
VR-ISA: Immersively Visualizing Informed Software Architectures
Using Viewpoints Based on Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract - Software is, in its essence, an inherently invisible
digital construct, and thus its comprehension and its
visualization remain a challenge. All software involves some
underlying structure(s), and Software Architecture (SA)
comprises the (intended) conceptual abstractions and
structuring principles across this invisible construct. Agile
development methods, DevOps, and continuous development
results in a changing implementation and associated SA that is
evolving and continually in flux. Any presumed SA
understanding and (perhaps outdated or inconsistent)
associated SA documentation may also diverge from the reality,
while any shared SA concept across stakeholder minds may
vary or differ, potentially resulting in a lack of conceptual
integrity. In contrast, an Informed Software Architecture (ISA)
is grounded in reality based on actual data and evidence, rather
than being influenced by out-of-sync models, documentation,
misconceptions, or assumptions. Yet the challenge remains of
how best to visually convey ISA aspects, such as internal static
software structures and behavioral and operational dynamics,
to support evidence-based design, comprehension, and insights
in an accessible way for a wider stakeholder spectrum. This
paper contributes VR-ISA, a Virtual Reality (VR) solution
concept to immersively support an ISA with the visualization of
structural, behavioral, and operational aspects. To exemplify
our solution concept, three VR-based viewpoints, framing
different concerns for different stakeholder groups, are used to
illustrate the potential of VR to support ISA: 1) components and
connectors, for depicting dynamic distributed event and data
streams, 2) modules and dependencies, for depicting static
internal module composition and their dependencies, and 3)
execution observability, for depicting operational execution,
tracing, and observability aspects. Our realization shows its
feasibility, while a case-based evaluation provides insights into
its capabilities and potential.

Keywords – informed software architecture; software
architecture; virtual reality; event stream processing; data stream
processing; event-driven architecture; static analysis; tracing;
evidence-based design; observability; visualization.

I. INTRODUCTION
This paper extends our work on VR-EDStream+EDA [1]

by extending it to include the visualization of what we refer to
as Informed Software Architecture (ISA). To exemplify our
solution concept, this paper elucidates descriptions of three
VR-based viewpoints that frame operational, dynamic, and
static concerns. Viewpoints in Software Architecture (SA)
provide conventions for constructing, understanding, and

using architectural views to frame certain stakeholder
concerns [2]. Architectural views are informational parts of an
architectural description that address one or more stakeholder
concerns. Ideally, a SA is initially prescriptive, and with
ongoing implementation transitions to being descriptive. For
larger software (SW) development teams and projects, having
SA documentation in sync with the implementation and
operation is a challenge. In fact, an implementation may
necessarily diverge from its prescriptive SA to address an
issue, yet not have been communicated or incorporated in the
SA documentation, thus resulting in inconsistencies.

It is said that “data is the new oil,” with data playing a
fundamental role in the digitalization and automation in
various organizations, including enterprises, business,
government, manufacturing, and IT (Information
Technology). Yet to be valuable, this data is typically
dependent on fundamental software building blocks
(components such as modules or functions) and their
interaction (connectors) to generate, transfer, transform,
process, and store data. Moreover, events (a.k.a. records or
messages) are a specific type of data consisting of a record of
some occurrence. Modern SA is often networked and event-
driven, utilizing microservices, Web APIs (Application
Programming Interfaces), and/or reactive apps, frameworks,
libraries, or services, etc. Microservice adoption in enterprises
is growing, with IDC reporting 77% and GitLab reporting
71% of organizations (partially) using microservices [3][4].
Furthermore, in the enterprise, software has become pervasive
with digitalization, and hence the number of different software
components (apps, services, etc.) and their interdependence or
coupling has grown. For instance, among enterprises it is said
57% utilize somewhere between 1000-5000 business
applications [5]. Enterprise Service Buses (ESBs), Service
Mesh, and the Side-Car pattern are further examples of how
different apps and services can be coupled with each other
without the apps necessarily being aware of any coupling.
Thus, operational coupling is often obscure, and for any
dynamic behavior of components, the associated connectors
(such as events or data streams or event streams) are a concern
for developer, IT stakeholders, and even end users (e.g.,
hidden, privacy, legal/geographic) and a challenge to readily
discern and utilize for informing or improving a SA. We will
refer to this stakeholder concern as Concern:CompConn.

To gain insights into the behavior and health of deployed
software, a recent trend in software development is
observability, with its three pillars of logs, metrics, and traces
[6], whereby operational data is explicitly collected. Although

observability is implicitly grounded in the reality of actual
data, it is rarely directly used to explicitly inform SA. We will
refer to this stakeholder concern as Concern:Observability.

Further stakeholders include developers and maintainers
(with turnover impacts), faced with potentially nonexistent or
incorrect SA documentation and differing confidence levels.
From a static development perspective, the correlation
between the potentially thousands of source codes files, their
folder structure, and any actual (intended or unintended)
modules, and (inter- and intra-)dependencies are a concern
that can be difficult to readily and visually discern. We will
refer to this stakeholder concern as Concern:ModDep.

One effect of the digitalization of information is an
informed society. Hence, information should be explicitly
incorporated to shape and influence future products and their
structure, i.e., architecture. The concept of Informed
Architecture (IA) has been proposed and explored in the
context of construction [7] as well as in digital contexts [8][9].

In this paper, we posit that in the realm of SA, information
should also be explicitly incorporated, continuously and
readily flow, while being accessible to all stakeholders to
address their various concerns. Any new information and
insights from this ongoing information flow, analogous to a
feedback loop, should result in informed adjustments and
adaptations to the SA as applicable. An Informed Software
Architecture (ISA) is grounded in the reality of current and
ongoing data and facts to inform architectural decisions. Since
any architecture is about addressing stakeholder concerns, this
information flow should somehow be readily accessible to
stakeholders, rather than exclusive to the architect alone. We
therefore further posit that VR can offer visual accessibility to
information for a wider stakeholder spectrum, while depicting
and contextualizing SA-relevant information in new ways.

While various prior work involving SA may include the
word “informed” as a verb or regarding decision with SA, we
have not as yet found any prior or related work that
specifically positions Informed Software Architecture (ISA)
as a term. It is our assertion that ISA is essential for the future
of SA, for SA to remain relevant, for improving decision
making, for supporting comprehension (for developers,
maintainers, operators), for ensuring conceptual integrity, for
improving documentation, etc.

Additionally, the veracity of any SA-related information,
such as models or documentation, is a relevant issue. Due to
current Agile, DevOps, continuous development, with their
rapid develop-release-deploy cycles and evolutionary
architecture trends, any SA documentation can readily
become out-of-sync with the reality. While evidence-based
design has been touted [10], we believe it to have significant
potential in the SA arena, even if it were employed less
formally. In this paper, we take a more practical applied view
to ISA, rather than employing rigid evidence-based scientific
methods that, for instance, rely on hypotheses and proofs.
Note that as data-driven SA can be readily confused to mean
data-centric or data-oriented SA, this paper instead uses the
term Informed SA (ISA), by which we mean a SA that is
informed by data-based reality regarding its actual structure
and behavior, rather than misconceptions that can readily arise
based on assumptions not grounded in a data-grounded reality.

Moreover, there is a growing interest into the insight into
the interactions between software and any related data and
event processing that an ISA could convey by a wider
spectrum of (grassroots or citizen) stakeholders, including
domain experts, product owners, software developers, and IT
administrators. For example, in DevOps, developer
responsibilities are expanding to include operational aspects
as well, including deployment, automation, performance
management, user experience, and security, and increasingly
responsible for the entire lifecycle of application development
and operations [11]. And with Low-Code / No-Code (LCNC),
an increasing set of additional stakeholders become involved
in software development and may be interested in its structural
and behavioral aspects, yet in an accessible and intuitive
visual form to convey essential characteristics, without
assuming Unified Modeling Language (UML) competency,
nor necessitating the extraction of information across multiple
diagrams to ascertain architecture concepts such as
dependencies. To support a larger spectrum of stakeholders
with ISA comprehension and insights, an intuitive form of
generalized visualization for relevant aspects of an ISA is
desirable. While Virtual Reality (VR) could offer a means to
portray software structures, data, events, and observability
data such as traces, and hence make such ISA aspects
accessible to a wider set of stakeholders, VR solution concepts
have not been sufficiently investigated.

