. SBOM
elements are represented by spherical nodes, while relations (edges) are depicted as
lines. Element types are differentiated by customizable node colors displayed via a
legend. Node labels provide naming information, while detailed element metadata can
be retrieved via our VR-Tablet concept. Labeled glass boxes enclose models to sup-
port model orientation, differentiation, and contextualization. Multiple DAG layout
options are offered: 1) a spatially-dense 3D Sphere (or nexus) (Fig. 2a) with node
placement on the sphere’s surface and all relations within, for comprehensive over-
view while minimizing spatial distances; 2) Category-and-Level (Fig. 2b) bundles
nodes by type (category) on cylindrical layer surface (levels) positioned on vertical
axis near layers having most relations with its type, for determining (un-)common
types and relations; 3) Force-Directed Graph (Fig. 2c) positions nodes using attrac-
tive and repulsive forces to approximately equalize edge lengths while minimizing
collisions, for ascertaining highly (dis-)connected nodes; 4) Radial Tidy Tree (Fig. 2d)
orders nodes hierarchically along a vertical radial tree (cone-like) with ever larger
lower rings, for navigating granularity and depth; 5) Stacking Radial Tree (shown
later), like Radial Tidy Tree but stacking multiple rings within a category level, for
reducing ring circumference, and 6) Custom placement. Thus, hitherto intangible
SBOM elements and relations are flexibly visualized and graph-based visual compari-
sons support stakeholder concerns.

Navigation. To reduce the potential for VR sickness symptoms during immersive
navigation, our solution concept supports two navigation modes: 1) locomotion glid-
ing controls (default), enabling users to fly through the VR space and get an overview
of the entire model from any angle they wish, or 2) teleporting permits a user to select
a destination and be instantly placed there (i.e., moving the camera to that position),
reducing movement through a virtual space.

6

Fig. 2. Visualization layouts for an SBOM containing 448 nodes: a) Sphere/nexus, b) Category-
and-Level, c) Force-directed, and d) Radial Tidy Tree.

Interaction. The VR controllers and our VR-Tablet concept support interaction.
Our VR-Tablet paradigm provides: interaction support, detailed information regarding
a selected element, or browsing, filtering, searching, and settings. Any browser-based
(multimedia) content could also be displayed as shown in our prior work [10].

4 Realization

To determine the feasibility of our solution concept, we realized a prototype having
the logical architecture in Fig. 3 and described below.

Fig. 3. VR-SBOM Logical Architecture.

3D Environment

Laser Pointer
via Controller

Selec5on
Menu

Structure
Visualiza5on

3D Object
Selec5on

ScriptsAssets

Unity SSC Data
SBOM

SPDX Format

Data Hub

ASP.NET Core
Web API

mongoimport

JSON

REST

MongoDB

Python
Adapters

CDX Format

Non-SBOM
CVE Record

Format
…

JSON

7

Data integration. The Data Hub integrates and stores data in a NoSQL document-
oriented local database MongoDB in JSON and offers endpoints (ports) to the VR
frontend via the ASP.NET Core Web API. Adapters are used to convert SSC-relevant
data in various SBOM formats such as SPDX, CDX, and non-SBOM data such as
CVE data in the CVE Record Format [37]. MongoDB was used as a local database
consisting of two collections, one for SBOM-specific data (SPDX, CDX, etc.) and
another for non-SBOM (e.g., additional SSC) data (e.g., CVE records).

Visualization. VR support was realized in C# with Unity 2022.3.21f1, accessing
the Data Hub via REST (REpresentational State Transfer) and retrieving JSON data.
Nodes are depicted as spheres, key-value pairs as text or as a popout tooltip, and ref-
erences as lines. For directional lines, the darker (closer) end (blue/red) is the enclos-
ing source and the lighter (aqua/pink) end the point referred to, reducing the clutter
arrowheads would create while providing direction. Multiple SBOM graphs can be
depicted concurrently and are labeled and contextually distinguished via boundary
(transparent glass) boxes, which are labeled on the bottom by SBOM name/ID and
indicate node metrics in the upper left corner (Fig. 4a). The graph layouts (Sphere,
Category-and-Level, Radial Tidy Tree, Force-directed Graph, and Stacking Radial
Tree) can be switched to support a different focus (Fig. 4b). For the Sphere (nexus)
layout, all nodes are placed on the sphere’s surface equidistant from each other, while
all lines (connections) are inside the sphere. For Category-and-Level, the nodes are
first segregated by category (type) and then positioned along a vertical line based on
its level. For the Radial Tidy Tree layout, a vertical hierarchy is used with each lower-
layer ring placed even further out in the x/z direction (even if the level is sparse),
causing it to typically be wider than higher. In the Force-directed Graph layout, con-
nected nodes receive an attractive force, while unconnected nodes receive a repelling
force; the vectors are then combined to determine a node’s position, causing the most
highly-connected nodes to be more centric. Stacking Radial Tree reduces ring radius
by stacking multiple rings at the same level. The implementation can be readily ex-
tended to support additional graph visualization types and store Custom placement. A
legend of the node types and their randomly-assigned colors is placed on top of (or in
proximity of) the boundary box. To reduce visual clutter, by default when nodes have
the same property values, they are merged, but this can be toggled. Storing custom
layout adjustments was not yet implemented due to time constraints.

