
Impact and Performance of Randomized
Test-Generation using Prolog⋆ ⋆⋆

Marcus Gelderie1[0009−0003−0291−3911], Maximilian Luff1, and Maximilian
Peltzer1

Aalen University of Applied Sciences
Beethovenstr. 1, 73430 Aalen, Germany
{firstname.lastname}@hs-aalen.de

https://www.hs-aalen.de

Abstract. We study randomized generation of sequences of test-inputs
to a system using Prolog. Prolog is a natural fit to generate test-sequences
that have complex logical inter-dependent structure. To counter the
problems posed by a large (or infinite) set of possible tests, random-
ization is a natural choice. We study the impact that randomization
in conjunction with SLD resolution have on the test performance. To
this end, this paper proposes two strategies to add randomization to a
test-generating program. One strategy works on top of standard Pro-
log semantics, whereas the other alters the SLD selection function. We
analyze the mean time to reach a test-case, and the mean number of
generated test-cases in the framework of Markov chains. Finally, we pro-
vide an additional empirical evaluation and comparison between both
approaches.

Keywords: software testing,randomization,prolog

1 Introduction

The need for software testing is well established. The idea to auto-generate
tests is a constant theme in the field of software testing, stretching back many
decades (e.g. [15,11,17,13]). Automatically generating software tests can be done
in a number of ways, depending on the specific test-goal: In the past, tests have
been generated from UML specifications [12], based on natural language [21],
and, more recently, using large-language models [8,19]. But tests have also been

⋆ This work was created as part of a project funded by the German Federal Min-
istry of Education and Research under grant number 16KIS193K. The authors are
responsible for the content of this publication.

⋆⋆ This version of the contribution has been accepted for publication, after peer re-
view (when applicable) but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available
online at: http://doi.org/10.1007/978-3-031-71294-4_10. Use of this Accepted
Version is subject to the publisher’s Accepted Manuscript terms of use https://www.
springernature.com/gp/open-research/policies/accepted-manuscript-terms

https://www.hs-aalen.de
http://doi.org/10.1007/978-3-031-71294-4_10
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 M. Gelderie, M. Luff, M. Peltzer

generated according to formal or semi-formal specifications [24,5]. Particularly
when formal methods are used, one often has to deal with a very large, even
infinite, number of test cases. Exploring such a large set of tests in a randomized
fashion is a natural approach and has been used extensively in various different
ways and contexts for a long time (see e.g. [18,14,6,18,14,3]).

Prolog is a natural fit to generate test-cases that follow a logical pattern
(as opposed to unstructured testing, as is done, for example, in many forms
of Fuzzing [14]). Generating test-cases using Prolog has been studied in the
past [17,9,3,4]. It has been applied to software-testing in general, but also to
specialized areas, such as security testing [23,5]. Some approaches also use ran-
domization to explore the space of test-cases [3]. Randomization solves some of
the problems inherent in the SLD resolution algorithm — particularly the fact
that it is not complete when the resolution works in a depth-first manner. It may
also yield a more diverse set of test-cases, because it permits exploring distant
parts of an infinite SLD tree. Randomization seems to be a logical fit in the
context of test-case generation using Prolog.

In the light of its apparent utility, it is natural to study randomization itself
and its properties. What are possible strategies to implement randomized search
strategies for test-cases in Prolog running on current state-of-the-art implemen-
tations? What is the probability of a hitting a particular test case, and how long
will it take? To our surprise, we only found very few papers dealing with the
properties of randomization itself (see also Related Work below).

In this paper, we study randomized test-case generation using Prolog. Our
main contributions are threefold: (i) We propose strategies to implement ran-
domized search in both unmodified Prolog runtimes, and via specific modifica-
tions to the usual SLD implementations. (ii) We show how adding randomness
naturally turns the SLD resolution into an infinite discrete-time Markov chain
and propose to use this framework to study the runtime-effects. We do this for
our proposed scheme and give tight asymptotic bounds on the expected time to
hit a particular test-case. (iii) Finally, we study the effect that various Prolog
implementations have on the efficiency of randomizing test-case generation.

We present two ways of adding randomization to Prolog programs. The first
way works without altering the semantics of standard Prolog and thus works on
existing implementations. It works by adding a predicate, called a guard, that
randomly fails to every rule. Crucially, failure is determined by an independent
event for every successive call to the same rule. In a second strategy, we propose
a modification to the resolution algorithm: Given a goal and a set of matching
rules, drop an indeterminate number of rules from the set and permute the
remaining ones. Again, we do this in an independent fashion every time a goal
is resolved with the input program. This second modification is reminiscent of
that proposed in [3], but differs in that it also drops a random number of rules
from the set. This, in effect, prevents an infinite recursion with probability 1.

In the following we study the effects on randomizing the resolution in this
way. Due to space constraints, we focus on the first proposed randomization
strategy (though the analysis is almost identical in both cases). We give a detailed

Impact and Performance of Randomized Test-Generation using Prolog 3

description of the resulting Markov chain and analyze its probability structure.
We show that, provided the guards are chosen appropriately, the number of test
cases produced is finite and given by a simple equation in terms of the guard
probabilities. We also show that, if we repeat the initial query infinitely many
times, we will reach each test-case after a finite number of steps on average. This
hitting time is a well-known concept in the study of Markov chains. We again
give a closed formula representation and accompanying asymptotic bound in the
depth of the given test case in the SLD resolution tree.