In prior VR-related work, in the process area we
developed VR-BPMN [12] to visualize Business Process
Modeling Notation (BPMN) models, while VR-ProcessMine
[13] addressed process mining. In the area of Enterprise
Architecture (EA), VR-EA [14] contributed a VR solution for
ArchiMate EA models, VR-EAT [15] presented a VR-based
solution for integrating dynamically-generated EA tool
diagrams in VR, while VR-EA+TCK [16] integrated
enterprise content and knowledge management systems in
VR. In the software architecture and software engineering
area, VR-UML [17] supports UML, VR-SysML [18] supports
the Systems Modeling Language (SysML), while VR-GitCity
[19] supports Git repositories. VR-EDStream+EDA [1]
generically supports immersive visualization and analysis
data and event stream and Event-Driven Architecture (EDA).

This paper contributes VR-ISA, our VR-based solution
concept for supporting ISAs immersively. Towards
visualizing and analyzing both dynamic external, static
internal, and operational internal information, we elucidate
three VR viewpoints: 1) components and connectors for
conveying dynamic distributed event and data streams, 2)
modules and dependencies for conveying internal static SA
structural aspects and metrics, and 3) execution observability
for conveying operational aspects such as code traces. Our
prototype realization shows its feasibility, and a case-based
evaluation provides insights into its capabilities for addressing
the aforementioned challenges.

The remainder of this paper is structured as follows:
Section II discusses related work. In Section III, we describe
our solution. Section IV provides details about the realization.
The evaluation is described in Section V followed by a
conclusion.

II. RELATED WORK
Related work regarding event and data stream

visualization includes the data visualization survey by Qin et
al. [20], which only mention events streams with regard to
SQL-like query support. A survey on immersive analytics by
Fonnet and Prié [21] includes no citations related to streams,
and only two related to events: IDEA [22], which depicts user
activity logs in a 3D cylindrical scatterplot while tracking a
mobile chair, and DebugAR [23], which uses Augmented
Reality (AR) for debugging.

As to immersive toolkits, the DXR toolkit [24] offers
support for building immersive visualizations, and does not
mention events nor streams. IATK [25] is another immersive
analytics toolkit, whereby events, messages, and streams are
not mentioned nor addressed. Stream [26] uses head-mounted
AR devices to support visual data analysis. Spatially-aware
tablets are used for interaction and input. In contrast, our
solution does not necessitate additional AR hardware or a real
tablet, since a virtual VR tablet is provided. Furthermore, our
solution does not require or utilize individual linked 2D scatter
plots. This would potentially impede scalability depending on
the connectedness and grouping of the nodes involved.

Reactive Vega [27] is a streaming dataflow architecture
that supports declarative interactive visualization. Its
architecture and parser are implemented in JavaScript, and
intended to run in a web browser or with Node.js. Popular
tools for visualizing event systems, such as Kafka and
RabbitMQ, include the web applications Grafana and Kibana,
or some tool implementation in combination with D3.js.

In the area of visualizing SA in VR, Zirkelbach et al. [28]
integrate VR with ExplorViz for a web-based live trace
analysis within a single application utilizing a 2D landscape
and a 3D city metaphor; it does not directly visualize static
dependencies nor external communication. IslandViz [29]
visualizes OSGI-based software and its dependencies in VR
using an island metaphor; it does not address dynamic aspects.
BabiaXR [30] visualizes CodeCity in VR using a city
metaphor; it does not explicitly show dependencies or
dynamic aspects. Immersive Software Archaeology [31]
utilizes solar system and city metaphors to visualize horizontal
and vertical (abstraction) relations in VR; it does not address
dynamic aspects.

In contrast to the above, VR-ISA provides a VR-based
immersive generic (application and service independent,
event platform independent, and programming language
independent) visualization approach, elucidating three VR
viewpoints for VR-based ISA support regarding: dynamic
runtime behavioral aspects as components and connectors
involving events and data streaming; static internal structural
aspects, such as modules and dependencies; and operational
execution aspects, such as code traces and observability.

III. SOLUTION
VR is a mediated simulated visual environment in which

the perceiver experiences telepresence. VR provides an
unlimited space for visualizing a growing and complex set of
models and processes and their interrelationships
simultaneously in a spatial structure. As the importance, scale,

inter-dependence, and coupling of software, data, and events
for IT infrastructure grows, and reasoning about their
interactions, an immersive environment can provide an
additional visualization capability to comprehend and analyze
an ISA, from both the structurally complex and interconnected
static relations and the dynamic behavioral interactions
between digital elements such as data, events, and traces.

Support for our approach for using VR for ISA type tasks
can be gleaned from work done in related areas. For instance,
regarding possible benefits of an immersive VR experience
vs. 2D for performing an analysis task, Müller et al. [32]
investigated a software analysis task that used a Famix
metamodel of Apache Tomcat source code dependencies in a
force-directed graph. They found that VR does not
significantly decrease comprehension and analysis time nor
significantly improve correctness (although fewer errors were
made). While interaction time was less efficient, VR
improved the UX (user experience), being more motivating,
less demanding, more inventive/innovative, and more clearly
structured. The empirical study by Narasimha et al. [33] for a
collaborative information architecture design task, determined
that the usability of VR was significantly higher and felt more
productive and enjoyable, while the quantitative and
qualitative data support that VR did not perform worse than
in-person or video screen-sharing. Furthermore, the empirical
study by McGuffin et al. [34] found that path tracing was less
error-prone in 3D vs. 2D, that VR vs. physicalized showed no
difference in error rates, and users preferred VR.

Figure 1. The VR-ISA solution concept (blue) in relation to our prior VR
solution concepts.

To provide a context and background for our solution
concept for SA, we position our V-ISA solution (marked in
blue) in relation to our other prior VR concepts in Figure 1.
VR-ISA (shown in blue) utilizes our generalized VR
Modeling Framework (VR-MF), described in [14], which
provides a VR-based domain-independent hypermodeling
framework, which addresses four primary aspects that require
special attention when modeling in VR: visualization,
navigation, interaction, and data retrieval.

Our VR-based solutions specific to the SE and Systems
Engineering (SysE) areas include: VR-SDLC [35], which
supports immersive VR visualization of the Software
Development LifeCycle (SDLC) and uses the Lifecycle
Modeling Language (LML); VR-EDStream+EDA [1] is
extended by this paper and addresses VR-based EDA and
event and data stream visualization; VR-DevOps [36]
supports VR-based visualization of DevOps pipelines; VrR-
V&V (Verification and Validation) [37], for visualizing
aspects related to quality assurance; VR-Git [38] and VR-

GitCity [19] supporting different visualization modes for Git
repositories in VR; VR-TestCoverage [39] for visualizing in
VR which tests cover what test target artefacts; VR-UML [17]
supports UML; VR-SysML [18] supports SysML; and VR-
SysML+Traceability [40] adds traceability.

In the Enterprise Architecture (EA) and Business Process
(BP) space (under EA & BP in Figure 1), we developed VR-
EA [14] to support mapping EA models to VR, including both
ArchiMate as well as BPMN via VR-BPMN [12]; VR-EAT
[15] adds enterprise repository integration (Atlas and IT
blueprint integration); VR-EA+TCK [16] extends these
capabilities by integrating further enterprise knowledge,
information, and content repositories such as a Knowledge
Management Systems (KMS) and Enterprise Content
Management Systems (ECMS); VR-EvoEA+BP [41] adds
EA evolution and Business Process animation, while VR-
ProcessMine [13] supports process mining in VR.