Navigation. Both locomotion and teleporting are supported, including teleporting
to a search result.

Interaction. Interaction is supported with our VR-Tablet. To prevent the VR-
Tablet from interfering with comprehension or navigation, it is hidden and appears
when the left controller is rotated outwards by about 90 degrees. It offers a menu
consisting of three tabs: Main, Search and Options, as shown in Fig. 4:
a) Main offers: a slider “Show Layers” for adjusting the maximum graph layer

depth, a dropdown for desired layout type, and a scroll view of SBOM names or
object IDs. In Scroll View, the selection acts as a toggle: if the SBOM is already
depicted (green), then it is hidden (red), otherwise it is loaded.

b) The dropdown Graph Types offers various graph layouts (Sphere, Category-and-
Level, Radial Tidy Tree, Force-Directed Graph, and Stacking Radial Tree),

8

Fig. 4. VR-Tablet menu showing tab sections: a) Main, b) Layout options, c) Compare Ver-
sions submenu, d) Search/Filter, e) Search Results, and f) Options.

Fig. 5. Selecting top left green node opens JSON position panel (bottom right) in VR-Tablet.

9

c) “Compare Versions” submenu is offered when two graphs are selected; if
checked, the SBOM node differences are highlighted as a colored ring, with
green/red indicating new/missing node (can ghost rest).

d) Search offers both searching and filtering based on an input field that offers a
pop-up prefab platform-independent MRTK keyboard to enter a search string.
The search includes both types and values and ghosts (makes transparent) all el-
ements not in the result set. Different search and filter types are supported:
“Search Only Within Selected Type” searches nodes within type, “Search
Hierarchies Filtered by Selection” to search nodes of a subgraph, and “Search
Dependencies Filtered by Selection” to search dependencies of a subgraph.

e) Search results are displayed in a separate extra VR-Tablet pane with scrollable
search results, which may be numbered based on the hierarchy level (1 = top-
level). Selecting a result offers a Tooltip to the right of the selection indicating
node name, etc. Teleporting to any search result is supported.

f) Options offers these additional settings:
- “Show CVE” depicts CVE data related to a loaded SBOM as separate graphs in
bounded glass boxes, with a red connection to its location in the SBOM graph.
- “Show duplicate Nodes” will depict all nodes separately, since by default all
nodes with the same property values are depicted by a single node.
- “Ball Size Depending On Relation Count” will cause the node size to be larger
when it has more relations relative to other nodes.
- “Enable Glow For Every Layer”
- “Comparison: Ghost Nodes with no Changes” causes unchanged nodes to be
ghosted (transparent) to reduce visual clutter during comparison analysis.
- “Text Length”: constrains the allowable max text length of labels.

Selecting a node will keep its node type opaque, while ghosting all other nodes of
different types and lines unassociated with a node of that type. Node-specific JSON
information is displayed on an additional freely movable pane, offering a dropdown
list of all positions of the node in the SBOM file, as shown in Fig. 5.

The evaluation then demonstrates how these realized capabilities are utilized.

5 Evaluation

For the evaluation of our solution concept with our prototype realization, we refer to
the design science method and principles [38], in particular, a viable artifact, problem
relevance, and design evaluation (utility, quality, efficacy). For this, a scenario-based
case study focuses on supporting SBOM and SSC comprehension, analysis, and con-
textualization, the scenarios being: Heterogeneous Multi-SBOM Interoperability,
Comparison and Dependency Analysis, License (search/filtering) Analysis, Security
and SSC Analysis, and Scalability. Further SBOM use cases can be readily mapped to
these scenarios (provenance, foreign ownership, outdated components, etc.). Abbrevi-
ations referred to for the SBOM files utilized in the evaluation scenarios are given in
Table 1. Further SBOMs were also tested but are not listed.

