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Abstract - Software is, in its essence, an inherently invisible 
digital construct, and thus its comprehension and its 
visualization remain a challenge. All software involves some 
underlying structure(s), and Software Architecture (SA) 
comprises the (intended) conceptual abstractions and 
structuring principles across this invisible construct. Agile 
development methods, DevOps, and continuous development 
results in a changing implementation and associated SA that is 
evolving and continually in flux. Any presumed SA 
understanding and (perhaps outdated or inconsistent) 
associated SA documentation may also diverge from the reality, 
while any shared SA concept across stakeholder minds may 
vary or differ, potentially resulting in a lack of conceptual 
integrity. In contrast, an Informed Software Architecture (ISA) 
is grounded in reality based on actual data and evidence, rather 
than being influenced by out-of-sync models, documentation, 
misconceptions, or assumptions. Yet the challenge remains of 
how best to visually convey ISA aspects, such as internal static 
software structures and behavioral and operational dynamics, 
to support evidence-based design, comprehension, and insights 
in an accessible way for a wider stakeholder spectrum. This 
paper contributes VR-ISA, a Virtual Reality (VR) solution 
concept to immersively support an ISA with the visualization of 
structural, behavioral, and operational aspects. To exemplify 
our solution concept, three VR-based viewpoints, framing 
different concerns for different stakeholder groups, are used to 
illustrate the potential of VR to support ISA: 1) components and 
connectors, for depicting dynamic distributed event and data 
streams, 2) modules and dependencies, for depicting static 
internal module composition and their dependencies, and 3) 
execution observability, for depicting operational execution, 
tracing, and observability aspects. Our realization shows its 
feasibility, while a case-based evaluation provides insights into 
its capabilities and potential. 

Keywords – informed software architecture; software 
architecture; virtual reality; event stream processing; data stream 
processing; event-driven architecture; static analysis; tracing; 
evidence-based design; observability; visualization. 

I.  INTRODUCTION 
This paper extends our work on VR-EDStream+EDA [1]  

by extending it to include the visualization of what we refer to 
as Informed Software Architecture (ISA). To exemplify our 
solution concept, this paper elucidates descriptions of three 
VR-based viewpoints that frame operational, dynamic, and 
static concerns. Viewpoints in Software Architecture (SA) 
provide conventions for constructing, understanding, and 

using architectural views to frame certain stakeholder 
concerns [2]. Architectural views are informational parts of an 
architectural description that address one or more stakeholder 
concerns. Ideally, a SA is initially prescriptive, and with 
ongoing implementation transitions to being descriptive. For 
larger software (SW) development teams and projects, having 
SA documentation in sync with the implementation and 
operation is a challenge. In fact, an implementation may 
necessarily diverge from its prescriptive SA to address an 
issue, yet not have been communicated or incorporated in the 
SA documentation, thus resulting in inconsistencies. 

It is said that “data is the new oil,” with data playing a 
fundamental role in the digitalization and automation in 
various organizations, including enterprises, business, 
government, manufacturing, and IT (Information 
Technology).  Yet to be valuable, this data is typically 
dependent on fundamental software building blocks 
(components such as modules or functions) and their 
interaction (connectors) to generate, transfer, transform, 
process, and store data. Moreover, events (a.k.a. records or 
messages) are a specific type of data consisting of a record of 
some occurrence. Modern SA is often networked and event-
driven, utilizing microservices, Web APIs (Application 
Programming Interfaces), and/or reactive apps, frameworks, 
libraries, or services, etc. Microservice adoption in enterprises 
is growing, with IDC reporting 77% and GitLab reporting 
71% of organizations (partially) using microservices [3][4]. 
Furthermore, in the enterprise, software has become pervasive 
with digitalization, and hence the number of different software 
components (apps, services, etc.) and their interdependence or 
coupling has grown. For instance, among enterprises it is said 
57% utilize somewhere between 1000-5000 business 
applications [5]. Enterprise Service Buses (ESBs), Service 
Mesh, and the Side-Car pattern are further examples of how 
different apps and services can be coupled with each other 
without the apps necessarily being aware of any coupling. 
Thus, operational coupling is often obscure, and for any 
dynamic behavior of components, the associated connectors 
(such as events or data streams or event streams) are a concern 
for developer, IT stakeholders, and even end users (e.g., 
hidden, privacy, legal/geographic) and a challenge to readily 
discern and utilize for informing or improving a SA. We will 
refer to this stakeholder concern as Concern:CompConn. 

To gain insights into the behavior and health of deployed 
software, a recent trend in software development is 
observability, with its three pillars of logs, metrics, and traces 
[6], whereby operational data is explicitly collected. Although 



observability is implicitly grounded in the reality of actual 
data, it is rarely directly used to explicitly inform SA. We will 
refer to this stakeholder concern as Concern:Observability. 

Further stakeholders include developers and maintainers 
(with turnover impacts), faced with potentially nonexistent or 
incorrect SA documentation and differing confidence levels. 
From a static development perspective, the correlation 
between the potentially thousands of source codes files, their 
folder structure, and any actual (intended or unintended) 
modules, and (inter- and intra-)dependencies are a concern 
that can be difficult to readily and visually discern. We will 
refer to this stakeholder concern as Concern:ModDep. 

One effect of the digitalization of information is an 
informed society. Hence, information should be explicitly 
incorporated to shape and influence future products and their 
structure, i.e., architecture. The concept of Informed 
Architecture (IA) has been proposed and explored in the 
context of construction [7] as well as in digital contexts [8][9].  

In this paper, we posit that in the realm of SA, information 
should also be explicitly incorporated, continuously and 
readily flow, while being accessible to all stakeholders to 
address their various concerns. Any new information and 
insights from this ongoing information flow, analogous to a 
feedback loop, should result in informed adjustments and 
adaptations to the SA as applicable. An Informed Software 
Architecture (ISA) is grounded in the reality of current and 
ongoing data and facts to inform architectural decisions. Since 
any architecture is about addressing stakeholder concerns, this 
information flow should somehow be readily accessible to 
stakeholders, rather than exclusive to the architect alone. We 
therefore further posit that VR can offer visual accessibility to 
information for a wider stakeholder spectrum, while depicting 
and contextualizing SA-relevant information in new ways.  

While various prior work involving SA may include the 
word “informed” as a verb or regarding decision with SA, we 
have not as yet found any prior or related work that 
specifically positions Informed Software Architecture (ISA) 
as a term. It is our assertion that ISA is essential for the future 
of SA, for SA to remain relevant, for improving decision 
making, for supporting comprehension (for developers, 
maintainers, operators), for ensuring conceptual integrity, for 
improving documentation, etc. 

Additionally, the veracity of any SA-related information, 
such as models or documentation, is a relevant issue. Due to 
current Agile, DevOps, continuous development, with their 
rapid develop-release-deploy cycles and evolutionary 
architecture trends, any SA documentation can readily 
become out-of-sync with the reality. While evidence-based 
design has been touted [10], we believe it to have significant 
potential in the SA arena, even if it were employed less 
formally. In this paper, we take a more practical applied view 
to ISA, rather than employing rigid evidence-based scientific 
methods that, for instance, rely on hypotheses and proofs. 
Note that as data-driven SA can be readily confused to mean 
data-centric or data-oriented SA, this paper instead uses the 
term Informed SA (ISA), by which we mean a SA that is 
informed by data-based reality regarding its actual structure 
and behavior, rather than misconceptions that can readily arise 
based on assumptions not grounded in a data-grounded reality.  