A. Visualization in VR
Rather than attempting a one-size-fits-all view, our

solution concept utilizes different forms of visualization for
the different types of information and associated context. We
refer to the well-known 4+1 View Model [42] as a way of
portraying key views for SA, namely: logical, process,
physical, and development, with scenarios as an overarching
view. Note that the original article states the views are not
fully independent. Our prior VR-UML and VR-SysML work
can portray such 4+1 views in VR for UML or SysML
diagrams via our hypermodeling capability, when those
diagram types exist and are desired by the stakeholders.
However, this would typically be the case when a model-first
forward-engineering approach was used, or tool-generated
diagrams from code artifacts when a reverse-engineering
approach was used. However, in this paper we are focused on
a data-first ISA approach that is independent of specialized
notations (such as UML - to make it accessible to various
stakeholders), while extracting data related to both operational
and logical aspects of the SA from artifacts, to give us a true
data-driven depiction of reality. This can also be viewed as a
form of SA extraction, recovery, or archeology. Furthermore,
we focus on areas where VR can provide some visualization
advantages, due to its large unlimited space. Thus, for
instance, we focus on support traces in VR, which can quickly
become quite complex, yet we do not highlight metric or log
file support (further observability pillars), which could readily
be viewed with existing two-dimensional (2D) web-based
mechanisms. Such 2D data could still be accessed within VR
using our VR-Tablet concept that includes a web browser.

Architectural viewpoints are generic and provide
conventions for constructing and using a view, whereas views
are specific to a certain system architecture. Just as there are
various 2D diagram types in UML that each can be used in for
different views depending on the stakeholder concerts, in VR
many visualization concepts for each view are feasible for an
ISA. Thus, the scope of our solution concept and realization
prototype will focus on illustrating VR support for three
viewpoints (summarized in Table I), each of which is
associated with one or more 4+1 view type(s):

• The distributed Components and Connectors VR
Viewpoint (VR:VP:CompConn) for process views or
logical views, typically involving runtime components
and connectors, addressing Concern:CompConn. It
addresses stakeholder concerns regarding
dynamic(distributed or remote) communication and
interaction, particularly event- and/or data- stream
processing, workflow or pipeline processing, or network
topology by depicting streams of events and/or data
between producers and consumers (e.g., between
microservices, data services, or an event bus).

• The Modules and Dependencies VR Viewpoint
(VR:VP:ModDep) for development views or logical
views, addressing Concern:ModDep. This addresses
stakeholder concerns regarding the internal static
structural organization of the software codebase and
packages or functional decomposition by depicting
element grouping / clustering and intra-dependencies.

• The Execution Observability VR Viewpoint
(VR:VP:ExOb) for process views or physical views,
addressing Concern:Observability. This involves
stakeholder concerns regarding (internal software)
operational (i.e., runtime) deployment insights into
(distributed) code tracing, metrics, and event logs
involving the operational deployment of processes,
threads, and time-synced spans (logical units of work),
which can be used to support debugging, root cause
analysis, performance analysis, etc. The viewpoint lends
support towards insights into operational aspects.

TABLE I. VIEWPOINT DEFINITIONS

Viewpoint
(VP) name

Components and
Connectors

Modules and
Dependencies

Execution
Observability

VP ID VR:VP:CompConn VR:VP:ModDep VR:VP:ExOb
Viewpoint
type

Dynamic operational Static structural Dynamic
Deployment
Execution

Posssible
4+1 View(s)

Process and/or Logical Development
and/or Logical

Process and/or
Physical

Primary
Stakeholders

Developers,
Maintainers

Developers,
Maintainers

Developers,
Maintainers

Example
Secondary
Stakeholders

Testers, IT Admin,
Auditors, Microservice
or Data Consumers /
Providers, etc.

Testers, Auditors,
Quality
Assurance, etc.

Testers,
DevOps,
Quality
Assurance

Concerns Concern:CompConn
Monitoring remote
(event, data)
communication and
processing workflows,
producers & consumer
topology & interaction

Concern:ModDep
Code
organization,
modularization,
dependencies

Concern:
Observability
Deployed
processes,
threads,
operations,
workflow, root
cause analysis,
optimization

Modeling
technique

3D nexus sphere
surface layered with
colored interconnected
balls (sources, sinks)
animating time-based
event/data capsules
between producers and
consumers

3D glass boxes
representing (sub-
)modules of
colored linked
balls (code
element
dependencies)

Hierarchically-
stacked colored
3D blocks
representing
traces of time-
based spans
(associated with
processes,
threads, ops)

1) VR Viewpoint: Components and Connectors
(VR:VP:CompConn)

This VR viewpoint provides a generic operational
portrayal of streams of events or data (records or packets) as
(distributed or remote) communication or interaction at
(external) interfaces between producers (sources) and
consumers (sinks). For this, a Directed Acyclic Graph (DAG)
of nodes (sinks or sources) is utilized as shown in Figure 2.
Note that events (messages) might be grouped and stored in
topics, which are accessible to multiple producers and / or
consumers.

In VR:VP:CompConn, this DAG is visualized as a nexus
of elements (nodes) as 3D balls laid on the surface of a 3D
sphere, while 3D empty pipes are used for the edges
(interaction), and 3D capsules in the pipe portrays events or
data records, which are dynamically animated within the pipe.

Figure 2. Example EDA couplings between services.

Figure 3. Nexus node placement on spherical edge aligned to planar circles.

For the layout of the DAG in VR, in the immersive space
of VR navigation efficiency can affect analysis efficiency.
Thus, we chose to initially place objects in relative proximity
to each other to mitigate such delays. While a force-directed
graph rebalances the distance of object automatically, it takes

time to reach a steady state and can be distracting. Inspired by
2D chord diagrams used in visual data analytics, we
considered how to use the third dimension to reduce clutter,
reduce connector collisions, and retain order and legibility
while supporting scalability. Using a nexus, nodes are initially
placed on the outer edge of an imaginary sphere, while node
groups follow along a planar circle on the sphere’s edge as
shown in Figure 3. Nodes can be optionally grouped in the
configuration, in which case the largest sized group (based on
number of nodes) is placed near the equator and serves as the
basis for the sphere circumference, while smaller groups are
placed accordingly closer to the poles. This grouping thus
creates an implicit layering effect. Nodes in the same group
have the same color, and the size of a node (sphere) is
dependent on the number of connectors (streams).

To depict a stream, transmission, or processing of events
or data in VR, a semi-transparent tube is used with nodes
portrayed as spheres on both ends, and an animated capsule
indicating the direction of source and sink, shown in Figure 4.

Figure 4. Event stream portrayal in VR: nodes as spheres (left arrow),
semitransparent tube as stream (right arrow), and animated capsule as event
(middle arrow).

2) VR Viewpoint: Modules and Dependencies
(VR:VP:ModDep)

This VR Viewpoint addresses the structural aspects of
software regarding modularization by visualizing the
(de)composition of modules and internal structural
dependencies.

Figure 5. Nexus-based alternative view of modules and dependencies for a
small project (Python Aspects sample project, 41 classes, 2 KLOC).

Initially, as a generic approach to viewing modules and
dependencies, a graph-based approach as a 3D nexus was

considered, as shown in Figure 5. However, modules and
dependencies typically relate to some internal structural order,
often known as a development view, and potentially related to
the logical architecture. Developers may follow some intrinsic
or predetermined structural and modularization order in
allocating files to folders or directories, allocating classes to
files, and the methods (associated with classes) or functions
(independent of classes) to certain files. Although the software
instruction stream invoked as a binary (or script) and does not
actually concern itself about various original code pieces,
source code locations, and how neatly they were modularized
or what architecture was intended, developers do.

Structures can also be seen as a form of communication
between minds that affects comprehensibility. Since the focus
is on informed SA, we minimize the assumptions about
modularity and associations (or interchangeably referred to as
dependencies), and rather base it on the actual data available.
Thus, in this case no diagrams or other documents about
intents and principles are consulted, but rather the facts as
extracted (reverse engineered) by static analysis tools. The
concept of (sub)containment and encapsulation becomes
relevant as a possible way to deal with granularity, details, and
complexity. While the aforementioned modularization terms
can be understood differently in various contexts, by module
we mean some grouping or clustering at whatever granularity
is provided by some (static analysis) extraction tool as input.
Depending on the programming language, developers might
make the “modules” explicit (such as declaring an element as
belonging to a package, module, or component) or it may be
discovered by a tool based on, for instance, file granularity and
directory paths.