10

Table 1. SPDX and CDX files used in evaluation.

Name Abbrev. Nodes (w/o
duplicates)

Types Lines Format Modifications

Dropwizard1 DW (3038) 38 10621 CDX 2.0.2 3 CVEs linked
Acme Application2 AA 129(88) 21 154 SPDX 3.0 -
Acme Application New2 AAN 132(88) 35 SPDX 3.0 +/- 3 nodes
1 https://github.com/CycloneDX/bom-examples/blob/master/SBOM/dropwizard-1.3.15/bom.json
2 https://github.com/spdx/spdx-examples/blob/master/software/example13/spdx3.0/example13.spdx3.json

5.1 Multiple Heterogeneous SBOM Interoperability Scenario

To be practical, SSCs must be able to view multiple SBOMs having differing formats
simultaneously. For this scenario, SBOM interoperability support is demonstrated by
depicting multiple heterogeneous SBOM models, with DW based on a CDX model in
the left boundary box and AA based on an SPDX model on the right in Fig. 6.

Fig. 6. Multiple heterogeneous SBOMs loaded (green) (DW CDX left, AA SPDX right).

11

5.2 Comparison and Dependency Analysis Scenario

This scenario demonstrates comparison analysis support via a visual delta of graphs,
in particular selecting SBOM versions in VR-Tablet (Fig. 4c). As shown in Fig. 7,
green rings highlight additions, red rings deletions (modifications use both). Depend-
ency analysis is supported via node size based on relation count (Fig. 7 right) - rele-
vant, e.g., if high relation risk is a concern. Dependency navigation is shown later.

Fig. 7. AA SBOM version comparison (left) highlighting additions/deletions (green/red ring)
and ghosting “Nodes with no Changes”; on right, “Ball Size Depending on Relation Count”.

5.3 License (Search/Filtering) Analysis Scenario

A license analysis scenario is a typical SBOM use case. We use search and filtering
capabilities to demonstrate how this scenario is supported, yet these capabilities can
support further scenarios and stakeholder concerns (security, risk, compliance, etc.).

Search: A basic search finding all occurrences of a given string across all nodes.
Filtered by Type: Searching only within a certain property type, e.g., name, de-

scription, id. As shown in Fig. 8, selecting the node type “id”, enabling “Search Only
Within Selected Type”, and providing with search string “MIT” shows a results panel
listing any nodes of type “id” containing the string MIT (ghosting others). Selecting a
specific search result teleports to that node, with the panel then showing that node’s
hierarchical path to the root node grasp its context. Hovering over any hierarchy ele-
ment shows a tooltip to the right providing that node’s name. Selecting a path element
teleports to it. Via the top panel arrow, one can return to the previous search results to
pick another.

12

Fig. 8. Left: selecting type “id”, with “Search Only Within Selected Type” for “MIT” searches
all nodes of that type containing that string, providing a “Search Results” panel; selecting any
search result then teleports to it, which then shows its contextual path to its root node (right).

Fig. 9. Left: selecting node “licenses” then “Search Hierarchies Filtered by Selection” for
“Apache” gives search results only within the license subhierarchy (independent of type); se-
lecting a search result (e.g., name:) teleports to it (right), showing its contextual path to its root
node; hovering on result shows tooltip with the component’s name (here log4j-over-slf4j).

Filtered Node Hierarchy. This type of search filter can be useful, e.g., when con-
cerned only about a selected component or some subgraph hierarchy. Conceivable
search examples include determining if some database is the open source or enterprise
version, or the version of some library within a software component. For our license
analysis case example in Fig. 9, “Search Hierarchies Filtered by Selection” was ena-
bled and the “license” node selected (ghosting all nodes outside hierarchy). Then the
search string “Apache” is entered via the virtual keyboard, which shows the search
results panel listing all matching hierarchically deeper nodes in the SBOM (ignoring
any higher up or parallel hierarchies or relations). While we selected the license hier-
archy here, we could have selected any component hierarchy. Selecting a search result
teleports to that node, whereafter the panel shows the complete path to the root node
(with tooltip support), to help contextualize it.

13

Fig. 10. Left: selecting node “license,” then “Search Dependencies Filtered by Selection” for
“GNU” gives search results for nodes directly related to “license” and containing “GNU”;
selecting any search result teleports to it (right) then showing contextual path to root node;
hovering on result shows tooltip that provides node name (here component name logback-core).