Finally, we study the randomization procedures from an empirical perspec-
tive and provide comparisons between the two aforementioned approaches. We
implement the guards approach to randomization in SWI-Prolog [20] and the
drop-and-shuffle approach in Go-Prolog [10]. We chose Go-Prolog for its ac-
cessible code-base, which lends itself to experimental modifications. We then
compare the number of test-cases produced before a specific test-goal is seen
and the number of iterations that were required to do so.

Related Work Some early works on test-case generation using Prolog are
[17,2,9,4]. Automated test-case generation in Prolog was described by Pesch
and Schaller [17]. The authors state how to test individual syscalls with logic
programming. The used specifications state a set of pre-conditions then the
actual invocation of the respective syscall and afterwards what the expected
post-conditions are. This paper demonstrates that test-case generation using
Prolog is very beneficial to test systems in a structured manner. This problem
domain does not deal with any problems of recursion since the authors only test
input sequences of length one. This means that this paper does not deal with
recursion problems that are witnessed for many other test scenarios.

Another approach showcasing Prolog’s capabilities used in test case gen-
eration was shown by Hoffman and Strooper [9]. The authors automated the
generation procedure of tests for modules written in C with Prolog.

Bougé et al. [2] start the testing procedure with the definition of a Σ-algebra
and respective axioms. The aim of this testing procedure is based on the reg-
ularity and uniformity testing hypothesis. Prolog is used to generate test cases
and to partition the test cases into test classes following the uniformity hypoth-
esis. The authors also recognize the problems of recursion in Prolog test case
generation and apply different search strategies to solve them. Since the paper
enforces a length limit on the generated solution, it will not find any test case
that exceeds that length.

Richard Denney [4] also researches test-case generation based on specifica-
tions written in Prolog. In his paper, he implements a meta-interpreter in Prolog
to be able to track which rules, generated from the specification, were already
applied. This is done by constructing a finite automaton. Each arc between states
corresponds with respective rules in the Prolog database. Final states in this au-
tomaton are test cases produced in the test-case generation process. With this
solution, he addresses the problems of recursion, evaluable predicates, and order-
ing, which are challenging aspects of test-case generation using Prolog. However,

4 M. Gelderie, M. Luff, M. Peltzer

the recursion problem is only addressed heuristically, which means that a user
has to specify a threshold of how often an arc can be traversed during the exe-
cution of test case generator. We argue that the estimation of the threshold is
an error-prone task and, if not set correctly, could miss important test cases.

Gorlick et al. [7] also introduce a methodology for formal specifications. For
this task, they use constraint logic programming to describe the system under
test’s behaviour. With this approach, the authors also recognize that they both
have a test oracle and a test case generator at the same time. One challenge the
authors addressed is, yet again, the recursion problem. To solve this challenge
they used a randomization approach. This feature enables the proposed frame-
work to pick probabilistically from the predicates. However, they do not provide
any statements about test case duplication or infinite looping.

Casso et al. [3] approach assertion-based testing of Prolog programs with
random search rules. They rely on the Ciao model and its capabilities to specify
pre- and post-conditions for static analysis and the runtime checker. Further, the
authors develop a test-case generator based on these conditions. For randomizing
the test case search, Casso et. al. use a selection function that randomly chooses
clauses to be resolved. The authors do not study the randomization itself, nor its
properties. We will revisit this paper and its randomization strategy in section 3,
where we will also explain the differences from our approach in more detail.

Prolog was also used in security testing. For web applications, Zech et al.
[22,23] first build an expert system to filter test cases according to some attack
pattern and later apply this risk analysis to filter test cases in the generation
process. Since the paper, yet again, only addresses single input sequences, it
effectively circumvents the problem of recursion. Prolog as was also used in
Fuzzing [5] by Dewey et al. to use CLP in order to produce fuzzing inputs to
compilers.

2 Preliminaries

Given a (usually finite) set Σ of elements, we write Σ∗ for the set of all finite
length sequences w1 · · ·wl with wi ∈ Σ and l ∈ N0. The empty sequence is
denoted by ε. We write Σ+ = Σ∗ \ {ε}. If Σ = {x} is a singleton, we write
x∗ or x+ instead of {x}∗. Concatenation is denoted by (u1 · · ·ul) · (v1 · · · vr) =
u1 · · ·ulv1 · · · vr. We write |w| = |w1 · · ·wl| = l ∈ N0.

We use the theory ofMarkov chains. For a detailed introduction and proofs of
the following claims, the reader is referred to standard literature on the subject,
e.g. [16]. We revisit the concepts, notation, and central results from the theory
of Markov chains that we will use throughout this paper for convenience.

We consider a countable set S of states, a mapping p : S × S → [0, 1] that
assigns transition probabilities to pairs of states with the property that for all s ∈
S it holds that

∑
s′∈S p(s, s′) = 1, and an initial state1 Init ∈ S. Let (Xn)n∈N0 be

1 In the literature one usually considers initial distributions to model uncertainty
about the initial state. We do not need this capability in the present paper and
consider initial distributions whose support is a single state of probability 1.

Impact and Performance of Randomized Test-Generation using Prolog 5

an infinite sequence of random variables Xn ∈ S. The triple ((Xn)n∈N0
, p, Init)

is a Markov chain, if Pr[X0 = Init] = 1 and for all n ∈ N and all s1, . . . , sn ∈ S:

Pr[Xn = sn | X0 = s0 = Init, . . . , Xn−1 = sn−1]

= Pr[Xn = sn | Xn−1 = sn−1] = p(sn−1, sn)

For two states s, s′ we write s ⇝ s′, if Pr[Xn = s′ for some n] > 0 in the
Markov chain ((Xn)n∈N, p, s). Intuitively, there is a way to get from s to s′. A
set A ⊆ S is absorbing, if for every s ∈ A and every s′ ∈ S with s⇝ s′ it holds
that s′ ∈ A. If A = {s} is a singleton, the state s is said to be absorbing. If any
two states are reachable from one-another (s⇝ s′ for any s, s′ ∈ S), the Markov
chain is irreducible.