Figure 6. Logical view depicting modular containment and element
dependencies (Python Aspects sample project, 41 classes and 2 KLOC).

In VR:VP:ModDep, a DAG is also utilized, whereby
elements are visualized as nodes (3D spheres) colored by type
(functions=green, methods=light blue, classes=dark blue,
files=white) and grouped by type and module, as shown in
Figure 6. The sphere size indicates number of associations
relative to other nodes (larger spheres having more). The
project’s hierarchical directory structure is used as an
organizing schema of layers, depicted via colored labeled
boxes from highest to lowest (colored from yellow to darker
orange as the hierarchy becomes deeper). File nodes are then
positioned at both the vertically and horizontally appropriate
box level. These colored layers act as both a legend (provide
directory names) and provide a placement grouping and
ordering. As a metric, the number of elements contained a
directory is indicated in the upper right corner of a directory

rectangle. We chose not to use encasing transparent colored
3D boxes as layers, as the coloring would interfere with visual
differentiation of other elements and types, since alone their
geo-placement in space already provides the intended
information. Coloring of only box edges of a layer was also
considered but rejected, since it only added additional visual
clutter when viewing dependencies, which consist of lines
also. On the top right of the layers, overall project metrics are
provided for quick quantitative assessment or confirmation of
the scope of what is being visually depicted.

As the actual software binary execution is uninterested in
the original file location, we group classes, methods, and
functions within their type. However, to indicate affiliation
(relation to its residing source location), non-communication
affiliations known as connections (white lines) are used: a
method to the class it belongs to, or a class or function to the
source file in which it resides. Since arrow shapes would add
additional visual clutter, directed graph edges between nodes
(lines) indicate their direction by color, with the source darker
and the target lighter. point to the direction of element
dependency with aqua color end representing the “to” or target
and dark blue end the source of the line. Red lines are used to
indicate bidirectional (circular) dependencies, since these are
usually not desirable. Dependencies (in classes, methods, and
files) are visualized as blue lines (dark blue as the source to
aqua as the target). Calls are shown (also darker to lighter),
the caller in orange and the callee target in yellow.

To reduce the amount of crisscrossing or collisions with
dependencies, proximity is utilized in the placement of
elements. Within its layer and type, an element is placed closer
to the location of dependencies in another layer. For example,
if a function is associated with a file in a directory that is
towards the left, that function element is placed on the left side
of the functions, and vice-versa.

3) VR Viewpoint: Execution Observability
(VR:VP:ExOb)

This VR viewpoint focuses on visualizing dynamic
behavioral execution trace information (typically application
internal) regarding (internal) operational runtime deployment
and execution behavior. This information is used to better
understand how the software is functioning, e.g., to confirm
its health or in support of optimization or debugging. In
contrast to VR:VP:CompConn, it is more concerned with
internal software information, and not necessarily directly
related to intended, external communication.

Figure 7. Process view with tree graph for trace span parent-child relations.

Figure 8. Process view of trace spans aligned to time axis.

Also based on a DAG, this VR viewpoint depicts stacked
spans (of processes, threads, operations) relative to their
deployment on some physical node (CPU). Spans represent
logical units of work that can be nested, with each having an
operation name, start time, and duration. A trace is some data
or execution path, and can be viewed as a DAG of spans. In
order to describe the relationship of parent to child spans, we
utilize a 3D DAG of relations as shown in Figure 7. The trace
information can also be viewed aligned in relation to time, as
shown in Figure 8. Here, the grey area serves as the timeline
base, above which spans (e.g., of different threads) can be
located. Color is used to differentiate processes. E.g., the red
and yellow spans occur at the same time but in different
threads; the blue spans are executed within the same thread
and at a different timepoint from the other threads. The lowest
of the blue spans also acts as the root or parent span of the
child spans above it. This span also produces the red and
yellow spans, which is indicated via the black connecting
lines.

B. Interaction in VR
Elements can be freely moved via drag-and-drop to

support analysis. Where appropriate, an affordance as a ball in
the corner of an object can be used to drag or to collapse /
expand an element. Since interaction with VR elements has
not yet become standardized, in our VR concept, user-element
interaction is handled primarily via the VR controllers in
combination with a virtual tablet. Our VR-Tablet concept
provides detailed context-specific element information, and
can provide a virtual keyboard for text entry fields (via laser
pointer key selection), as seen in Figure 9.

Figure 9. VR-Tablet showing a virtual keyboard and possible search query
results on optional extended plane on right.

C. Navigation in VR
The immersion afforded by VR entails addressing how to

navigate the space while reducing the likelihood of potential
VR sickness symptoms. Thus, two navigation modes are
included in the solution: the default uses gliding controls,
enabling users to fly through the VR space and view objects
from any angle they wish. Alternatively, teleporting permits a
user to select an element (via a VR controller or by selecting
an item of interest on our VR-Tablet) and be instantly placed
there (i.e., by instantly moving the camera to that position);
while this can be disconcerting, it may reduce the
susceptibility to VR sickness for those prone to it that can
occur when moving through a virtual space.

IV. REALIZATION
As a realization of our solution concept, our prototype is

inspired by the hexagonal architecture pattern (a.k.a. ports and
adapters). It is partitioned into a common Data Hub, which
supports various Extract-Transform-Load (ETL) adapters for
various input formats from the associated tools and offers
(REST) APIs and attached data storage appropriate for the
data type. The VR frontend is implemented with Unity,
accessing the Data Hub to retrieve data.

A. VR Viewpoint: Components and Connectors
(VR:VP:CompConn)
For this VR viewpoint, our prototype realization provides

a tool-independent network-based mechanism for monitoring
and collecting data or events (connectors) from endpoints
(components). To support collecting JSON events or data
records generically - independent of a specific tool, a Web
API-based microservice was implemented in Python using the
FastAPI web framework. In addition to our REST interface,
Telegraf (part of InfluxData platform) offers an open-source
server-based agent written in Go for collecting and sending
metrics and events from databases, systems, and sensors to
InfluxDB. Either interface can be flexibly used to extract or
collect events, applying an interceptor, proxy, or decorator
pattern as appropriate.

Integration with two different event systems was
performed. Apache Kafka is an open-source distributed event
streaming platform. Kafka Connect supports data integration
between databases, key-value stores, search indexes, and file
systems. The connectors receive and transmit data to and from
topics as a source or sink, and various extensible
implementations are available (e.g., a Source Connector that
streams database updates to a topic, collects server metrics to
a topic, forwards topic records to Elasticsearch, etc.).

As to storage in the Data Hub, the InfluxDB was used as a
database due to: 1) its time series support and 2) since its
storage requirements were deemed significantly smaller for
large time series datasets than the alternatives, a benefit when
scaling the solution. Metainformation collected via REST or
Telegraf and retained in the database with each record are as
follows: source, target, timestamp, payload. Thus, the payload
can be data, an event, a message, etc. If no target exists, then
any null or fake named node can be used (equivalent to a null
device in Unix).

Figure 10. Abstracted node grouping EDA example.

Configuration information in JSON can be stored and
loaded using the VR-Tablet, enabling stakeholders to tailor
the grouping, placement, and coloring of nodes and streams
based on their concern or interest. An example cross-service
EDA is shown in Figure 10. Nodes in a group are assigned the
same color. In the VR-Tablet, the relevant event flow time
period can be selected and event flow steps and speed can be
dynamically controlled.

B. VR Viewpoint: Modules and Dependencies
(VR:VP:ModDep)
To support the realization of this viewpoint for ISA, static

code analysis tools can provide information on modules,
dependencies, and metrics. However, each tool usually
supports only certain programming languages. Furthermore,
there is a lack available (adopted) standards for data access or
export from such tools, so any data extraction, when even
supported, is tool-specific. To minimize tool dependencies,
we use an adapter and JSON transformation approach to
integrate extracted data into our data hub.

Figure 11. Example Dependency Graph Diagram in Understand for small
project (Python Aspects).