Moreover, there is a growing interest into the insight into 
the interactions between software and any related data and 
event processing that an ISA could convey by a wider 
spectrum of (grassroots or citizen) stakeholders, including 
domain experts, product owners, software developers, and IT 
administrators. For example, in DevOps, developer 
responsibilities are expanding to include operational aspects 
as well, including deployment, automation, performance 
management, user experience, and security, and increasingly 
responsible for the entire lifecycle of application development 
and operations [11]. And with Low-Code / No-Code (LCNC), 
an increasing set of additional stakeholders become involved 
in software development and may be interested in its structural 
and behavioral aspects, yet in an accessible and intuitive 
visual form to convey essential characteristics, without 
assuming Unified Modeling Language (UML) competency, 
nor necessitating the extraction of information across multiple 
diagrams to ascertain architecture concepts such as 
dependencies. To support a larger spectrum of stakeholders 
with ISA comprehension and insights, an intuitive form of 
generalized visualization for relevant aspects of an ISA is 
desirable. While Virtual Reality (VR) could offer a means to 
portray software structures, data, events, and observability 
data such as traces, and hence make such ISA aspects 
accessible to a wider set of stakeholders, VR solution concepts 
have not been sufficiently investigated.  

In prior VR-related work, in the process area we 
developed VR-BPMN [12] to visualize Business Process 
Modeling Notation (BPMN) models, while VR-ProcessMine 
[13] addressed process mining. In the area of Enterprise 
Architecture (EA), VR-EA [14] contributed a VR solution for 
ArchiMate EA models, VR-EAT [15] presented a VR-based 
solution for integrating dynamically-generated EA tool 
diagrams in VR, while VR-EA+TCK [16] integrated 
enterprise content and knowledge management systems in 
VR. In the software architecture and software engineering 
area, VR-UML [17] supports UML, VR-SysML [18] supports 
the Systems Modeling Language (SysML), while VR-GitCity 
[19] supports Git repositories. VR-EDStream+EDA [1] 
generically supports immersive visualization and analysis 
data and event stream and Event-Driven Architecture (EDA).  

This paper contributes VR-ISA, our VR-based solution 
concept for supporting ISAs immersively. Towards 
visualizing and analyzing both dynamic external, static 
internal, and operational internal information, we elucidate 
three VR viewpoints: 1) components and connectors for 
conveying dynamic distributed event and data streams, 2) 
modules and dependencies for conveying internal static SA 
structural aspects and metrics, and 3) execution observability 
for conveying operational aspects such as code traces. Our 
prototype realization shows its feasibility, and a case-based 
evaluation provides insights into its capabilities for addressing 
the aforementioned challenges. 

The remainder of this paper is structured as follows: 
Section II discusses related work. In Section III, we describe 
our solution. Section IV provides details about the realization. 
The evaluation is described in Section V followed by a 
conclusion. 



II. RELATED WORK 
Related work regarding event and data stream 

visualization includes the data visualization survey by Qin et 
al. [20], which only mention events streams with regard to 
SQL-like query support. A survey on immersive analytics by 
Fonnet and Prié [21] includes no citations related to streams, 
and only two related to events: IDEA [22], which depicts user 
activity logs in a 3D cylindrical scatterplot while tracking a 
mobile chair, and DebugAR [23], which uses Augmented 
Reality (AR) for debugging.  

As to immersive toolkits, the DXR toolkit [24] offers 
support for building immersive visualizations, and does not 
mention events nor streams. IATK [25] is another immersive 
analytics toolkit, whereby events, messages, and streams are 
not mentioned nor addressed. Stream [26] uses head-mounted 
AR devices to support visual data analysis. Spatially-aware 
tablets are used for interaction and input. In contrast, our 
solution does not necessitate additional AR hardware or a real 
tablet, since a virtual VR tablet is provided. Furthermore, our 
solution does not require or utilize individual linked 2D scatter 
plots. This would potentially impede scalability depending on 
the connectedness and grouping of the nodes involved. 

Reactive Vega [27] is a streaming dataflow architecture 
that supports declarative interactive visualization. Its 
architecture and parser are implemented in JavaScript, and 
intended to run in a web browser or with Node.js. Popular 
tools for visualizing event systems, such as Kafka and 
RabbitMQ, include the web applications Grafana and Kibana, 
or some tool implementation in combination with D3.js. 

In the area of visualizing SA in VR, Zirkelbach et al. [28] 
integrate VR with ExplorViz for a web-based live trace 
analysis within a single application utilizing a 2D landscape 
and a 3D city metaphor; it does not directly visualize static 
dependencies nor external communication. IslandViz [29] 
visualizes OSGI-based software and its dependencies in VR 
using an island metaphor; it does not address dynamic aspects. 
BabiaXR [30] visualizes CodeCity in VR using a city 
metaphor; it does not explicitly show dependencies or 
dynamic aspects. Immersive Software Archaeology [31] 
utilizes solar system and city metaphors to visualize horizontal 
and vertical (abstraction) relations in VR; it does not address 
dynamic aspects. 

In contrast to the above, VR-ISA provides a VR-based 
immersive generic (application and service independent, 
event platform independent, and programming language 
independent) visualization approach, elucidating three VR 
viewpoints for VR-based ISA support regarding: dynamic 
runtime behavioral aspects as components and connectors 
involving events and data streaming; static internal structural 
aspects, such as modules and dependencies; and operational 
execution aspects, such as code traces and observability. 

III. SOLUTION 
VR is a mediated simulated visual environment in which 

the perceiver experiences telepresence. VR provides an 
unlimited space for visualizing a growing and complex set of 
models and processes and their interrelationships 
simultaneously in a spatial structure. As the importance, scale, 

inter-dependence, and coupling of software, data, and events 
for IT infrastructure grows, and reasoning about their 
interactions, an immersive environment can provide an 
additional visualization capability to comprehend and analyze 
an ISA, from both the structurally complex and interconnected 
static relations and the dynamic behavioral interactions 
between digital elements such as data, events, and traces. 

Support for our approach for using VR for ISA type tasks 
can be gleaned from work done in related areas. For instance, 
regarding possible benefits of an immersive VR experience 
vs. 2D for performing an analysis task, Müller et al. [32] 
investigated a software analysis task that used a Famix 
metamodel of Apache Tomcat source code dependencies in a 
force-directed graph. They found that VR does not 
significantly decrease comprehension and analysis time nor 
significantly improve correctness (although fewer errors were 
made). While interaction time was less efficient, VR 
improved the UX (user experience), being more motivating, 
less demanding, more inventive/innovative, and more clearly 
structured. The empirical study by Narasimha et al. [33] for a 
collaborative information architecture design task, determined 
that the usability of VR was significantly higher and felt more 
productive and enjoyable, while the quantitative and 
qualitative data support that VR did not perform worse than 
in-person or video screen-sharing. Furthermore, the empirical 
study by McGuffin et al. [34] found that path tracing was less 
error-prone in 3D vs. 2D, that VR vs. physicalized showed no 
difference in error rates, and users preferred VR. 