Let A ⊆ S be a non-empty set of states and let HA = inf{n ∈ N0 | Xn ∈
A} ∈ N0 ∪ {∞} denote the random variable such that XH ∈ A visits A for
the first time. HA is the hitting time of A. Then conditioned on HA < ∞ and
XH = s, the sequence (XH+n)n∈N0

is a Markov chain with initial state s and
is independent of X0, . . . , XH . This is called the strong Markov property. It is
sometimes useful to consider the hitting times for initial states other than Init.
Write HA

s for the hitting time of A with starting state s.

The expected value hA def
= E[HA] is known as the mean hitting time. Given

any state s ∈ S, we define hA
s = E[HA

s] for the mean hitting time of A from
initial state s. The mean hitting times are then the unique minimal solution to
the equations

hA
s = 0 if s ∈ A

hA
s = 1 +

∑
s′∈S p(s, s′)hA

s′ if s /∈ A
(1)

A state s ∈ S is recurrent, if Pr[
∑∞

n=0 1Xn=s = ∞] = 1 (where 1A is the
indicator random variable for event A). Otherwise, it is transient. It can be
shown that a state is recurrent iff Pr[Xm = s for some m ≥ 1] = 1 in the chain
((Xn)n∈N0 , p, s) (the probability of returning s, once visited, is 1). One can show
that if a Markov chain is irreducible and contains one recurrent state, then all
states are recurrent. In the case we call the chain itself recurrent (or transient).

3 Randomized Test Generation with Prolog

In this paper, we view a test as a sequence of inputs to a system. For example,
given a web-application with a REST-interface, we could think of a test as a
sequence of HTTP-Requests using various methods (GET, POST and so forth)
against different API-endpoints (e.g. /login, /items/{USERID}/list). Since
our focus is on randomization, we do not explicitly model a concept of “valid”
test-cases. We also do not model the test-oracle which determines the success or
failure of the test (e.g. “requests are processed in < 700ms”).

At a very abstract level, such a sequence of test-inputs could be generated
with the Prolog program shown in listing 1.1. All valid substitutions for X in the
query t(X) are input sequences to our fictional system. Since this program will

6 M. Gelderie, M. Luff, M. Peltzer

Listing 1.1: A program generating randomized sequences of test inputs.

1 t([]).

2 t([H|T]) :- command(H), t(T).

3 command(X) :- command1(X); /* ... */ ; commandr(X).

4 command1(X) :- /* ... */ .

5 % ...

Listing 1.2: Guard clauses.

1 guard_t :- random(X), X < p_cont.

2 guard_1 :- random(X), X < p_1.

3 % ...

4 t([H|T]) :- guard_t , command(H), t(T).

5 command1(X) :- guard_1 , /* ... */ .

6 % ...

only ever output test sequences of the type [command1, command1, command1,

...], a straightforward approach is to add guard clauses of the form shown in
listing 1.2. Note that the symbols p cont, p 1,. . . are meant to represent float
constants between 0 and 1, and can be adjusted as needed. In effect, some sub-
trees of the SLD-tree are then randomly left unexplored.

A similar approach was proposed by Casso et. al. in [3]. Their randomization
is presented as a modification to the Prolog interpreter; equivalently, it can be
implemented using meta-predicates. Essentially, Casso et. al. shuffle the list of
input clauses whose head unifies with the current goal, instead of iterating over
it in the usual left-to-right fashion. They do not drop rules. The termination of
the program is instead enforced via depth-control. It is thus not difficult to see
that the random approach itself merely alters the order of test-cases, but not
their number. As such, the questions concerning the number of test-cases (that
we study here) do not make sense for their approach.

However, one can augment the shuffling approach due to Casso et. al. by ad-
ditionally dropping several items from the set of unifying rules prior to shuffling.
We do this with an independent Bernoulli trial for each rule (i.e. the number of
dropped rules follows a Binomial). The resulting algorithm shares many prop-
erties with our scheme above (in particular, the results from the next section
apply). Results regarding hitting times require a more involved variant of the
analysis given in section 3.2. Due to space constraints, we cannot elaborate here.

3.1 Number of Generated Tests

The program P shown in listings 1.1 and 1.2 gives rise to a probabilistic number
of test cases. We study the questions: Is this number finite? If so, what is the
expected number of test-case?

Impact and Performance of Randomized Test-Generation using Prolog 7

♯ s1

s2

...

sr

c1

c2

...

⊥cr

pc
1− pc

1− p1
p1

1− p2
p2

1− pr−1

pr

1
−
pc

1
−
pc

1

1
−
pc

1− pr

α
=
ε

α
=
1

α
=
r

s1

c1· · ·

..
.

..
.

sr

cr· · ·

pc

1
−
p1

p1

1
−
pr

−1

pr

1
−

p
c

pc

pc

1
−
pr

1− pc

s1

c1· · ·

..
.