To exemplify our solution concept, our prototype
realization integrates the Understand tool by Scientific
Toolworks, Inc. It offers static analysis support for multiple
languages including C/C++, C#, Java, JavaScript, Python,
etc., and offers APIs and various visualizations (UML,
dependency graphs, control-flow graphs, call tree graphs,

butterfly graphs). An example dependency graph is shown in
Figure 11. Among its graph variants, it offers an Architecture
Dependency graph with focus on dependencies, and a Graph
Architecture view that depicts the structure of the architecture,
with clustering granularity that can be varied across function,
class, file, or architecture level.

In support of the VR:VP:ModDep viewpoint, the solution
was realized as follows. Understand is run in a separate
Docker container to utilize the Python environment required
with Understand and avoid certain runtime issues using its
APIs for information extraction. The data retrieved from the
Understand APIs was transformed into our JSON format, a
sample of which is shown in Figure 12.

Figure 12. Snippet of structural information from Understand as JSON.

Figure 13. Dependencies stored in our Data Hub in a Neo4j database.

Data related to directories, files, and metrics is stored in a
Docker-based MongoDB database, whereas graph-related
data such as dependencies is stored directly in a Docker-based
Neo4j database, a sample of which is shown in Figure 13.
Separating data across two database types was done initially
to ensure full flexibility for storing unstructured JSON data
from various tool types, and which thus might include various
other data such as metrics, etc., yet enabling us to leverage the
Neo4j graph database capabilities for graphs such as
dependencies. Note that the use of two database types is not
necessarily required, but related to assumptions made at the
beginning of the realization; consolidation to a single database
type such as Neo4j could be considered.

C. VR Viewpoint: Execution Observability (VR:VP:ExOb)
For a prototype realization of this VR viewpoint, the

distributed tracing platform Jaeger was chosen to collect trace
information from various clients. Jaeger offers a timeline
visualization (see Figure 14), a tree diagram that depicts span
relationships (Figure 15 top), and the raw trace data in JSON
(Figure 15 bottom). For implementing tracing in client code,
the OpenTelemetry and OpenTracing libraries were used, and
clients can use either the library APIs directly or available
annotations, as exemplified in Figure 16. Jaeger agents are
network daemons that listen for spans, which are batched and
sent to collectors. Jaeger collectors can persist these or pass
them on to Kafka.

Figure 14. Screenshot of spans in Jaeger’s trace timeline visualization.

Figure 15. Screenshot of spans in Jaeger’s trace tree diagram and as JSON.

Figure 16. Example client code snippet of OpenTelemetry span definition.

Trace results are exported from Jaeger and stored in our
Data Hub. Processes are differentiated by color, thus spans in
the same process share that color. Telemetry trace data is
placed directly on each side of an individual span.

The timeline visualization in Jaeger depicts which spans
were active when. For VR, instead of using a constant scale
for the time axis, an event-sequencing with fixed-size units
(blocks) of varying timescales is used, marking off the
beginning or end of a span, as in Figure 17. Benefits include:
1) reduced virtual space needed for navigation while offering
a better overview, and 2) concurrency, parallelism, nesting,
and synchronization of active spans is highlighted and more
comprehensible, rather than relative durations and possibly
overlooking significant events.

Figure 17. Example VR:VP:ExOb trace variable timescale axis depiction
(above) vs. a fixed timescale axis (below).

V. EVALUATION
For the evaluation of the solution concept, we utilize the

design science method and principles [43], in particular, a
viable artifact, problem relevance, and design evaluation
(utility, quality, efficacy). As our solution concept is focused
on VR visual support for an ISA, a case study based on
scenarios applicable to each viewpoint is used. An informed
SA depends on the digital reality of the information provided
by tooling. Hence, in contrast to explicit (UML) models that
can be inconsistent with reality, this evaluation highlights our
generic approaches for visualizing the data provided by the
tooling in the various viewpoints. Note that in our prior work
with VR-UML [17] and VR-SysML [18], we have shown our
hypermodeling capability in VR, whereby such prescriptive,
intended, or explicit models and associated diagrams can be
portrayed in 3D in VR alongside the VR-ISA viewpoints we
describe in this paper.

A. VR Viewpoint: Components and Connectors
(VR:VP:CompConn)
For this VR viewpoint, which informs an ISA regarding

components and connectors, our scenarios focus on
generically depicting components and connectors, integration
support for popular broker and streaming platforms, and VR
interaction and tailoring support.

For the test applications, Confluent ksqlDB was used as a
database supporting SQL queries for stream processing
applications based on Kafka Streams. For generating event
data for the evaluation, the Confluent Quickstart Demo using
ksqlDB in combination with Kafka Connect was used with
two connectors to the topics pageviews und users. A second
configuration based on Confluent Kafka consisted of one
producer and three consumers in Python. To ensure the
solution was not Kafka dependent, a third configuration using
only RabbitMQ with our microservice was also tested.

1) Event System or Streaming Platform Integratability
To test the integratability of the generic approach, a second

popular publish/subscribe message broker event system,
RabbitMQ, was also utilized in addition to Kafka in the
evaluation. For more details and a comparison of these
distributed event systems, we refer to Dobbelaere and Esmaili
[44].

2) Single Large Group Connected to One Node
As a scalability scenario, a single group of 100 nodes all

connected to a single node is shown in Figure 18. Note that
although difficult to depict as a figure due to the limited space,
in VR, due to its unlimited space, there are no actual technical
limitations in visualizing, navigating, and comprehending
very large models.

Figure 18. Scalability test: a group of 100 nodes connected to one node.

3) Unbalanced Groups Randomly Interconnected
This scenario consisted of three unbalanced groups: one

group with 20 randomly intra-connected nodes, and two inter-
connected groups consisting of a single node each, as
portrayed in Figure 19. Note each group has a different node
color, and more connected nodes are larger, and smaller
groups are near the poles of the sphere, with the largest group
at the equator.

Figure 19. Three groups: one with 20 randomly intra-connected nodes and
two inter-connected groups consisting of a single node each.

4) Multiple Balanced Highly Interconnected Groups
In this scenario, three balanced groups of 20 nodes each

are randomly inter- and intra- connected with other nodes, as
shown in Figure 20.

Figure 20. Three groups of 20 nodes each with random coupling.

5) Multiple Unbalanced Groups Irregularly
Interconnected

To test many unbalanced groups with different degrees of
connectedness, this scenario had five groups, one group with
20 nodes and the rest consisting of 5-10 nodes with random
unbalanced coupling. The result is shown in Figure 21.

Figure 21. Five groups (with 20 and 5-10 nodes) and random coupling.

6) Interaction Support via VR-Tablet
VR interaction in this viewpoint is supported using our

VR-Tablet via the following display modes:
• Animated Timeline for controlling dynamic stored or

real-time playback (Figure 22 left),
• Querying the event or data store (Figure 22 right),
• Color customization (Figure 23),

• Object details for a selected node (Figure 24)
• Event or data record details (i.e., capsule, Figure 25),
• Settings for storing and fetching configurations.

Figure 22. Dynamic animation interface (left) and Query interface (right).

Figure 23. Object color customization.

Figure 24. Node detail interface after selecting a node.

Figure 25. Example event details after selecting the red capsule.

7) VR:VP:CompConn Discussion
The above scenarios used our prototype realization to

demonstrate the feasibility of our generic solution concept for
supporting this VR viewpoint. It can be used to simplify the
understanding of inter-software communication and
interactions regarding events and data streams for
stakeholders, using generic components (endpoints such as
microservices or stream processing steps) and generic
connectors (in particular, event, message, or data flow). It by
immersively depicting sources and sinks as nodes in a
spatially compact (3D spherical) layout, while animating any
time-based interaction between them.

In focusing only on the essential flows and communication
streams for data and events, while hiding all else, it is readily

scalable. By immersively visualizing and animating these key
aspects, various (grassroot) stakeholders can access,
experience, and comprehend the digital reality of the flow of
event or data streams. The default configuration provides a
starting point for any analysis, and users can tailor the views
by moving and recoloring nodes, and can query datasets and
timespans of interest.