  
Figure 1.  The VR-ISA solution concept (blue) in relation to our prior VR 
solution concepts. 

To provide a context and background for our solution 
concept for SA, we position our V-ISA solution (marked in 
blue) in relation to our other prior VR concepts in Figure 1.  
VR-ISA (shown in blue) utilizes our generalized VR 
Modeling Framework (VR-MF), described in [14], which 
provides a VR-based domain-independent hypermodeling 
framework, which addresses four primary aspects that require 
special attention when modeling in VR: visualization, 
navigation, interaction, and data retrieval. 

Our VR-based solutions specific to the SE and Systems 
Engineering (SysE) areas include: VR-SDLC [35], which 
supports immersive VR visualization of the Software 
Development LifeCycle (SDLC) and uses the Lifecycle 
Modeling Language (LML); VR-EDStream+EDA [1] is 
extended by this paper and addresses VR-based EDA and 
event and data stream visualization; VR-DevOps [36] 
supports VR-based visualization of DevOps pipelines; VrR-
V&V (Verification and Validation) [37], for visualizing 
aspects related to quality assurance; VR-Git [38] and VR-



GitCity [19] supporting different visualization modes for Git 
repositories in VR; VR-TestCoverage [39] for visualizing in 
VR which tests cover what test target artefacts; VR-UML [17] 
supports UML; VR-SysML [18] supports SysML; and VR-
SysML+Traceability [40] adds traceability. 

In the Enterprise Architecture (EA) and Business Process 
(BP) space (under EA & BP in Figure 1), we developed VR-
EA [14] to support mapping EA models to VR, including both 
ArchiMate as well as BPMN via VR-BPMN [12]; VR-EAT 
[15] adds enterprise repository integration (Atlas and IT 
blueprint integration); VR-EA+TCK [16] extends these 
capabilities by integrating further enterprise knowledge, 
information, and content repositories such as a Knowledge 
Management Systems (KMS) and Enterprise Content 
Management Systems (ECMS); VR-EvoEA+BP [41] adds 
EA evolution and Business Process animation, while VR-
ProcessMine [13] supports process mining in VR. 

A. Visualization in VR 
Rather than attempting a one-size-fits-all view, our 

solution concept utilizes different forms of visualization for 
the different types of information and associated context. We 
refer to the well-known 4+1 View Model [42] as a way of 
portraying key views for SA, namely: logical, process, 
physical, and development, with scenarios as an overarching 
view. Note that the original article states the views are not 
fully independent. Our prior VR-UML and VR-SysML work 
can portray such 4+1 views in VR for UML or SysML 
diagrams via our hypermodeling capability, when those 
diagram types exist and are desired by the stakeholders. 
However, this would typically be the case when a model-first 
forward-engineering approach was used, or tool-generated 
diagrams from code artifacts when a reverse-engineering 
approach was used. However, in this paper we are focused on 
a data-first ISA approach that is independent of specialized 
notations (such as UML - to make it accessible to various 
stakeholders), while extracting data related to both operational 
and logical aspects of the SA from artifacts, to give us a true 
data-driven depiction of reality. This can also be viewed as a 
form of SA extraction, recovery, or archeology. Furthermore, 
we focus on areas where VR can provide some visualization 
advantages, due to its large unlimited space. Thus, for 
instance, we focus on support traces in VR, which can quickly 
become quite complex, yet we do not highlight metric or log 
file support (further observability pillars), which could readily 
be viewed with existing two-dimensional (2D) web-based 
mechanisms. Such 2D data could still be accessed within VR 
using our VR-Tablet concept that includes a web browser. 

Architectural viewpoints are generic and provide 
conventions for constructing and using a view, whereas views 
are specific to a certain system architecture. Just as there are 
various 2D diagram types in UML that each can be used in for 
different views depending on the stakeholder concerts, in VR 
many visualization concepts for each view are feasible for an 
ISA. Thus, the scope of our solution concept and realization 
prototype will focus on illustrating VR support for three 
viewpoints (summarized in Table I), each of which is 
associated with one or more 4+1 view type(s):  

• The distributed Components and Connectors VR 
Viewpoint (VR:VP:CompConn) for process views or 
logical views, typically involving runtime components 
and connectors, addressing Concern:CompConn. It 
addresses stakeholder concerns regarding 
dynamic(distributed or remote) communication and 
interaction, particularly event- and/or data- stream 
processing, workflow or pipeline processing, or network 
topology by depicting streams of events and/or data 
between producers and consumers (e.g., between 
microservices, data services, or an event bus). 

• The Modules and Dependencies VR Viewpoint 
(VR:VP:ModDep) for development views or logical 
views, addressing Concern:ModDep. This addresses 
stakeholder concerns regarding the internal static 
structural organization of the software codebase and 
packages or functional decomposition by depicting 
element grouping / clustering and intra-dependencies. 

• The Execution Observability VR Viewpoint 
(VR:VP:ExOb) for process views or physical views, 
addressing Concern:Observability. This involves 
stakeholder concerns regarding (internal software) 
operational (i.e., runtime) deployment insights into 
(distributed) code tracing, metrics, and event logs 
involving the operational deployment of processes, 
threads, and time-synced spans (logical units of work), 
which can be used to support debugging, root cause 
analysis, performance analysis, etc. The viewpoint lends 
support towards insights into operational aspects.  

TABLE I.  VIEWPOINT DEFINITIONS 

Viewpoint 
(VP) name 

Components and 
Connectors 

Modules and 
Dependencies 

Execution 
Observability 

VP ID VR:VP:CompConn VR:VP:ModDep VR:VP:ExOb 
Viewpoint 
type 

Dynamic operational Static structural Dynamic 
Deployment 
Execution 

Posssible 
4+1 View(s) 

Process and/or Logical Development 
and/or Logical 

Process and/or 
Physical 

Primary 
Stakeholders 

Developers, 
Maintainers 

Developers, 
Maintainers 

Developers, 
Maintainers 

Example 
Secondary 
Stakeholders 

Testers, IT Admin, 
Auditors, Microservice 
or Data Consumers /  
Providers, etc. 

Testers, Auditors,  
Quality 
Assurance, etc. 

Testers, 
DevOps, 
Quality 
Assurance 

Concerns Concern:CompConn 
Monitoring remote 
(event, data) 
communication and 
processing workflows, 
producers & consumer 
topology & interaction  

Concern:ModDep 
Code 
organization, 
modularization, 
dependencies  

Concern: 
Observability 
Deployed 
processes, 
threads, 
operations, 
workflow, root 
cause analysis, 
optimization 

Modeling 
technique 

3D nexus sphere 
surface layered with 
colored interconnected 
balls (sources, sinks) 
animating time-based 
event/data capsules 
between producers and 
consumers 

3D glass boxes 
representing (sub-
)modules of 
colored linked 
balls (code 
element 
dependencies) 

Hierarchically-
stacked colored 
3D blocks 
representing 
traces of time-
based spans 
(associated with 
processes, 
threads, ops) 



1) VR Viewpoint: Components and Connectors 
(VR:VP:CompConn) 

This VR viewpoint provides a generic operational 
portrayal of streams of events or data (records or packets) as 
(distributed or remote) communication or interaction at 
(external) interfaces between producers (sources) and 
consumers (sinks). For this, a Directed Acyclic Graph (DAG) 
of nodes (sinks or sources) is utilized as shown in Figure 2.  
Note that events (messages) might be grouped and stored in 
topics, which are accessible to multiple producers and / or 
consumers.  