..
.

sr

cr· · ·

pc

1
−
p1

p1

1
−
pr

−1

pr
1
−

p
c

pc

pc

1
−
pr

1− pc

Fig. 1: The Markov chain corresponding to P with Init = ♯ and blocks α ∈
{1, . . . , r}∗ surrounded by blue boxes.

The program P gives rise to an infinite Markov chain, which is based on the
SLD-tree corresponding to P. Recall that P is governed by some probabilities
p cont, p 1, . . . , which we will denote by pc, p1, . . . , pr. The Markov chain is
depicted in fig. 1. Note that we model choice points via the states si. This is
necessary, because P will backtrack when a call to command1 fails, and proceed
to command2 with probability p2. Double-circles denote output states — that
is, whenever such a state is visited, a test case terminating in that state is
generated. Node ♯ corresponds to the empty list. ⊥ is the only absorbing state.
It corresponds a termination of the resolution algorithm.

The blue boxes denote areas that share a common structure. We call these
areas blocks. We can uniquely identify each block by a finite sequence α ∈
{1, . . . , r}∗. For any state s in the Markov chain, we denote by Block(x) the
unique block that contains it. For any label occurring in a block (s1, s2, . . . , sr
and c1 . . . , cr) and a block α, write sα1 , c

α
1 , . . . for the unique state with that

label in block α. In this way, we can identify any state in the Markov chain. Put
differently, the Markov chain is given by a state space S = {sαi , cαi | 1 ≤ i ≤

8 M. Gelderie, M. Luff, M. Peltzer

r, α ∈ {1, . . . , r}∗} ∪ {⊥, ♯} and transition probabilities p(s, s′) for s, s′ ∈ S:

p(♯, sε1) = pc

p(♯,⊥) = 1− pc

p(sαi , s
α
i+1) = 1− pi 1 ≤ i < r

p(cαi , s
α
i+1) = 1− pc 1 ≤ i < r

p(cαi , s
α·i
1) = pc 1 ≤ i ≤ r

p(sαi , c
α
i) = pi 1 ≤ i ≤ r

The dashed upward arrows (which correspond to backtracking to a lower-recursion
level) are somewhat more technical to define. Those arrows originate in states
of the form sαr or cαr . There are several cases to consider:

a) α ∈ {1, . . . , r}∗ · i for some 1 ≤ i < r
b) α ∈ {1, . . . , r}∗ · i · r+ for some 1 ≤ i < r
c) α ∈ r∗

This motivates the following transition probabilities

p(sα·ir , sαi+1) = 1− pr 1 ≤ i < r case a)

p(cα·ir , sαi+1) = 1− pc 1 ≤ i < r case a)

p(sα
′·i·r···r

r , sα
′

i+1) = 1− pr 1 ≤ i < r case b)

p(cα
′·i·r···r

r , sα
′

i+1) = 1− pc 1 ≤ i < r case b)

p(sr···rr ,⊥) = 1− pr case c)

p(cr···rr ,⊥) = 1− pc case c)

We call edges from a block β · α to a state in block β or from any block to
⊥ an upward edge. They correspond precisely to the dashed arrows in fig. 1. If
the Markov chain follows such an edge, we say block β · α is left upward or that
the chain traverses upward at that point. A block that has been left upward, is
never visited again.

It is immediate that every state is visited at most once. There are no two
states that can be reached from one-another. Note further that if we omit the
dashed arrows and the state ⊥, the resulting graph structure is an infinite,
finitely branching tree. Yet, it is conceivable that the terminal state ⊥ is never
reached, because the sequence of states visited from ♯ is infinite. The following
proposition shows that this is not the case, provided pc < 1.

Proposition 1. Let s ∈ S be any state. If pc < 1, then all sequences originating
in s eventually leave Block(s) upward. In particular, ⊥ is visited eventually.

Proof. Let α = Block(s). It is sufficient to show the result for s = sα1 . We first
study the special case that there is an infinite path that never traverses upward.
Pick an infinite path s0s1s2 · · · through the chain that never traverses upward.

For every n, the prefix s0 · · · sn must traverse at least tn
def
= 1 + ⌊ n

2r ⌋ edges of

Impact and Performance of Randomized Test-Generation using Prolog 9

the form (cβi , s
β·i
1) (for correspondingly many distinct blocks β). This is because

inside a block, there are only 2r states and no cycles. Hence, the probability
of such a prefix is at most ptnc which tends to 0 as n → ∞. As a result, the
probability of any path that never traverses upward is 0.

Now for any i, consider the subtree of nodes below cαi that are visited. Since
every node in the Markov chain can be visited at most once, the only option to
remain in this tree indefinitely is for the tree to be infinite. However, the Markov
chain is finitely branching. Therefore, the subtree of visited nodes below cαi is
finitely branching. By König’s lemma, this tree contains an infinite path and
hence has probability 0. ⊓⊔

Corollary 1. Let α be any block. The probability of reaching α from sε1 (i.e.
from the initial block) is:

Pr[Hα < ∞] = p|α|c ·
|α|∏
i=1

pαi
< ∞

Consequently, the probability of reaching α from ♯ is p
|α|+1
c ·

∏|α|
i=1 pαi

.

Let s ∈ S. We denote by N(s) the random variable that counts the total
number of states visited from s (including those in downstream blocks), before
Block(s) is left upward. A useful observation is that N(s) = HE

s can also be

expressed as a hitting time, where E = {sβi | β ≺ Block(s), 1 ≤ i ≤ r} ∪ {⊥}.
Note that it would suffice to take the subset of E which contains sβαi+1 for any
β = α1 · · ·αi−1 ≺ α. To define this set, we would have to work around the
case αi = r — indeed, if α ∈ r∗, then E = {⊥}. So we define E as larger
than needed purely to simplify notation. Note moreover that E depends on
α = Block(s). Since α is usually clear from context, we simply write E, but also
use the notation Eα when needed.