B. VR Viewpoint: Modules and Dependencies
(VR:VP:ModDep)
For this VR viewpoint, which informs an ISA regarding

modules and dependencies, the scenarios focus on module and
dependency depiction and VR interaction support.
Programming language independence is demonstrated via two
example projects provided with the Understand tool (Sokoban
Pro in C# and python-aspects in Python). Understand APIs
were used to extract project information to our Data Hub.

1) Module Visualization
For module and element visualization, labeled node types

are differentiated by color: functions (green), methods (light
blue), classes (dark blue), and files (white). Nodes are then
grouped by type, with directories above that contain file nodes
(behind the directory structure layers), function nodes (green,
right bottom), and bottom left classes (dark blue) with their
methods (light blue). This is exemplified for a small sample
project (Python Aspects, 18 files, 2 KLOC) in Figure 26.
Nodes with the most connections or dependencies are largest,
and likely more significant to the architecture. The modular
decomposition of files by subdirectories is depicted, whereby
examples and test are subdirectories of src, and lib is parallel
to src and contains the distutils subdirectory. The number of
elements as a metric is shown in the legend numerically, and
can be readily viewed and discerned visually relative to other
elements from the side, as shown in

Rather than hiding various aspects of the reality, views in
this VP initially depict all elements, to allow the stakeholder
to see the relative number and location of elements. These
details are often hidden and dispersed across text-based
Command-Line Interface (CLI) file systems, while 2D
analysis tools often must simplify and reduce the sheer
number due to their limited 2D space. In contrast, our
approach leverages the unlimited space of VR for a
comprehensive depiction that is nevertheless ordered and can
be readily filtered and explored. For instance, dependencies
and connections, when not of interest, can be hidden to reduce
visual clutter, as seen for a large project in Figure 51.

Figure 26. VR:VP:ModDep view visualizing modular containment and
element connectors (affiliation), callers, and dependencies (containment)
(Python Aspects sample project, 41 classes, 329 functions, 2 KLOC).

To indicate affiliation (relation to a location), connections
(white lines) are used: a method to the class it belongs to, or a
class or function to the source file in which it resides.

To evaluate the scalability of our solution concept and
prototype, a large sample project (GitAhead C++, 444 files,
496 classes, 9747 functions, 252 KLOC) was used. As to
modularization, directories with file containment, the number
of files in each directory (number of spheres) can be readily
discerned, and the metric is depicted in the upper right corner
of each directory as shown in Figure 27. Overall project
metrics shown to the right of the legend. A perspective from
above without dependencies is shown in Figure 28. A full
front perspective without dependencies is shown in Figure 48.
A top view is shown in Figure 49. A full side perspective
without dependencies is shown in Figure 50.

Figure 27. VR:VP:ModDep view visualizing files containment and
depicting file grouping and relative number by directory (large GitAhead
C++ sample project), with smaller directories shallow and larger directories,
such as “ui” (37 files), deeper.

Figure 28. VR:VP:ModDep view visualizing nodes grouped by directory
and type without dependencies (large GitAhead C++ sample project).

2) Dependency Visualization
Dependencies (in classes, methods, and files) are

visualized as blue lines. For directed dependencies, we found
that arrow shapes created unnecessary visual clutter; so
instead, color transitions are used to indicate direction (darker

to lighter), from dark blue as the source to aqua as the target.
Bidirectional or circular dependencies are colored red. Calls
are shown (also darker to lighter), the caller in orange and the
callee target in yellow.

The Python Aspects sample project was used, containing
18 files, 41 classes, 329 functions, and 2 KLOC. A side
perspective is shown in Figure 29. A rear perspective is shown
in Figure 30. A top perspective shows the spacing between
graph edges and nodes, as shown in Figure 31.

Figure 29. VR:VP:ModDep side perspective with calls (orange) and
connectors (affiliations) (in white) (Python Aspects sample, 41 classes, 329
functions, 2 KLOC).

Figure 30. VR:VP:ModDep rear perspective showing element grouping
placement to minimize connector/dependency crisscrossing and collisions
(Python Aspects sample, 41 classes, 329 functions, 2 KLOC).

Figure 31. VR:VP:ModDep top perspective showing calls (orange) and
affiliations as connectors (white) (Python Aspects sample, 41 classes, 329
functions, 2 KLOC).

To support analysis and investigation, once an element of
interest is selected, it and first-degree neighbors are left
colored, while other unrelated elements are ghosted, as shown
in Figure 32.

Figure 32. Analysis support for connections between a selected method
element (CaseFolderASCII constructor, bottom, aqua glow), its containing
class (CaseFolderASCII, dark blue), and its affiliated file (Editor.cxx, top).

With regard to the scalability of our solution concept and
prototype for dependencies, the large sample project
(GitAhead C++, 444 files, 496 classes, 9747 functions, 252
KLOC) was used. A front perspective with all dependencies
depicted is shown in Figure 51. A side view with all
dependencies depicted is shown in Figure 52.

3) Interaction Support via VR-Tablet
Interactive support for VR:VP:ModDep is provided by the

VR-Tablet. It offers a search capability for an element of
interest as shown in Figure 33. Selecting a resulting node on
the result pane on the right will highlight that node. A filtering
option shows or hides desired elements as shown in Figure 34.

Figure 33. VR-Tablet showing virtual keyboard-based search and results.

Figure 34. VR-Tablet showing filtering option settings.

Figure 35. For a selected file node Document.cxx, the VR-Tablet (center
left) displays metrics, aqua glow (bottom) highlights its classes and methods,
green glow (upper left) highlights dependent functions, white glow
highlights dependent files (dependencies as blue lines), and orange nodes
indicating files containing called functions.

Selecting an element provides detailed contextual
information on the selected element, ghosting irrelevant
elements leaving its overall direct context and dependencies
visible, while the VR-Tablet shows various metrics on the left,
and named listed context in the right pane. Furthermore,
colored glows indicate the directly associated elements. In
Figure 35, a file node Document.cxx is selected, whereby the
VR-Tablet displays various metrics, while aqua glow
(bottom) highlights its class and method connections, green
glow highlights its dependent functions (upper left), and white
glow shows dependent files (dependencies as blue lines). The
nodes colored orange indicate files containing functions called
by the selected node. Element-relevant metrics and an
extended context pane is shown in Figure 36. Teleporting
functionality can rapidly navigate to a related element of
interest when an element is selected in the context pane.

Figure 36. VR-Tablet in VR:VP:ModDep showing metrics for a selected
node (left pane) and its context (right pane).

4) VR:VP:ModDep Discussion
The scenarios show that this VR viewpoint can provide

insights to the internal structural aspects of software regarding
modularization, internal structural dependencies, and internal
static analysis metrics, and does so across programming
languages. While the depicted images may seem difficult to
discern within the limitations of such a paper, the immersion
of VR permits the user to explore the various aspects. Since
nothing is hidden until a node is selected, the user is aware of
the nature and scope of what they are dealing with visually,
not just numerically. By filtering and ghosting, specific
elements of interest can be explored, without losing contextual
insights.

C. VR Viewpoint: Execution Observability (VR:VP:ExOb)
For this VR viewpoint, which informs an ISA regarding

operational and observability aspects such as execution traces,
the scenarios focus on trace and span depiction and VR
interaction support.

1) Tree Graph and Timeline Visualization
Our trace span tree graph in VR is shown in Figure 37. Our

trace stacked span timeline visualization in VR, which uses a
variable scale, offers two draggable cross-span timepoint
plates (green for start, purple for finish) to compare active
spans across two different timepoints, as shown in Figure 38.
This supports concurrent trace span analysis for distributed or
parallel computing, threading or concurrency issues. If no
concurrency is used, then the analysis is simplified.

Figure 37. Tree graph in VR.

Figure 38. Timeline diagram

2) Contextual Trace and Model Information
Initially the view provides contextual support via an

overview of the available information, with a model if
available placed in the center, showing VR diagrams (such as
our VR-UML or our VR-EA ArchiMate), which help provide
context for the tracing information, as shown in Figure 39.
Here, in the center, a stack of various VR-UML diagrams is
shown with the bottom being a class diagram, while the trace
information is placed as a tree graph on the left side, and a
time axis representation is seen on the right.