In VR:VP:CompConn, this DAG is visualized as a nexus 
of elements (nodes) as 3D balls laid on the surface of a 3D 
sphere, while 3D empty pipes are used for the edges 
(interaction), and 3D capsules in the pipe portrays events or 
data records, which are dynamically animated within the pipe. 

 
Figure 2.  Example EDA couplings between services. 

 
Figure 3.  Nexus node placement on spherical edge aligned to planar circles. 

For the layout of the DAG in VR, in the immersive space 
of VR navigation efficiency can affect analysis efficiency. 
Thus, we chose to initially place objects in relative proximity 
to each other to mitigate such delays. While a force-directed 
graph rebalances the distance of object automatically, it takes 

time to reach a steady state and can be distracting. Inspired by 
2D chord diagrams used in visual data analytics, we 
considered how to use the third dimension to reduce clutter, 
reduce connector collisions, and retain order and legibility 
while supporting scalability. Using a nexus, nodes are initially 
placed on the outer edge of an imaginary sphere, while node 
groups follow along a planar circle on the sphere’s edge as 
shown in Figure 3. Nodes can be optionally grouped in the 
configuration, in which case the largest sized group (based on 
number of nodes) is placed near the equator and serves as the 
basis for the sphere circumference, while smaller groups are 
placed accordingly closer to the poles. This grouping thus 
creates an implicit layering effect. Nodes in the same group 
have the same color, and the size of a node (sphere) is 
dependent on the number of connectors (streams). 

To depict a stream, transmission, or processing of events 
or data in VR, a semi-transparent tube is used with nodes 
portrayed as spheres on both ends, and an animated capsule 
indicating the direction of source and sink, shown in Figure 4.  

 
Figure 4.  Event stream portrayal in VR: nodes as spheres (left arrow), 
semitransparent tube as stream (right arrow), and animated capsule as event 
(middle arrow). 

2) VR Viewpoint: Modules and Dependencies 
(VR:VP:ModDep) 

This VR Viewpoint addresses the structural aspects of 
software regarding modularization by visualizing the 
(de)composition of modules and internal structural 
dependencies. 

 
Figure 5.  Nexus-based alternative view of modules and dependencies for a 
small project (Python Aspects sample project, 41 classes, 2 KLOC). 

Initially, as a generic approach to viewing modules and 
dependencies, a graph-based approach as a 3D nexus was 



considered, as shown in Figure 5. However, modules and 
dependencies typically relate to some internal structural order, 
often known as a development view, and potentially related to 
the logical architecture. Developers may follow some intrinsic 
or predetermined structural and modularization order in 
allocating files to folders or directories, allocating classes to 
files, and the methods (associated with classes) or functions 
(independent of classes) to certain files. Although the software 
instruction stream invoked as a binary (or script) and does not 
actually concern itself about various original code pieces, 
source code locations, and how neatly they were modularized 
or what architecture was intended, developers do.  

Structures can also be seen as a form of communication 
between minds that affects comprehensibility. Since the focus 
is on informed SA, we minimize the assumptions about 
modularity and associations (or interchangeably referred to as 
dependencies), and rather base it on the actual data available. 
Thus, in this case no diagrams or other documents about 
intents and principles are consulted, but rather the facts as 
extracted (reverse engineered) by static analysis tools. The 
concept of (sub)containment and encapsulation becomes 
relevant as a possible way to deal with granularity, details, and 
complexity. While the aforementioned modularization terms 
can be understood differently in various contexts, by module 
we mean some grouping or clustering at whatever granularity 
is provided by some (static analysis) extraction tool as input. 
Depending on the programming language, developers might 
make the “modules” explicit (such as declaring an element as 
belonging to a package, module, or component) or it may be 
discovered by a tool based on, for instance, file granularity and 
directory paths. 

 
Figure 6.  Logical view depicting modular containment and element 
dependencies (Python Aspects sample project, 41 classes and 2 KLOC). 

In VR:VP:ModDep, a DAG is also utilized, whereby 
elements are visualized as nodes (3D spheres) colored by type 
(functions=green, methods=light blue, classes=dark blue, 
files=white) and grouped by type and module, as shown in 
Figure 6. The sphere size indicates number of associations 
relative to other nodes (larger spheres having more). The 
project’s hierarchical directory structure is used as an 
organizing schema of layers, depicted via colored labeled 
boxes from highest to lowest (colored from yellow to darker 
orange as the hierarchy becomes deeper). File nodes are then 
positioned at both the vertically and horizontally appropriate 
box level. These colored layers act as both a legend (provide 
directory names) and provide a placement grouping and 
ordering. As a metric, the number of elements contained a 
directory is indicated in the upper right corner of a directory 

rectangle. We chose not to use encasing transparent colored 
3D boxes as layers, as the coloring would interfere with visual 
differentiation of other elements and types, since alone their 
geo-placement in space already provides the intended 
information. Coloring of only box edges of a layer was also 
considered but rejected, since it only added additional visual 
clutter when viewing dependencies, which consist of lines 
also. On the top right of the layers, overall project metrics are 
provided for quick quantitative assessment or confirmation of 
the scope of what is being visually depicted. 

As the actual software binary execution is uninterested in 
the original file location, we group classes, methods, and 
functions within their type. However, to indicate affiliation 
(relation to its residing source location), non-communication 
affiliations known as connections (white lines) are used: a 
method to the class it belongs to, or a class or function to the 
source file in which it resides. Since arrow shapes would add 
additional visual clutter, directed graph edges between nodes 
(lines) indicate their direction by color, with the source darker 
and the target lighter.  point to the direction of element 
dependency with aqua color end representing the “to” or target 
and dark blue end the source of the line. Red lines are used to 
indicate bidirectional (circular) dependencies, since these are 
usually not desirable. Dependencies (in classes, methods, and 
files) are visualized as blue lines (dark blue as the source to 
aqua as the target). Calls are shown (also darker to lighter), 
the caller in orange and the callee target in yellow.  

To reduce the amount of crisscrossing or collisions with 
dependencies, proximity is utilized in the placement of 
elements. Within its layer and type, an element is placed closer 
to the location of dependencies in another layer. For example, 
if a function is associated with a file in a directory that is 
towards the left, that function element is placed on the left side 
of the functions, and vice-versa. 

3) VR Viewpoint: Execution Observability 
(VR:VP:ExOb) 

This VR viewpoint focuses on visualizing dynamic 
behavioral execution trace information (typically application 
internal) regarding (internal) operational runtime deployment 
and execution behavior. This information is used to better 
understand how the software is functioning, e.g., to confirm 
its health or in support of optimization or debugging. In 
contrast to VR:VP:CompConn, it is more concerned with 
internal software information, and not necessarily directly 
related to intended, external communication.  