Lemma 1. Let s ∈ S and write pmax = max{p1, . . . , pr}. If pc < 1 and η
def
=

r · pmax · pc < 1, then E[N(s)] is finite.

Proof. Let α = Block(s). It is obvious that N(xα) ≤ N(sα1) for all x ∈ S with
Block(x) = α. It therefore suffices to show that N(sα1) is finite. In the remainder
of this proof, we write ŝ = sα1 .

Let now β be any block and let Mβ denote the number of states visited

in block β from sβ1 . Clearly Mβ ≤ 2r. Let furthermore Iβ = 1Hβ
ŝ <∞ denote

the indicator random-variable of the event that β is visited from ŝ. Note that
both random-variables are independent because the underlying random events
in P are independent and we count by Mβ only states that are visited once β is
entered. We have:

N(ŝ) =
∑

β∈α·{1,...,r}∗

Iβ ·Mβ

There are precisely rl blocks that have distance l ∈ N from α. For each such
block β = α · β1 · · ·βl, the probability of reaching it from α is Pr[Iβ = 1] =

10 M. Gelderie, M. Luff, M. Peltzer

plc ·
∏l

i=1 pβi
by corollary 1 (if l = 0 then β = α and the probability is 1). Then

Pr[Iβ = 1] ≤ (pmax · pc)l for all β. This gives (using linearity of expectation and
that Iβ is independent from Xβ for all β):

E[N(ŝ)] =
∑

β∈α·{1,...,r}∗

E[Iβ] · E[Xβ] ≤
∞∑
l=0

rl · (plc · plmax) · 2r

= 2r ·
∞∑
l=0

ηl =
2r

1− η

⊓⊔

Let s ∈ S. Denote by O(s) the number of output states that are visited from
s before Block(s) is left upward. Clearly O(s) ≤ N(s).

Theorem 1. Let pc < 1 and pc · r ·max{p1, . . . , pr} < 1. Then for any block α

E[O(sα1)] =

∑
pi

1− pc
∑

pi
and E[N(sα1)] =

r +
∑

pi
1− pc

∑
pi

Proof. C
def
= E[N(sα1)] is finite by lemma 1. Note that C is independent of α by

the strong Markov property. We recall that N(sα1) = HA
sα1

is a hitting time, where

A = {sβi | β ≺ α} ∪ {⊥}. In the remainder of the proof, we drop the superscript
Greek letter for all states in α; i.e. s1 is understood to mean sα1 .

Every path from s1 to A must visit s2, . . . , sr. Thus, by the strong Markov

property, N(s1) =
(∑r−1

i=1 H
si+1
si

)
+HA

sr . By linearity of expectation and eq. (1)

C = E[N(s1)] =

r−1∑
i=1

hsi+1
si + hA

sr =

r−1∑
i=1

1 + pi · hsi+1
ci + (1 + pr · hA

cr)

=

r−1∑
i=1

1 + pi(1 + pc · hsi+1

sα·i
1︸ ︷︷ ︸
C

) + (1 + pr(1 + pc · hA
sα·r
1︸ ︷︷ ︸
C

))

= r +

r∑
i=1

pi + Cpc

r∑
i=1

pi

Solving for C proves the theorem. The proof for E[O(s1)] is similar. ⊓⊔

Note that for any given state sα1 , the mean hitting time h
sα1
♯ =

∑
n≥0 Pr[H

sα1
♯ ≥

n] ≥
∑

n≥0 1 − pc = ∞ (where we use E[X] =
∑

n≥0 Pr[X ≥ n] for any ran-
dom variable that only takes on positive integer values). So although we have
a non-zero probability of selecting every test, we won’t, informally speaking, do
so on average. Naturally, this is solved by repeating the experiment a sufficient
number of times. This is the content of the next section.

Impact and Performance of Randomized Test-Generation using Prolog 11

3.2 Infinite Looping and Time-To-Hit

As shown in lemma 1, the program in listing 1.1 terminates eventually. As a
result, every state except ⊥ in the Markov chain we studied above is transient
and, moreover, the number of produced test-cases is always finite. In testing,
one aims at a high test coverage, and the number of test cases we produce in
this fashion, though free of duplicates, has a low chance of visiting tests in deep
blocks. A natural approach is to loop on the predicate t/1 like so:

main_loop(X) :- repeat , t(X).

With respect to our Markov chain this amounts to removing ⊥ and to instead
redirect any arc into ⊥ to ♯. The resulting chain is recurrent (indeed positive
recurrent) and we compute the mean hitting time of any state. In what follows,

we will assume p1 = p2 = · · · = pr
def
= p such that r · p · pc < 1 (as in theorem 1).

Moreover, we assume that p(♯, sε1) = 1, so that the empty list is never selected
as an output. This simplifies the formulas below slightly, but has otherwise no
effect on the line of reasoning we give here.

Given the conditions of theorem 1, there is a constant C = N(sα1) that is
independent of the value of α. As noted before, C = hEα

sα1
is a mean hitting time

where Eα = {sβi | β ≺ α, 1 ≤ i ≤ r} ∪ {♯} (note that we modified the definition
of E used in the previous section by replacing ⊥ by ♯). Recall that we usually
drop the subscript α, because it is clear from context.