Filtered Dependencies: Via this search type, directly related dependencies are
searched/filtered. This can find any nodes across all components as long as they di-
rectly relate to a node of interest. For our license scenario shown in Fig. 10, “Search
Hierarchies Filtered by Selection” was enabled, the “license” node selected, and the
search string “GNU” given via the virtual keyboard. The search results panel shows
any nodes directly related to the node (license) containing the string “GNU” inde-
pendent of its hierarchical position. Hence, no GNU components are shown that don’t
relate to license. Selecting any search result teleports to that node, whereafter the
panel shows the complete contextual path from that node to the root node. This con-
text hierarchy can then be explored by hovering over any result, causing a tooltip to
pop out on the right that provides its element name, in our example “logback-core”.
Selecting an element causes one to teleport to it. The top panel arrow returns to the
previous search results.

5.4 Security Analysis and SSC Analysis Scenario

SSCs necessitate chaining (linking) elements and incorporating supplementary data.
While SBOMs are standardized, SSC models as such are not, yet SBOMs foresee and
provide link support (e.g., via references). Both CDX (e.g., via BOM-Link, exter-
nalReferences) and SPDX (e.g., via ExternalRef) support flexible intra- or inter-
linking of various type-specific data (SBOMs, models, Web APIs, documentation,
etc.). Due to space constraints, as the security analysis scenario involves linking, it
serves to demonstrate support for both analysis cases; linking non-SBOM CVE vul-
nerability models can represent linking to any extrinsic data/models for an SSC. In
this case, the original DW SBOM was modified to fictionally link three extrinsic CVE
JSON records from CVE List Downloads [39], consisting of two general ones (CVE-
2020-11002 and CVE-2020-5245) and one specific to the Log4j component (CVE-
2021-44228), as shown in Fig. 11. Each CVE record model was placed in its own

14

boundary box linked via red lines to applicable SBOMs (Fig. 12, Fig. 13 left). Select-
ing any “CVE” search result shows its context path (Fig. 13 right), which can be used
for teleporting to get more detailed (CVE) data. The CVE references demonstrate how
other references to data/models could be included to support SSCs and their analysis.

Fig. 11. SBOM modifications to DW CDX linking CVE vulnerabilities: CVE-2021-44228
specific to component library log4j and two additional CVEs appended to entire library bundle.

Fig. 12. Left: three juxtaposed CVEs boxes; Right: inter-relations (red) with SBOM shown.

Fig. 13. CVEs-SBOMs inter-linked via red lines (left); CVE search result context (right).

15

5.5 Scalability Scenario

To evaluate visualization scalability, we depict SBOMs of varying sizes and layouts,
each supporting a different stakeholder focus. The DW SBOM has 3038 non-
duplicated nodes, 38 types, and 7 layers of depth. It is displayed as a Sphere (compact
nexus) and Stacking Radial Tree (hierarchically-stacked) layouts in Fig. 14. The
smaller AA SBOM is shown with Category-and-Level (type-bundled) and Force-
directed Graph (dependency-centric) layouts in Fig. 15. To support comprehension at
scale, the Limit Layers slider reduces unwanted layer depth, while layer glows (cu-
bes) support layer orientation when navigating large models (especially when ghost-
ing), as shown with AA SBOM in Fig. 16. Adjusting the Text Length slider would
reduce text label clutter.

Fig. 14. Large DW SBOM as a Sphere (left) and Stacking Radial Tree (right).

Fig. 15. AA SBOM as Category-and-Level (left) and Force-directed Graph (right).

16

Fig. 16. AA SBOM in Radial Tidy Tree layout with Limit Layers slider on 3 (left) and without
a Layer Limit (right). The colored layer glows support layer orientation.

5.6 Discussion

VR-SBOM supports various SBOM visual analysis scenarios immersively, scalably,
and flexibly. In contrast, current 2D SBOM visualization tools offer limited graph
layout visualizations. VR offers the ability to more readily comprehend the full extent
of large SSC or SBOM models, while exploring relations using various graph layout
structures. SBOM models can be concurrently analyzed and SSC issues collaborative-
ly discussed with stakeholders. Also, substructures and (unexpected or undesired)
patterns within the data may be more readily evident versus extensive textual formats.