 
Figure 7.  Process view with tree graph for trace span parent-child relations. 



 
Figure 8.  Process view of trace spans aligned to time axis. 

Also based on a DAG, this VR viewpoint depicts stacked 
spans (of processes, threads, operations) relative to their 
deployment on some physical node (CPU). Spans represent 
logical units of work that can be nested, with each having an 
operation name, start time, and duration. A trace is some data 
or execution path, and can be viewed as a DAG of spans. In 
order to describe the relationship of parent to child spans, we 
utilize a 3D DAG of relations as shown in  Figure 7.  The trace 
information can also be viewed aligned in relation to time, as 
shown in Figure 8. Here, the grey area serves as the timeline 
base, above which spans (e.g., of different threads) can be 
located. Color is used to differentiate processes. E.g., the red 
and yellow spans occur at the same time but in different 
threads; the blue spans are executed within the same thread 
and at a different timepoint from the other threads. The lowest 
of the blue spans also acts as the root or parent span of the 
child spans above it. This span also produces the red and 
yellow spans, which is indicated via the black connecting 
lines. 

B. Interaction in VR 
Elements can be freely moved via drag-and-drop to 

support analysis. Where appropriate, an affordance as a ball in 
the corner of an object can be used to drag or to collapse / 
expand an element. Since interaction with VR elements has 
not yet become standardized, in our VR concept, user-element 
interaction is handled primarily via the VR controllers in 
combination with a virtual tablet. Our VR-Tablet concept 
provides detailed context-specific element information, and 
can provide a virtual keyboard for text entry fields (via laser 
pointer key selection), as seen in Figure 9.  

 
Figure 9.  VR-Tablet showing a virtual keyboard and possible search query 
results on optional extended plane on right. 

C. Navigation in VR 
The immersion afforded by VR entails addressing how to 

navigate the space while reducing the likelihood of potential 
VR sickness symptoms. Thus, two navigation modes are 
included in the solution: the default uses gliding controls, 
enabling users to fly through the VR space and view objects 
from any angle they wish. Alternatively, teleporting permits a 
user to select an element (via a VR controller or by selecting 
an item of interest on our VR-Tablet) and be instantly placed 
there (i.e., by instantly moving the camera to that position); 
while this can be disconcerting, it may reduce the 
susceptibility to VR sickness for those prone to it that can 
occur when moving through a virtual space. 

IV. REALIZATION 
As a realization of our solution concept, our prototype is 

inspired by the hexagonal architecture pattern (a.k.a. ports and 
adapters). It is partitioned into a common Data Hub, which 
supports various Extract-Transform-Load (ETL) adapters for 
various input formats from the associated tools and offers 
(REST) APIs and attached data storage appropriate for the 
data type. The VR frontend is implemented with Unity, 
accessing the Data Hub to retrieve data. 

A. VR Viewpoint: Components and Connectors 
(VR:VP:CompConn) 
For this VR viewpoint, our prototype realization provides 

a tool-independent network-based mechanism for monitoring 
and collecting data or events (connectors) from endpoints 
(components). To support collecting JSON events or data 
records generically - independent of a specific tool, a Web 
API-based microservice was implemented in Python using the 
FastAPI web framework. In addition to our REST interface, 
Telegraf (part of InfluxData platform) offers an open-source 
server-based agent written in Go for collecting and sending 
metrics and events from databases, systems, and sensors to 
InfluxDB. Either interface can be flexibly used to extract or 
collect events, applying an interceptor, proxy, or decorator 
pattern as appropriate. 

Integration with two different event systems was 
performed. Apache Kafka is an open-source distributed event 
streaming platform. Kafka Connect supports data integration 
between databases, key-value stores, search indexes, and file 
systems. The connectors receive and transmit data to and from 
topics as a source or sink, and various extensible 
implementations are available (e.g., a Source Connector that 
streams database updates to a topic, collects server metrics to 
a topic, forwards topic records to Elasticsearch, etc.).  

As to storage in the Data Hub, the InfluxDB was used as a 
database due to: 1) its time series support and 2) since its 
storage requirements were deemed significantly smaller for 
large time series datasets than the alternatives, a benefit when 
scaling the solution. Metainformation collected via REST or 
Telegraf and retained in the database with each record are as 
follows: source, target, timestamp, payload. Thus, the payload 
can be data, an event, a message, etc. If no target exists, then 
any null or fake named node can be used (equivalent to a null 
device in Unix). 



 
Figure 10.  Abstracted node grouping EDA example. 

Configuration information in JSON can be stored and 
loaded using the VR-Tablet, enabling stakeholders to tailor 
the grouping, placement, and coloring of nodes and streams 
based on their concern or interest. An example cross-service 
EDA is shown in Figure 10. Nodes in a group are assigned the 
same color. In the VR-Tablet, the relevant event flow time 
period can be selected and event flow steps and speed can be 
dynamically controlled. 

B. VR Viewpoint: Modules and Dependencies 
(VR:VP:ModDep) 
To support the realization of this viewpoint for ISA, static 

code analysis tools can provide information on modules, 
dependencies, and metrics. However, each tool usually 
supports only certain programming languages. Furthermore, 
there is a lack available (adopted) standards for data access or 
export from such tools, so any data extraction, when even 
supported, is tool-specific. To minimize tool dependencies, 
we use an adapter and JSON transformation approach to 
integrate extracted data into our data hub.  

 
Figure 11.  Example Dependency Graph Diagram in Understand for small 
project (Python Aspects). 

To exemplify our solution concept, our prototype 
realization integrates the Understand tool by Scientific 
Toolworks, Inc. It offers static analysis support for multiple 
languages including C/C++, C#, Java, JavaScript, Python, 
etc., and offers APIs and various visualizations (UML, 
dependency graphs, control-flow graphs, call tree graphs, 

butterfly graphs). An example dependency graph is shown in 
Figure 11. Among its graph variants, it offers an Architecture 
Dependency graph with focus on dependencies, and a Graph 
Architecture view that depicts the structure of the architecture, 
with clustering granularity that can be varied across function, 
class, file, or architecture level. 

In support of the VR:VP:ModDep viewpoint, the solution 
was realized as follows. Understand is run in a separate 
Docker container to utilize the Python environment required 
with Understand and avoid certain runtime issues using its 
APIs for information extraction. The data retrieved from the 
Understand APIs was transformed into our JSON format, a 
sample of which is shown in Figure 12.  

 
Figure 12.  Snippet of structural information from Understand as JSON. 

 
Figure 13.  Dependencies stored in our Data Hub in a Neo4j database. 



Data related to directories, files, and metrics is stored in a 
Docker-based MongoDB database, whereas graph-related 
data such as dependencies is stored directly in a Docker-based 
Neo4j database, a sample of which is shown in Figure 13. 
Separating data across two database types was done initially 
to ensure full flexibility for storing unstructured JSON data 
from various tool types, and which thus might include various 
other data such as metrics, etc., yet enabling us to leverage the 
Neo4j graph database capabilities for graphs such as 
dependencies. Note that the use of two database types is not 
necessarily required, but related to assumptions made at the 
beginning of the realization; consolidation to a single database 
type such as Neo4j could be considered. 