If we hop from one state sαi to its neighbor sαi+1 we might traverse the tree
below sα·i1 with probability p · pc. That step will visit C states. This means (by
eq. (1)):

h
sαi+1

sαi
= 1 + p(1 + pcC)

def
= ∆

More generally the mean hitting time within a block is again independent of
α and can be computed as:

h
sαi
sα1

= h
sα2
sα1

+ h
sα3
sα2

+ · · ·+ h
sαi
sαi−1

= (i− 1)∆ (2)

We define the leave upward time Usαi
= hE

sαi
where E = Eα as above. Note

that the value Usαi
∈ N ∪ {∞} does not actually depend on α. This justifies

writing Ui = Usαi
. It is obvious that C = U1. Moreover, by using the same

derivation as that in eq. (2):

Ui = (r − i+ 1)∆ 1 ≤ i ≤ r (3)

We already noted that C = U1. A related quantity is the hitting time of ♯
from any sαi , α = α1 · · ·αt, which we may compute using the intermediate leave
upward times:

h♯
sαi

= Ui + Uαt+1 + · · ·Uα1+1

Note that we abuse notation: Equation (3) gives Ur+1 = 0. While sαr+1 does not
exist and hence the corresponding hitting time is not defined, it is convenient to
allow such terms and exploit that Uαj+1 = 0 whenever αj = r (1 ≤ j ≤ t).

12 M. Gelderie, M. Luff, M. Peltzer

With this, we may compute:

h♯
sαi

= Ui +

t∑
k=1

Uαk+1 = ∆ ·

(
(r − i+ 1) +

t∑
k=1

(r − (αk + 1) + 1)

)

= ∆ ·

(
1 +

t∑
k=0

r − αk

)
where α0

def
= i (4)

Note again that the formula works correctly, if i = r+ 1: Say α = rrr. Then we
are in the process of falling back to ♯ and the equation gives 0. While the hitting
time is again not defined for the non-existent state sr+1, we will sometimes
have to compute the hitting time of ♯ from the “right neighbor” of si+1. In these
situations, abusing notation in this way is useful because we need not distinguish
between cases where i < r and those where i = r.

Finally, we may now compute the hitting time of an arbitrary state in terms
of hitting times in intermediate blocks, again using eq. (1). Let α = β · j.

h
sα1
♯ =h

sβj
♯ + 1

+ (1− p)(h♯

sβj+1

+ h
sαi
♯) (fall through to sβj+1)

+ p(1 + (1− pc)(h
♯

sβj+1

+ h
sαi
♯)) (no visit to next block α)

=h
sβj
♯ + 1 + p+ (h♯

sβj+1

+ h
sαi
♯)(1− ppc)

This gives

h
sα1
♯ =

h
sβj
♯ + 1 + p+ (1− ppc)h

♯

sβj+1

ppc

and together with eq. (2) and eq. (4), recalling that α|α| = j, we have:

h
sαi
♯ =

h
sβj
♯ + 1 + p+ (1− ppc)h

♯

sβj+1

ppc
+ (i− 1)∆

=
h
sβj
♯

ppc
+

1

ppc

1 + p+ (1− ppc)(

|α|∑
k=1

r − αk)∆

+ (i− 1)∆ (5)

The following theorem gives a closed formula:

Theorem 2. Let sαi for some α = α1 · · ·αt. Let ν = ppc and ν · r < 1. Then

h
sαi
♯ = ν−t + (i− 1)∆+

t∑
k=1

1 + p+ (αk − 1)∆+ (1− ν)
∑k

s=1(r − αs)∆

νt+1−k
(6)

Impact and Performance of Randomized Test-Generation using Prolog 13

Proof. By induction on t. If t = 0, then α = ε and by eq. (2), we have h
sεi
♯ =

1 + (i − 1)∆. Moreover the empty sum in eq. (6) equates to 0 establishing the
induction base.

Now let t > 0 and assume the statement holds for t − 1. By induction, we

may replace h
sβj
♯ in eq. (5) with eq. (6):

1

ν

(
ν−(t−1) + (αt − 1)∆+

t−1∑
k=1

1 + p+ (αk − 1)∆+ (1− ν)
∑k

s=1(r − αs)∆)

νt−k

)

+
1

ν

(
1 + p+ (1− ν)(

t∑
s=1

r − αs)∆

)
+ (i− 1)∆

=ν−t +
t−1∑
k=1

1 + p+ (αk − 1)∆+ (1− ν)
∑k

s=1(r − αs)∆)

νt+1−k

+
(1 + p+ (αt − 1)∆+ (1− ν)(

∑t
s=1 r − αs)∆)

νt+1−t
+ (i− 1)∆

=ν−t + (i− 1)∆+

t∑
k=1

1 + p+ (αk − 1)∆+ (1− ν)
∑k

s=1(r − αs)∆

νt+1−k

⊓⊔

Corollary 2. Let ν = p · pc with ν · r < 1. Then h
sαi
♯ ∈ Θ(ν−t) for any α =

α1 · · ·αt.

Proof. Write eq. (6) as

ν−t +A+ ν−t−1
t∑

k=1

Bk +
∑k

s=1 Ds

ν−k

for suitable constants (in t) A ≥ 0, Bk ≥ 0, and Ds ≥ 0, whereby h
sαi
♯ ∈ Ω(ν−t).