6 Conclusion

VR-SBOM contributes an immersive VR solution concept for context-enhanced mul-
ti-layout visualization of SBOMs and SSCs. Its comprehensive visualization supports
both intra- and inter-model SSC analysis, portraying multiple SBOM models concur-
rently with contextual enhancement. Our implementation demonstrated its feasibility.
The evaluation, based on a case study using SPDX/CDX models, showed its support
for various scenarios: Heterogeneous Multi-SBOM Interoperability, Comparison and
Dependency Analysis, License (Search/Filtering) Analysis, Security and SSC Analy-
sis, and Scalability. Its immersive experience and space further SSC transparency and
comprehensibility in a readily accessible and intuitive way, supporting SSC manage-
ment, optimization, and stakeholder collaboration. Further, a combination with our
other prior VR work in the EA/SE areas offers the potential for to gain more holistic
insights and assess risks and opportunities for all who depend on software and SSCs.

Future work includes: realizing support for further SPDX profiles, CDX xBOM
capabilities, highlighting relational differences, and a comprehensive empirical study.

Acknowledgements. The author would like to thank Rafael Konecsni for his assis-
tance with the design, implementation, evaluation, and figures.

17

References

1. Sonatype: State of the Software Supply Chain. (2024). https://sonatype.com/hubfs/SSCR-
2024/SSCR_2024-FINAL-optimized.pdf, last accessed 2025/05/09

2. IT Revolution: DevOps Guide: Selected Resources to Start Your Journey. (2015).
https://web.archive.org/web/20211010072856/http://images.itrevolution.com/documents/I
TRev_DevOps_Guide_5_2015.pdf

3. Micco, J.: Tools for continuous integration at google scale. Google Tech Talk (2012)
4. DORA Team: Accelerate State of DevOps report (2021). https://web.archive.org/web/

20250402081619/https://services.google.com/fh/files/misc/state-of-devops-2021.pdf
5. Brooks, F. P. Jr.: The Mythical Man-Month. Addison-Wesley (1995)
6. System Package Data Exchange (SPDX®), https://spdx.dev
7. ISO/IEC 5962:2021 Information technology — SPDX® Specification V2.2.1 (2021)
8. CycloneDX, https://cyclonedx.org
9. ECMA-424 CycloneDX Bill of materials specification (2024)

10. Oberhauser, R., Baehre, M., Sousa, P.: VR-EA+TCK: Visualizing Enterprise Architecture,
Content, and Knowledge in Virtual Reality. In: Shishkov, B. (eds) Business Modeling and
Software Design (BMSD 2022), pp. 122-140. LNBIP, vol 453. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-11510-3_8

11. Oberhauser, R., Baehre, M., Sousa, P.: VR-EvoEA+BP: Using Virtual Reality to Visualize
Enterprise Context Dynamics Related to Enterprise Evolution and Business Processes. In:
Shishkov, B. (eds) Business Modeling and Software Design. BMSD 2023. LNBIP, vol
483. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36757-1_7

12. Oberhauser, R.: VR-ISA: Immersively Visualizing Informed Software Architectures Using
Viewpoints Based on Virtual Reality. International Journal on Advances in Software, 17(3
& 4), pp. 282-300 (2024)

13. Oberhauser, R.: VR-SDLC: A Context-Enhanced Life Cycle Visualization of Software-or-
Systems Development in Virtual Reality. In: Shishkov, B. (eds) Business Modeling and
Software Design. BMSD 2024. LNBIP, vol 523. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-64073-5_8

14. Oberhauser, R.: VR-GitCity: Immersively Visualizing Git Repository Evolution Using a
City Metaphor in Virtual Reality. Int’l Journal Adv. Software, 16(3&4), 141-150 (2023).

15. Oberhauser, R.: VR-Git: Git Repository Visualization and Immersion in Virtual Reality.
In: Proceedings of the Seventeenth International Conference on Software Engineering Ad-
vances (ICSEA 2022), pp. 9-14. IARIA (2022)

16. Oberhauser, R.: VR-UML: The Unified Modeling Language in Virtual Reality – An Im-
mersive Modeling Experience. In: Shishkov, B. (eds) Business Modeling and Software
Design. BMSD 2021. LNBIP, vol 422. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79976-2_3

17. Oberhauser, R.: VR-DevOps: Visualizing and Interacting with DevOps Pipelines in Virtu-
al Reality. In: Proceedings of the Nineteenth International Conference on Software Engi-
neering Advances, pp. 43-48 (2024).