C. VR Viewpoint: Execution Observability (VR:VP:ExOb) 
For a prototype realization of this VR viewpoint, the 

distributed tracing platform Jaeger was chosen to collect trace 
information from various clients. Jaeger offers a timeline 
visualization (see Figure 14), a tree diagram that depicts span 
relationships (Figure 15 top), and the raw trace data in JSON 
(Figure 15 bottom). For implementing tracing in client code, 
the OpenTelemetry and OpenTracing libraries were used, and 
clients can use either the library APIs directly or available 
annotations, as exemplified in Figure 16. Jaeger agents are 
network daemons that listen for spans, which are batched and 
sent to collectors. Jaeger collectors can persist these or pass 
them on to Kafka.  

 
Figure 14.  Screenshot of spans in Jaeger’s trace timeline visualization. 

 
Figure 15.  Screenshot of spans in Jaeger’s trace tree diagram and as JSON. 

 
Figure 16.  Example client code snippet of OpenTelemetry span definition. 

Trace results are exported from Jaeger and stored in our 
Data Hub. Processes are differentiated by color, thus spans in 
the same process share that color. Telemetry trace data is 
placed directly on each side of an individual span. 

The timeline visualization in Jaeger depicts which spans 
were active when. For VR, instead of using a constant scale 
for the time axis, an event-sequencing with fixed-size units 
(blocks) of varying timescales is used, marking off the 
beginning or end of a span, as in Figure 17. Benefits include: 
1) reduced virtual space needed for navigation while offering 
a better overview, and 2) concurrency, parallelism, nesting, 
and synchronization of active spans is highlighted and more 
comprehensible, rather than relative durations and possibly 
overlooking significant events. 

 
Figure 17.  Example VR:VP:ExOb trace variable timescale axis depiction 
(above) vs. a fixed timescale axis (below). 

V. EVALUATION 
For the evaluation of the solution concept, we utilize the 

design science method and principles [43], in particular, a 
viable artifact, problem relevance, and design evaluation 
(utility, quality, efficacy). As our solution concept is focused 
on VR visual support for an ISA, a case study based on 
scenarios applicable to each viewpoint is used. An informed 
SA depends on the digital reality of the information provided 
by tooling. Hence, in contrast to explicit (UML) models that 
can be inconsistent with reality, this evaluation highlights our 
generic approaches for visualizing the data provided by the 
tooling in the various viewpoints. Note that in our prior work 
with VR-UML [17] and VR-SysML [18], we have shown our 
hypermodeling capability in VR, whereby such prescriptive, 
intended, or explicit models and associated diagrams can be 
portrayed in 3D in VR alongside the VR-ISA viewpoints we 
describe in this paper. 



A. VR Viewpoint: Components and Connectors 
(VR:VP:CompConn) 
For this VR viewpoint, which informs an ISA regarding 

components and connectors, our scenarios focus on 
generically depicting components and connectors, integration 
support for popular broker and streaming platforms, and VR 
interaction and tailoring support. 

For the test applications, Confluent ksqlDB was used as a 
database supporting SQL queries for stream processing 
applications based on Kafka Streams. For generating event 
data for the evaluation, the Confluent Quickstart Demo using 
ksqlDB in combination with Kafka Connect was used with 
two connectors to the topics pageviews und users. A second 
configuration based on Confluent Kafka consisted of one 
producer and three consumers in Python. To ensure the 
solution was not Kafka dependent, a third configuration using 
only RabbitMQ with our microservice was also tested. 

1) Event System or Streaming Platform Integratability 
To test the integratability of the generic approach, a second 

popular publish/subscribe message broker event system, 
RabbitMQ, was also utilized in addition to Kafka in the 
evaluation. For more details and a comparison of these 
distributed event systems, we refer to Dobbelaere and Esmaili 
[44]. 

2) Single Large Group Connected to One Node 
As a scalability scenario, a single group of 100 nodes all 

connected to a single node is shown in Figure 18. Note that 
although difficult to depict as a figure due to the limited space, 
in VR, due to its unlimited space, there are no actual technical 
limitations in visualizing, navigating, and comprehending 
very large models. 

 
Figure 18.  Scalability test: a group of 100 nodes connected to one node. 

3) Unbalanced Groups Randomly Interconnected 
This scenario consisted of three unbalanced groups: one 

group with 20 randomly intra-connected nodes, and two inter-
connected groups consisting of a single node each, as 
portrayed in Figure 19. Note each group has a different node 
color, and more connected nodes are larger, and smaller 
groups are near the poles of the sphere, with the largest group 
at the equator. 

 
Figure 19.  Three groups: one with 20 randomly intra-connected nodes and 
two inter-connected groups consisting of a single node each. 

4) Multiple Balanced Highly Interconnected Groups 
In this scenario, three balanced groups of 20 nodes each 

are randomly inter- and intra- connected with other nodes, as 
shown in Figure 20.  

 
Figure 20.  Three groups of 20 nodes each with random coupling. 

5) Multiple Unbalanced Groups Irregularly 
Interconnected 

To test many unbalanced groups with different degrees of 
connectedness, this scenario had five groups, one group with 
20 nodes and the rest consisting of 5-10 nodes with random 
unbalanced coupling. The result is shown in Figure 21.  

 
Figure 21.  Five groups (with 20 and 5-10 nodes) and random coupling. 

6) Interaction Support via VR-Tablet 
VR interaction in this viewpoint is supported using our 

VR-Tablet via the following display modes:  
• Animated Timeline for controlling dynamic stored or 

real-time playback (Figure 22 left),  
• Querying the event or data store (Figure 22 right),  
• Color customization (Figure 23),  



• Object details for a selected node (Figure 24)  
• Event or data record details (i.e., capsule, Figure 25),  
• Settings for storing and fetching configurations. 

 
Figure 22.  Dynamic animation interface (left) and Query interface (right). 

 
Figure 23.  Object color customization. 

 
Figure 24.  Node detail interface after selecting a node. 

 
Figure 25.  Example event details after selecting the red capsule. 

7) VR:VP:CompConn Discussion 
The above scenarios used our prototype realization to 

demonstrate the feasibility of our generic solution concept for 
supporting this VR viewpoint. It can be used to simplify the 
understanding of inter-software communication and 
interactions regarding events and data streams for 
stakeholders, using generic components (endpoints such as 
microservices or stream processing steps) and generic 
connectors (in particular, event, message, or data flow). It by 
immersively depicting sources and sinks as nodes in a 
spatially compact (3D spherical) layout, while animating any 
time-based interaction between them. 

In focusing only on the essential flows and communication 
streams for data and events, while hiding all else, it is readily 

scalable. By immersively visualizing and animating these key 
aspects, various (grassroot) stakeholders can access, 
experience, and comprehend the digital reality of the flow of 
event or data streams. The default configuration provides a 
starting point for any analysis, and users can tailor the views 
by moving and recoloring nodes, and can query datasets and 
timespans of interest. 