Choose suitable largest values B ≥ Bk for all t ∈ N, 1 ≤ k ≤ t, and D ≥ Ds

for all 1 ≤ s ≤ t. Bound eq. (6) from above by

ν−t +A+ ν−t−1
t∑

k=1

B +D · k
ν−k

≤ ν−t +A+ ν−t−1(B +D) ·
t∑

k=1

k

ν−k

A well-known calculation via derivatives gives
∑t

k=1 k · νk = ν
∑t

k=1 kν
k−1 ≤

ν
∑∞

k=1 kν
k−1 = ν · d

dν

∑∞
k=0 ν

k = ν
(1−ν)2 . With that we have

ν−t +A+ ν−t−1
t∑

k=1

B +D · k
ν−k

≤ ν−t +A+ (B +D)
ν−t

(1− ν)2
∈ O(ν−t)

⊓⊔

14 M. Gelderie, M. Luff, M. Peltzer

0 1 2 3 4
Goal Length

0

500

1000

1500

2000

2500

3000

3500

Re
su

lts

Results to hit Goal
0.78
0.82
0.86
0.9

(a) Guards: Number Results

0 1 2 3 4
Goal Length

0

100

200

300

400

500

600

700

Ite
ra

tio
ns

Iterations to hit Goal
0.78
0.82
0.86
0.9

(b) Guards: Number Iterations

1 2 3 4
Goal Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
su

lts

Amount of Results
0.10
0.14
0.18
0.22

(c) Random Select: Number Results

1 2 3 4
Goal Length

0

200

400

600

800

1000

1200

1400

Ite
ra

tio
ns

Iterations
0.10
0.14
0.18
0.22

(d) Random Select: Number Iterations

Fig. 2: Iterations and results until test-case [second, ..., second] is reached.

4 Evaluation

In the following section, we empirically evaluate the randomization approaches
outlined in section 3. We implement the strategy via guards using SWI-Prolog
[20]. To modify the shuffle-and-drop strategy, we choose Go-Prolog [10] Go-
Prolog has a small and easily modifiable code-base, which simplifies experiments
of this kind. We benchmark these approaches with various choices for the con-
figurable probabilities. All the benchmarks were done using a slightly altered
version of the program from listing 1.1: We limited the number of available
commands to three. Moreover, each command/1 predicate simply unifies its ar-
gument with a corresponding constant (in our case first, second, and third).
We executed each benchmarks 1000 times. The results are shown in fig. 2.

The goal length each benchmark lists on its x-axis is the length of a list
consisting solely of the constant symbol second the respective number of times.
This guarantees that we would not find this test case with the standard depth-
first, left-first search behaviour, but also that is not the path that would be
picked last with depth-first search. For our implementation, we relied on Janus
[1] for SWI as the Python-Prolog bridge to gather the results.

Impact and Performance of Randomized Test-Generation using Prolog 15

Guard-Approach Benchmarks: Every command/1 predicate had an equal proba-
bility of 1

3 for the steady probability. The different plots mark different contin-
uation probabilities pc used for the respective queries.

Figure 2a shows the number of results until a specific target test-case is found.
As expected, the number of results drastically increases with the target list size.
Further, only a continuation probability of 0.9 has a higher number of results.
Figure 2b shows how many iterations were necessary until the determined target
was found. Similar to the number of results, the number of iterations also grows
with increasing list size of the expected outcome. As the continuation probability
increases the total number of iterations decreases.

Shuffle-and-Drop Benchmarks: As described above, for the Go-Prolog variant
we implemented a drop-probability as discussed in section 3. Otherwise, the
benchmarks are still conducted using the same pattern as described above for
increasing goal lengths. Figure 2c shows the number of produced results whereas
fig. 2d shows the number of iterations.

Note that dropping a clause with probability 0.1 is the same as proceeding to
explore it with probability 0.9. Hence, the probabilities in figs. 2c and 2d are dual
to those above. However, the shuffle-and-drop randomization strategy is much
more coarse than the guard strategy by design: The 0.1 drop probability applies
to both the t predicate as well as the command{1,2,3} predicates. This is quite
different from the previous scenario, where pc = 0.9 ≫ p1 = · · · = pr = 0.33
were distinct. Consequently, both the number of iterations and the number of
results are notably higher for the shuffle-and-drop approach: A probability of 0.1
to drop a clause produces significantly more solutions until a specified goal is
found. The drop probabilities of 0.14 and 0.18 are rather similar for all specified
goal lengths. On the other hand, the number of iterations signals that the number
of iterations rises with a higher dropping probability. In fig. 2c, the probability
0.14 outperforms both 0.10 and 0.18, hinting at an inflection point. This is likely
due to the dual role of the dropping probability, which governs the exploration
of a specific test and the probability of exploring the SLD-tree below it: Too
high, and the number of tests-until-target increases; too low, and the target-test
is skipped at the target depth.

5 Conclusion

We have presented two approaches to randomize the SLD derivation of test-
cases in Prolog and studied their performance in terms of expected time to hit
a test-case, and mean number of test-cases produced. To this end, we presented
a detailed analysis of the random behavior of test-case generation using Prolog
using Markov chains. Our theorems allow a precise calibration of the probabil-
ities to adjust the expected number of test-cases per query. When looping on
such a query, the rate of growth of the mean-hitting time for a given test-case
is exponential in its depth, where the base is the product of the involved prob-
abilities. We then compared both strategies and various sets of values for the

16 M. Gelderie, M. Luff, M. Peltzer

involved probabilities empirically. We find that the guard approach that uses an
unmodified Prolog implementation provides a very fine-grained control over the
randomization and thus produces test-cases quicker.