Figure 39. VR:VP:ExOb overview showing stacked VR-UML diagrams
(center) with related tracing information on the sides.

3) Span Information Depiction
The following information is projected onto the sides of

span blocks to readily provide relevant data and reduce the
frequency of VR-Tablet interaction: Start timestamp, Finish
timestamp, Duration, Name, (if available) name of the Method
in which the span was created, (if available) name of the Class
in which the span was created; this is shown in Figure 40.
Further information such as Process name, Thread name, or
Service name in which the span is located, is also shown on
the blocks in the timeline diagram in Figure 41. This and
additional detailed information can also be retrieved in the
VR-Tablet by selecting a specific span.

Figure 40. Trace span information shown on blocks in VR tree diagram.

Figure 41. Span information shown on blocks in VR timeline diagram.

Figure 42. Active span synchronization from timeline to tree graph.

Figure 43. Synchronization from timeline to tree graph showing those spans
that were active during that duration (the other spans are ghosted).

4) Span Tree Graph and Timeline Synchronization
Selecting a single span will ghost other inactive spans at

its timepoint. The timeline and tree graph visualizations are
synchronized such that moving or activating a timepoint plane
will cause other non-active spans, even in the other diagram,
to be ghosted. The start and end cross-plane timepoints are
positioned such that only one green span was active, with the
tree graph in the back top left showing a single green span and
all other non-active spans ghosted, as shown in Figure 42.
Between the start and end timepoint planes, all spans that were
active at any time during that duration remain colored, and the
rest are ghosted, as shown in Figure 43. Here, a parent yellow
had two child spans at some point, and a red span had a child
span, which in turn had 3 child spans during that duration.
Hence, these all are colored at the different levels in the tree
graph and the others are ghosted.

5) Bidirectional Model and Trace Synchronization
In support of trace context, when selecting a span, if it has

an associated class or method, then a green line is drawn to
indicate where that class or method is in the (VR-UML or VR-
EA ArchiMate model), as shown in Figure 44 and Figure 45.
This selection could also be reversed from method to spans.

Figure 44. Selecting a span ghosts other spans and highlights (in green) the
location of the corresponding method/class in the VR-UML class diagram.

Figure 45. VR-UML class method span connector (in green).

6) Interaction Support via VR-Tablet
To support VR:VP:ExOb, our VR-Tablet provides the

JSON raw data for a selected trace object, as shown in Figure
46. Deployment-related information is also provided, as
shown in Figure 47. This information could also be used to
browse and search for applicable spans.

7) VR:VP:ExOb Discussion
The scenarios with our prototype implementation show

that this viewpoint can support an ISA in VR with analysis of
trace execution and spans, including their relation to VR-
UML and VR-EA ArchiMate models. The prototype shows
its feasibility, and could be readily extended to include other
observability data such as relevant logs and metrics via the
VR-Tablet.

Figure 46. VR-Tablet showing trace information.

Figure 47. VR-Tablet showing deployment information (hostname, IP).

VI. CONCLUSION
This paper contributes VR-ISA, a Virtual Reality (VR)

solution concept that supports ISA to improve the quality of
software architectures by immersively integrating information
and supporting its visualization and accessibility to a spectrum
of stakeholders. To demonstrate our VR-based ISA solution
concept, three VR-centric viewpoints were elucidated: 1)
dynamic distributed event and data streams, 2) static internal
module composition and dependencies, and 3) operational
execution tracing and observability. Our prototype realization
showed its feasibility, and a case-based evaluation provided
insights into its capabilities.

The invisibility of software remains an essential challenge
for its development, and thus integrating fact-based
information can help support better architectural decisions,
support comprehensibility, and maintain conceptual
integreity. Virtual reality offers a way to visualize a digital
reality such as software, and to do so immersively. An
informed software architecture can help to improve the quality
of software architectures, and VR-ISA integrates ISA

intuitively and immersively. By utilizing VR-based
viewpoints, stakeholder concerns can be addressed to help
make ISA accessible to a wide spectrum of stakeholders and
support the adoption of ISA in industry. Additional VR-based
viewpoints are readily feasible to support various additional
views and concerns.

Future work includes defining and realizing additional VR
viewpoints, holistic integration with our other VR-based SE
and EA solutions, and a comprehensive empirical study in the
industry. Additionally, simultaneous viewing of VR-ISA with
our VR-UML and VR-SysML solutions could be used to
highlight differences between the intended (prescriptive) SA
and the actual informed SA (descriptive), which could be
analyzed and lead to either corrections to the SA model or to
the implementation to address potential architectural drift.

ACKNOWLEDGMENT
The author thanks Markus Harder, Maurizio Jenak, and

Patrick Kneifel for their assistance with the design,
implementation, evaluation, and diagrams.

REFERENCES
[1] R. Oberhauser, "VR-EDStream+EDA: Immersively

Visualizing and Animating Event and Data Streams and Event-
Driven Architectures in Virtual Reality," the Fifteenth
International Conference on Information, Process, and
Knowledge Management (eKNOW 2023), IARIA, 2023, pp.
71-76.

[2] ISO/IEC/IEEE, “ISO/IEC/IEEE 42010:2022(E) - International
Standard for Software, systems and enterprise--Architecture
description," IEEE/ISO/IEC, 2022, doi:
10.1109/IEEESTD.2022.9938446.

[3] M. Loukides and S. Swoyer, “Microservices Adoption in
2020,” O’Reilly Media, Inc., 2020. [Online]. Available from:
https://www.oreilly.com/radar/microservices-adoption-in-
2020/ 2024.11.28

[4] GitLab, “A Maturing DevSecOps Landscape,” 2021. [Online].
Available from: https://about.gitlab.com/images/developer-
survey/gitlab-devsecops-2021-survey-results.pdf 2024.11.28

[5] Business Wire, “New Ponemon Study Reveals Application
Security Risk At All Time High: 1 in 2 Enterprises Need Better
Protection,” 2015. [Online]. Available from:
https://www.businesswire.com/news/home/20151210006098/
en/New-Ponemon-Study-Reveals-Application-Security-Risk-
At-All-Time-High-1-in-2-Enterprises-Need-Better-Protection
2024.11.28

[6] C. Sridharan, "Chapter 4. The Three Pillars of Observability".
Distributed systems observability: a guide to building robust
systems, O'Reilly, 2018, ISBN 978-1-4920-3342-4.

[7] T. McQuillan, “Informed Architecture: Three Tensions,” In:
Writings in Architectural Education. EAAE PRIZE 2003-
2005. EAAE, 2005, p.49-63.

[8] M. Hemmerling, “Informed Architecture,” In: Hemmerling,
M., Cocchiarella, L. (eds) Informed Architecture. Springer,
Cham, 2018, pp. 3-10. https://doi.org/10.1007/978-3-319-
53135-9_1.

[9] A. Figliola and A. Battisti, “Exploring Informed
Architectures,” In: Post-industrial Robotics. Springer,
Singapore, 2021, pp. 1-45. https://doi.org/10.1007/978-981-
15-5278-6_1

[10] G. H. Chong, R. Brandt, and W. M. Martin, Design informed:
Driving innovation with evidence-based design. John Wiley &
Sons, 2010.

[11] M. Shirer, “IDC Survey Illustrates the Growing Importance of
Developers to the Modern Enterprise,” IDC, 2021. [Online].
Available from:
https://www.idc.com/getdoc.jsp?containerId=prUS48058021
2024.11.28

[12] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) Business Modeling and Software Design (BMSD
2018), LNBIP, vol. 319. Springer, Cham, 2018, pp. 83–97,
doi.org/10.1007/978-3-319-94214-8_6.

[13] R. Oberhauser, "VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality," the Fourteenth
International Conf. on Information, Process, and Knowledge
Management (eKNOW 2022), IARIA, 2022, pp. 29-36.

[14] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Shishkov, B. (ed.) Business
Modeling and Software Design (BMSD 2019), LNBIP, vol.
356, Springer, Cham, 2019, pp. 170–187, doi.org/10.1007/978-
3-030-24854-3_11.