B. VR Viewpoint: Modules and Dependencies 
(VR:VP:ModDep) 
For this VR viewpoint, which informs an ISA regarding 

modules and dependencies, the scenarios focus on module and 
dependency depiction and VR interaction support. 
Programming language independence is demonstrated via two 
example projects provided with the Understand tool (Sokoban 
Pro in C# and python-aspects in Python). Understand APIs 
were used to extract project information to our Data Hub. 

1) Module Visualization 
For module and element visualization, labeled node types 

are differentiated by color: functions (green), methods (light 
blue), classes (dark blue), and files (white). Nodes are then 
grouped by type, with directories above that contain file nodes 
(behind the directory structure layers), function nodes (green, 
right bottom), and bottom left classes (dark blue) with their 
methods (light blue). This is exemplified for a small sample 
project (Python Aspects, 18 files, 2 KLOC) in Figure 26. 
Nodes with the most connections or dependencies are largest, 
and likely more significant to the architecture. The modular 
decomposition of files by subdirectories is depicted, whereby 
examples and test are subdirectories of src, and lib is parallel 
to src and contains the distutils subdirectory. The number of 
elements as a metric is shown in the legend numerically, and 
can be readily viewed and discerned visually relative to other 
elements from the side, as shown in  

Rather than hiding various aspects of the reality, views in 
this VP initially depict all elements, to allow the stakeholder 
to see the relative number and location of elements. These 
details are often hidden and dispersed across text-based 
Command-Line Interface (CLI) file systems, while 2D 
analysis tools often must simplify and reduce the sheer 
number due to their limited 2D space. In contrast, our 
approach leverages the unlimited space of VR for a 
comprehensive depiction that is nevertheless ordered and can 
be readily filtered and explored. For instance, dependencies 
and connections, when not of interest, can be hidden to reduce 
visual clutter, as seen for a large project in Figure 51.  

 
Figure 26.  VR:VP:ModDep view visualizing modular containment and 
element connectors (affiliation), callers, and dependencies (containment) 
(Python Aspects sample project, 41 classes, 329 functions, 2 KLOC). 



To indicate affiliation (relation to a location), connections 
(white lines) are used: a method to the class it belongs to, or a 
class or function to the source file in which it resides. 

To evaluate the scalability of our solution concept and 
prototype, a large sample project (GitAhead C++, 444 files, 
496 classes, 9747 functions, 252 KLOC) was used. As to 
modularization, directories with file containment, the number 
of files in each directory (number of spheres) can be readily 
discerned, and the metric is depicted in the upper right corner 
of each directory as shown in Figure 27.  Overall project 
metrics shown to the right of the legend. A perspective from 
above without dependencies is shown in Figure 28. A full 
front perspective without dependencies is shown in Figure 48. 
A top view is shown in Figure 49. A full side perspective 
without dependencies is shown in Figure 50.  

 
Figure 27.  VR:VP:ModDep view visualizing files containment and 
depicting file grouping and relative number by directory (large GitAhead 
C++ sample project), with smaller directories shallow and larger directories, 
such as “ui” (37 files), deeper. 

 
Figure 28.  VR:VP:ModDep view visualizing nodes grouped by directory 
and type without dependencies (large GitAhead C++ sample project). 

2) Dependency Visualization 
Dependencies (in classes, methods, and files) are 

visualized as blue lines. For directed dependencies, we found 
that arrow shapes created unnecessary visual clutter; so 
instead, color transitions are used to indicate direction (darker 

to lighter), from dark blue as the source to aqua as the target. 
Bidirectional or circular dependencies are colored red. Calls 
are shown (also darker to lighter), the caller in orange and the 
callee target in yellow.  

The Python Aspects sample project was used, containing 
18 files, 41 classes, 329 functions, and 2 KLOC. A side 
perspective is shown in Figure 29. A rear perspective is shown 
in Figure 30. A top perspective shows the spacing between 
graph edges and nodes, as shown in Figure 31.   

 
Figure 29.  VR:VP:ModDep side perspective with calls (orange) and 
connectors (affiliations) (in white) (Python Aspects sample, 41 classes, 329 
functions, 2 KLOC). 

 
Figure 30.  VR:VP:ModDep rear perspective showing element grouping 
placement to minimize connector/dependency crisscrossing and collisions 
(Python Aspects sample, 41 classes, 329 functions, 2 KLOC). 

 
Figure 31.  VR:VP:ModDep top perspective showing calls (orange) and 
affiliations as connectors (white) (Python Aspects sample, 41 classes, 329 
functions, 2 KLOC). 

To support analysis and investigation, once an element of 
interest is selected, it and first-degree neighbors are left 
colored, while other unrelated elements are ghosted, as shown 
in Figure 32.  



 
Figure 32.  Analysis support for connections between a selected method 
element (CaseFolderASCII constructor, bottom, aqua glow), its containing 
class (CaseFolderASCII, dark blue), and its affiliated file (Editor.cxx, top). 

With regard to the scalability of our solution concept and 
prototype for dependencies, the large sample project 
(GitAhead C++, 444 files, 496 classes, 9747 functions, 252 
KLOC) was used. A front perspective with all dependencies 
depicted is shown in Figure 51. A side view with all 
dependencies depicted is shown in Figure 52.  

3) Interaction Support via VR-Tablet 
Interactive support for VR:VP:ModDep is provided by the 

VR-Tablet. It offers a search capability for an element of 
interest as shown in Figure 33. Selecting a resulting node on 
the result pane on the right will highlight that node. A filtering 
option shows or hides desired elements as shown in Figure 34.  

 
Figure 33.  VR-Tablet showing virtual keyboard-based search and results. 

 
Figure 34.  VR-Tablet showing filtering option settings. 

 
Figure 35.  For a selected file node Document.cxx, the VR-Tablet (center 
left) displays metrics, aqua glow (bottom) highlights its classes and methods, 
green glow (upper left) highlights dependent functions, white glow 
highlights dependent files (dependencies as blue lines), and orange nodes 
indicating files containing called functions. 



Selecting an element provides detailed contextual 
information on the selected element, ghosting irrelevant 
elements leaving its overall direct context and dependencies 
visible, while the VR-Tablet shows various metrics on the left, 
and named listed context in the right pane. Furthermore, 
colored glows indicate the directly associated elements. In 
Figure 35, a file node Document.cxx is selected, whereby the 
VR-Tablet displays various metrics, while aqua glow 
(bottom) highlights its class and method connections, green 
glow highlights its dependent functions (upper left), and white 
glow shows dependent files (dependencies as blue lines). The 
nodes colored orange indicate files containing functions called 
by the selected node. Element-relevant metrics and an 
extended context pane is shown in Figure 36.  Teleporting 
functionality can rapidly navigate to a related element of 
interest when an element is selected in the context pane. 

 
Figure 36.  VR-Tablet in VR:VP:ModDep showing metrics for a selected 
node (left pane) and its context (right pane). 

4) VR:VP:ModDep Discussion 
The scenarios show that this VR viewpoint can provide 

insights to the internal structural aspects of software regarding 
modularization, internal structural dependencies, and internal 
static analysis metrics, and does so across programming 
languages. While the depicted images may seem difficult to 
discern within the limitations of such a paper, the immersion 
of VR permits the user to explore the various aspects. Since 
nothing is hidden until a node is selected, the user is aware of 
the nature and scope of what they are dealing with visually, 
not just numerically. By filtering and ghosting, specific 
elements of interest can be explored, without losing contextual 
insights. 