In future work, we plan to study the semantics of this approach when negation-
as-failure is involved. In particular, randomization may lead to a false refutation
of q(t 1,...,t k) in the goal \+ q(t 1,..., t k). However, this may be ac-
ceptable, if it occurs with low probability. In a similar vein, the treatment of
negation as failure might require entirely different randomization strategies than
we have presented here, which is another interesting topic for future research.

References

1. Andersen, C., Swift, T.: The janus system: a bridge to new prolog applications. In:
Prolog: The Next 50 Years, pp. 93–104. Springer (2023)

2. Bougé, L., Choquet, N., Fribourg, L., Gaudel, M.C.: Application of prolog to test
sets generation from algebraic specifications. In: International Joint Conference on
Theory and Practice of Software Development. pp. 261–275. Springer (1985)

3. Casso, I., Morales, J.F., López-Garćıa, P., Hermenegildo, M.V.: An integrated ap-
proach to assertion-based random testing in prolog. In: International Symposium
on Logic-Based Program Synthesis and Transformation. pp. 159–176. Springer
(2019)

4. Denney, R.: Test-case generation from prolog-based specifications. IEEE Software
8(2), 49–57 (1991)

5. Dewey, K., Roesch, J., Hardekopf, B.: Language fuzzing using constraint logic pro-
gramming. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. p. 725–730. ASE ’14, Association for Comput-
ing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2642937.
2642963

6. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE transactions on
Software Engineering (4), 438–444 (1984)

7. Gorlick, M.M., Kesselman, C.F., Marotta, D.A., Parker, D.S.: Mockingbird: a log-
ical methodology for testing. The Journal of Logic Programming 8(1-2), 95–119
(1990)

8. Gu, Q.: Llm-based code generation method for golang compiler testing. In: Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 2201–2203 (2023)

9. Hoffman, D.M., Strooper, P.: Automated module testing in prolog. IEEE Trans-
actions on Software Engineering 17(9), 934 (1991)

10. ichiban/prolog: ichiban/prolog, https://github.com/ichiban/prolog, visited:
2024-05-03

11. Ince, D.C.: The Automatic Generation of Test Data. The Computer Journal 30(1),
63–69 (01 1987). https://doi.org/10.1093/comjnl/30.1.63

12. Kim, Y.G., Hong, H.S., Bae, D.H., Cha, S.D.: Test cases generation from uml state
diagrams. IEE Proceedings-Software 146(4), 187–192 (1999)

13. Meyer, B., Ciupa, I., Leitner, A., Liu, L.L.: Automatic testing of object-oriented
software. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack,
H., Plášil, F. (eds.) SOFSEM 2007: Theory and Practice of Computer Science. pp.
114–129. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

https://doi.org/10.1145/2642937.2642963
https://doi.org/10.1145/2642937.2642963
https://doi.org/10.1145/2642937.2642963
https://doi.org/10.1145/2642937.2642963
https://github.com/ichiban/prolog
https://doi.org/10.1093/comjnl/30.1.63
https://doi.org/10.1093/comjnl/30.1.63

Impact and Performance of Randomized Test-Generation using Prolog 17

14. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix
utilities. Commun. ACM 33(12), 32–44 (dec 1990). https://doi.org/10.1145/
96267.96279

15. Miller Jr, E.F., Melton, R.A.: Automated generation of testcase datasets. In: Pro-
ceedings of the international conference on Reliable software. pp. 51–58 (1975)

16. Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Math-
ematics, Cambridge University Press (1998)

17. Pesch, H., Schnupp, P., Schaller, H., Spirk, A.P.: Test case generation using prolog.
In: Proceedings of the 8th international conference on Software engineering. pp.
252–258 (1985)

18. Ramler, R., Winkler, D., Schmidt, M.: Random test case generation and manual
unit testing: Substitute or complement in retrofitting tests for legacy code? In: 2012
38th Euromicro Conference on Software Engineering and Advanced Applications.
pp. 286–293. IEEE (2012)

19. Siddiq, M.L., Santos, J., Tanvir, R.H., Ulfat, N., Rifat, F.A., Lopes, V.C.: Exploring
the effectiveness of large language models in generating unit tests. arXiv preprint
arXiv:2305.00418 (2023)

20. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and
Practice of Logic Programming 12(1-2), 67–96 (2012)

21. Xu, F.F., Vasilescu, B., Neubig, G.: In-ide code generation from natural language:
Promise and challenges. ACM Trans. Softw. Eng. Methodol. 31(2) (mar 2022).
https://doi.org/10.1145/3487569

22. Zech, P., Felderer, M., Breu, R.: Security risk analysis by logic programming. In:
Risk Assessment and Risk-Driven Testing: First International Workshop, RISK
2013, Held in Conjunction with ICTSS 2013, Istanbul, Turkey, November 12, 2013.
Revised Selected Papers 1. pp. 38–48. Springer (2014)

23. Zech, P., Felderer, M., Breu, R.: Knowledge-based security testing of web applica-
tions by logic programming. International Journal on Software Tools for Technol-
ogy Transfer 21, 221–246 (2019)

24. Zeng, Z., Ciesielski, M., Rouzeyre, B.: Functional test generation using constraint
logic programming. In: SOC Design Methodologies: IFIP TC10/WG10. 5 Eleventh
International Conference on Very Large Scale Integration of Systems-on-Chip
(VLSI-SOC’01) December 3–5, 2001, Montpellier, France. pp. 375–387. Springer
(2002)

https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3487569

	Impact and Performance of Randomized Test-Generation using Prolog