18. Jones, R., Tate, T:. Visualizing Comparisons of Bill of Materials. In: 2023 IEEE
Symposium on Visualization for Cyber Security (VizSec), pp. 12-16. IEEE (2023)

19. Groman, M.: Visualization of Vulnerabilities in Open Source Software Dependencies.
Master Thesis, Masaryk University (2023)

20. Jarukitpipat, V., et al.: V-Achilles: An Interactive Visualization of Transitive Security
Vulnerabilities. In: Proc. 37th IEEE/ACM Int’l Conf. on Automated Software Engineering
(ASE '22). ACM, Article 169, pp. 1–4 (2022). https://doi.org/10.1145/3551349.3559526

18

21. Open Source Insights, https://deps.dev/, last accessed 2025/05/09
22. Dependency-Track, https://dependencytrack.org, last accessed 2025/05/09
23. Sunshine, https://github.com/CycloneDX/Sunshine/, last accessed 2025/05/09
24. Kula, R. G., De Roover, C., German, D. M., Ishio, T., Inoue, K.: A generalized model for

visualizing library popularity, adoption, and diffusion within a software ecosystem," 2018
IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), Campobasso, Italy, 2018, pp. 288-299, doi: 10.1109/SANER.2018.8330217

25. Mirakhorli, M., et al.: A Landscape Study of Open Source and Proprietary Tools for Soft-
ware Bill of Materials (SBOM). arXiv preprint arXiv:2402.11151 (2024)

26. Yousefnezhad, N., Costin, A.: Understanding SBOMs in Real-World Systems – A Practi-
cal DevOps/SecOps Perspective. In: Shishkov, B. (eds) Business Modeling and Software
Design. BMSD 2024. LNBIP, vol 523. Springer, Cham (2024)

27. Wang, Y., Cheung, S. C., Yu, H., Zhu, Z.: Managing Software Supply Chains: Theory and
Practice. Springer Nature, Singapore (2024) https:/doi.org/10.1007/978-981-96-1797-5

28. Akpan, I. J., Shanker, M.: The confirmed realities and myths about the benefits and costs
of 3D visualization and virtual reality in discrete event modeling and simulation: A
descriptive meta-analysis of evidence from research and practice. Computers & Industrial
Engineering, 112, 197-211 (2017)

29. Narasimha, S., Dixon, E., Bertrand, J. W., Madathil, K. C.: An empirical study to investi-
gate the efficacy of collaborative immersive virtual reality systems for designing infor-
mation architecture of software systems. Applied ergonomics, 80, 175-186 (2019)

30. Fonnet, A., Prie, Y.: Survey of immersive analytics. IEEE transactions on visualization
and computer graphics, 27(3), 2101-2122 (2019)

31. Oberhauser, R., Pogolski, C.: VR-EA: Virtual Reality Visualization of Enterprise Archi-
tecture Models with ArchiMate and BPMN. In: Shishkov, B. (eds) Business Modeling and
Software Design. BMSD 2019. LNBIP, vol 356. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24854-3_11

32. Oberhauser, R., Pogolski, C., Matic, A.: VR-BPMN: Visualizing BPMN Models in Virtual
Reality. In: Shishkov, B. (eds) Business Modeling and Software Design. BMSD 2018.
LNBIP, vol 319. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_6

33. Oberhauser, R.: VR-ProcessMine: Immersive Process Mining Visualization and Analysis
in Virtual Reality. In: The Fourteenth International Conference on Information, Process,
and Knowledge Management (eKNOW 2022), pp. 29-36. IARIA (2022)

34. Oberhauser, R., Sousa, P., Michel, F.: VR-EAT: Visualization of Enterprise Architecture
Tool Diagrams in Virtual Reality. In: Shishkov, B. (eds) Business Modeling and Software
Design. BMSD 2020. LNBIP, vol 391. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-52306-0_14

35. Oberhauser, R.: VR-V&V: Immersive Verification and Validation Support for Traceability
Exemplified with ReqIF, ArchiMate, and Test Coverage. International Journal on Advanc-
es in Systems and Measurements, 16(3 & 4), 103-115 (2023)

36. Oberhauser, R.: VR-TestCoverage: Test Coverage Visualization and Immersion in Virtual
Reality. In Proceedings of The Fourteenth International Conference on Advances in Sys-
tem Testing and Validation Lifecycle (VALID 2022), pp. 1-6. IARIA (2022)

37. cve-schema, https://cveproject.github.io/cve-schema/schema/, last accessed 2025/04/29
38. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems re-

search. MIS Quarterly, 28(1), pp. 75-105 (2004)
39. CVE List Downloads, https://www.cve.org/Downloads, last accessed 2025/04/29