C. VR Viewpoint: Execution Observability (VR:VP:ExOb) 
For this VR viewpoint, which informs an ISA regarding 

operational and observability aspects such as execution traces, 
the scenarios focus on trace and span depiction and VR 
interaction support.  

1) Tree Graph and Timeline Visualization 
Our trace span tree graph in VR is shown in Figure 37. Our 

trace stacked span timeline visualization in VR, which uses a 
variable scale, offers two draggable cross-span timepoint 
plates (green for start, purple for finish) to compare active 
spans across two different timepoints, as shown in Figure 38. 
This supports concurrent trace span analysis for distributed or 
parallel computing, threading or concurrency issues. If no 
concurrency is used, then the analysis is simplified. 

 
Figure 37.  Tree graph in VR. 

 
Figure 38.  Timeline diagram 

2) Contextual Trace and Model Information 
Initially the view provides contextual support via an 

overview of the available information, with a model if 
available placed in the center, showing VR diagrams (such as 
our VR-UML or our VR-EA ArchiMate), which help provide 
context for the tracing information, as shown in Figure 39. 
Here, in the center, a stack of various VR-UML diagrams is 
shown with the bottom being a class diagram, while the trace 
information is placed as a tree graph on the left side, and a 
time axis representation is seen on the right. 

 
Figure 39.  VR:VP:ExOb overview showing stacked VR-UML diagrams 
(center) with related tracing information on the sides. 

3) Span Information Depiction 
The following information is projected onto the sides of 

span blocks to readily provide relevant data and reduce the 
frequency of VR-Tablet interaction: Start timestamp, Finish 
timestamp, Duration, Name, (if available) name of the Method 
in which the span was created, (if available) name of the Class 
in which the span was created; this is shown in Figure 40.  
Further information such as Process name, Thread name, or 
Service name in which the span is located, is also shown on 
the blocks in the timeline diagram in Figure 41. This and 
additional detailed information can also be retrieved in the 
VR-Tablet by selecting a specific span. 



 
Figure 40.  Trace span information shown on blocks in VR tree diagram. 

 
Figure 41.  Span information shown on blocks in VR timeline diagram. 

 
Figure 42.  Active span synchronization from timeline to tree graph. 

 
Figure 43.  Synchronization from timeline to tree graph showing those spans 
that were active during that duration (the other spans are ghosted). 

4) Span Tree Graph and Timeline Synchronization 
Selecting a single span will ghost other inactive spans at 

its timepoint. The timeline and tree graph visualizations are 
synchronized such that moving or activating a timepoint plane 
will cause other non-active spans, even in the other diagram, 
to be ghosted. The start and end cross-plane timepoints are 
positioned such that only one green span was active, with the 
tree graph in the back top left showing a single green span and 
all other non-active spans ghosted, as shown in Figure 42.  
Between the start and end timepoint planes, all spans that were 
active at any time during that duration remain colored, and the 
rest are ghosted, as shown in Figure 43. Here, a parent yellow 
had two child spans at some point, and a red span had a child 
span, which in turn had 3 child spans during that duration. 
Hence, these all are colored at the different levels in the tree 
graph and the others are ghosted. 

5) Bidirectional Model and Trace Synchronization 
In support of trace context, when selecting a span, if it has 

an associated class or method, then a green line is drawn to 
indicate where that class or method is in the (VR-UML or VR-
EA ArchiMate model), as shown in Figure 44 and Figure 45. 
This selection could also be reversed from method to spans. 

 
Figure 44.  Selecting a span ghosts other spans and highlights (in green) the 
location of the corresponding method/class in the VR-UML class diagram. 

 
Figure 45.  VR-UML class method span connector (in green). 

6) Interaction Support via VR-Tablet 
To support VR:VP:ExOb, our VR-Tablet provides the 

JSON raw data for a selected trace object, as shown in Figure 
46. Deployment-related information is also provided, as 
shown in Figure 47. This information could also be used to 
browse and search for applicable spans. 



7) VR:VP:ExOb Discussion 
The scenarios with our prototype implementation show 

that this viewpoint can support an ISA in VR with analysis of 
trace execution and spans, including their relation to VR-
UML and VR-EA ArchiMate models. The prototype shows 
its feasibility, and could be readily extended to include other 
observability data such as relevant logs and metrics via the 
VR-Tablet. 

 
Figure 46.  VR-Tablet showing trace information. 

 
Figure 47.  VR-Tablet showing deployment information (hostname, IP). 

VI. CONCLUSION 
This paper contributes VR-ISA, a Virtual Reality (VR) 

solution concept that supports ISA to improve the quality of 
software architectures by immersively integrating information 
and supporting its visualization and accessibility to a spectrum 
of stakeholders. To demonstrate our VR-based ISA solution 
concept, three VR-centric viewpoints were elucidated: 1) 
dynamic distributed event and data streams, 2) static internal 
module composition and dependencies, and 3) operational 
execution tracing and observability. Our prototype realization 
showed its feasibility, and a case-based evaluation provided 
insights into its capabilities. 

The invisibility of software remains an essential challenge 
for its development, and thus integrating fact-based 
information can help support better architectural decisions, 
support comprehensibility, and maintain conceptual 
integreity. Virtual reality offers a way to visualize a digital 
reality such as software, and to do so immersively. An 
informed software architecture can help to improve the quality 
of software architectures, and VR-ISA integrates ISA 

intuitively and immersively. By utilizing VR-based 
viewpoints, stakeholder concerns can be addressed to help 
make ISA accessible to a wide spectrum of stakeholders and 
support the adoption of ISA in industry. Additional VR-based 
viewpoints are readily feasible to support various additional 
views and concerns. 

Future work includes defining and realizing additional VR 
viewpoints, holistic integration with our other VR-based SE 
and EA solutions, and a comprehensive empirical study in the 
industry. Additionally, simultaneous viewing of VR-ISA with 
our VR-UML and VR-SysML solutions could be used to 
highlight differences between the intended (prescriptive) SA 
and the actual informed SA (descriptive), which could be 
analyzed and lead to either corrections to the SA model or to 
the implementation to address potential architectural drift. 
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Figure 48.  VR:VP:ModDep for large project (GitAhead C++ sample, 444 files, 9747 functions) depicting layered folder structure as containers for files. 

 

Figure 49.  VR:VP:ModDep for large project (GitAhead C++ sample, 444 files, 9747 functions) from the top depicting a complete project perspective. 

 



 
Figure 50.  VR:VP:ModDep side perspective for large project (GitAhead C++, 444 files, 9747 functions) depicting directed dependencies (blue lines). 

 
Figure 51.  VR:VP:ModDep front perspective for large project (GitAhead C++ sample) depicting all dependencies (blue lines) and connections (white lines). 

 
Figure 52.  VR:VP:ModDep side perspective for large project (GitAhead C++ sample), depicting all dependencies (blue lines) and connections (white lines). 

 