[15] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Shishkov B. (eds) Business Modeling and
Software Design (BMSD 2020), LNBIP, vol 391, Springer,
Cham, 2020, pp. 221-239, doi.org/10.1007/978-3-030-52306-
0_14.

[16] R. Oberhauser, M. Baehre, and P. Sousa: VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality. In: Shishkov, B. (eds) Business Modeling
and Software Design (BMSD 2022), LNBIP, vol 453, Springer,
Cham, 2022, pp. 122-140, doi.org/10.1007/978-3-031-11510-
3_8.

[17] R. Oberhauser, “VR-UML: The unified modeling language in
virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design (BMSD 2021), Springer, Cham, 2021, pp. 40-58,
doi.org/10.1007/978-3-030-79976-2_3

[18] R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[19] R. Oberhauser, “VR-GitCity: Immersively Visualizing Git
Repository Evolution Using a City Metaphor in Virtual
Reality,” International Journal on Advances in Software, 16 (3
& 4), 2023, pp. 141-150.

[20] X. Qin, Y. Luo, N. Tang, and G. Li, "Making data visualization
more efficient and effective: a survey," The VLDB Journal, 29,
pp.93-117, 2020.

[21] A. Fonnet and Y. Prié, "Survey of Immersive Analytics," in
IEEE Transactions on Visualization and Computer Graphics,
vol. 27, no. 3, pp. 2101-2122, 1 March 2021, doi:
10.1109/TVCG.2019.2929033.

[22] A. Fonnet, F. Melki, Y. Prié, F. Picarougne, and G. Cliquet,
“Immersive Data Exploration and Analysis,” Student
Interaction Design Research Conference, Helsinki, Finland,
hal-01798681, 2018, https://hal.science/hal-01798681.

[23] P. Reipschläger et al., “DebugAR: Mixed dimensional displays
for immersive debugging of distributed systems,” In: Extended
Abstracts of the 2018 CHI Conference on Human Factors in
Computing Systems, 2018, pp. 1-6.

[24] R. Sicat et al., "DXR: A Toolkit for Building Immersive Data
Visualizations," in IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 1, pp. 715-725, Jan. 2019, doi:
10.1109/TVCG.2018.2865152.

[25] M. Cordeil et al., "IATK: An Immersive Analytics Toolkit,"
2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), Osaka, Japan, 2019, pp. 200-209, doi:
10.1109/VR.2019.8797978.

[26] S. Hubenschmid, J. Zagermann, S. Butscher, and H. Reiterer,
“Stream: Exploring the combination of spatially-aware tablets
with augmented reality head-mounted displays for immersive
analytics,” Proc. 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1-14.

[27] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer,
"Reactive Vega: A Streaming Dataflow Architecture for
Declarative Interactive Visualization," In: IEEE Transactions
on Visualization and Computer Graphics, vol. 22, no. 1, pp.
659-668, 2016, doi: 10.1109/TVCG.2015.2467091.

[28] C. Zirkelbach, A. Krause, and W. Hasselbring, “Hands-on:
experiencing software architecture in virtual reality,”
Technical Report, Kiel University, 2019.

[29] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M.
Misiak, "Visualization of Software Architectures in Virtual
Reality and Augmented Reality," 2019 IEEE Aerospace
Conference, Big Sky, MT, USA, 2019, pp. 1-12, doi:
10.1109/AERO.2019.8742198.

[30] D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J. M.
González-Barahona, and M. Lanza, "CodeCity: On-Screen or
in Virtual Reality?," 2021 Working Conference on Software
Visualization (VISSOFT), Luxembourg, 2021, pp. 12-22, doi:
10.1109/VISSOFT52517.2021.00011.

[31] A. Hoff, L. Gerling, and C. Seidl, "Utilizing Software
Architecture Recovery to Explore Large-Scale Software
Systems in Virtual Reality," 2022 Working Conference on
Software Visualization (VISSOFT), Limassol, Cyprus, 2022,
pp. 119-130, doi: 10.1109/VISSOFT55257.2022.00020.

[32] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, "How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations," 2014 IEEE VIS International
Workshop on 3DVis (3DVis), Paris, France, 2014, pp. 33-36,
doi: 10.1109/3DVis.2014.7160097.

[33] S. Narasimha, E. Dixon, J. W. Bertrand, and K.C. Madathil,
“An empirical study to investigate the efficacy of collaborative
immersive virtual reality systems for designing information
architecture of software systems.” Applied ergonomics, 80,
175-186, 2019.

[34] M. J. McGuffin, R. Servera, and M. Forest, "Path Tracing in
2D, 3D, and Physicalized Networks," in IEEE Transactions on
Visualization and Computer Graphics, 2023, doi:
10.1109/TVCG.2023.323898

[35] R. Oberhauser, "VR-SDLC: A Context-Enhanced Life Cycle
Visualization of Software-or-Systems Development in Virtual
Reality," In: Business Modeling and Software Design (BMSD
2024), LNBIP, vol 523, Springer, Cham, 2024, pp. 112-129,
https://doi.org/10.1007/978-3-031-64073-5_8.

[36] R. Oberhauser, "VR-DevOps: Visualizing and Interacting with
DevOps Pipelines in Virtual Reality," In: Proceedings of the
Nineteenth International Conference on Software Engineering
Advances (ICSEA 2024), IARIA, 2024, pp. 43-48. ISBN: 978-
1-68558-194-7.

[37] R. Oberhauser, “VR-V&V: Immersive Verification and
Validation Support for Traceability Exemplified with ReqIF,
ArchiMate, and Test Coverage,” Int’l Journal on Advances in
Systems and Measurements, 16 (3 & 4), 2023, pp. 103-115.

[38] R. Oberhauser, “VR-Git: Git Repository Visualization and
Immersion in Virtual Reality,” The Seventeenth International
Conference on Software Engineering Advances (ICSEA 2022),
IARIA, 2022, pp. 9-14.

[39] R. Oberhauser, “VR-TestCoverage: Test Coverage
Visualization and Immersion in Virtual Reality,” In: Proc.
Fourteenth Int’l Conf. on Advances in System Testing and
Validation Lifecycle (VALID 2022), IARIA, 2022, pp. 1-6.

[40] R. Oberhauser, “VR-SysML+Traceability: Immersive
Requirements Traceability and Test Traceability with SysML
to Support Verification and Validation in Virtual Reality,”

International Journal on Advances in Software, 16(1 & 2), pp.
23-35, IARIA, 2023.

[41] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EvoEA+BP:
Using Virtual Reality to Visualize Enterprise Context
Dynamics Related to Enterprise Evolution and Business
Processes," In: Shishkov, B. (eds) Business Modeling and
Software Design (BMSD 2023), LNBIP, vol 483, Springer,
Cham, 2023, pp. 110-128. https://doi.org/10.1007/978-3-031-
36757-1_7

[42] P. B. Kruchten, "The 4+1 View Model of architecture," in
IEEE Software, vol. 12, no. 6, pp. 42-50, Nov. 1995, doi:
10.1109/52.469759

[43] A.R. Hevner, S. T. March, J. Park, and S. Ram, “Design
science in information systems research,” MIS Quarterly,
28(1), 2004, pp. 75-105.

[44] P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A
comparative study of two industry reference publish/subscribe
implementations,” In: Proc. 11th ACM int’l conference on
distributed and event-based systems, 2017, pp. 227-238.

Figure 48. VR:VP:ModDep for large project (GitAhead C++ sample, 444 files, 9747 functions) depicting layered folder structure as containers for files.

Figure 49. VR:VP:ModDep for large project (GitAhead C++ sample, 444 files, 9747 functions) from the top depicting a complete project perspective.

Figure 50. VR:VP:ModDep side perspective for large project (GitAhead C++, 444 files, 9747 functions) depicting directed dependencies (blue lines).

Figure 51. VR:VP:ModDep front perspective for large project (GitAhead C++ sample) depicting all dependencies (blue lines) and connections (white lines).

Figure 52. VR:VP:ModDep side perspective for large project (GitAhead C++ sample), depicting all dependencies (blue lines) and connections (white lines).

