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We consider traffic monitoring via license plate recognition. Anonymizing license plates by substituting ran-

domized identifiers is a common privacy enhancing strategy in this situation. However, the systematic effect of
this anonymization strategy has not been fully explored. We study the information gain of an adversary upon
observing such anonymized output. We find the effectiveness of randomized IDs to deteriorate with decreas-
ing popularity of a given route. Moreover, we study the effect differential privacy has on the situation, given
that an adversary must be assumed to have prior knowledge about the likelihood of various traffic patterns. We
find that travel participants with a very strong preference for a given route are put most at risk.

1 INTRODUCTION

In the recent past, smart traffic monitoring systems
(TMS) have received considerable attention from both
the academic community as well as from commer-
cial vendors (for example (Jain et al., 2019; Biswas
et al., 2016; Bisio et al., 2022; [Rana et al., 2021;
swa, 2024; Djahel et al., 2015; Gade, 2019} Bhardwaj
et al., 2022))). The aim of smart traffic monitoring sys-
tems is to automatically collect data that are then used
to facilitate other use-cases, such as traffic manage-
ment or city planning. There are many different ways
in which a TMS can be built. The kind of data that
it records depends, in part, on that architecture (Rana
et al., 2021} |Jain et al., 2019). Examples include sys-
tems based on digital image processing (DIP) (Krish-
namoorthy and Manickam, 2018)), vehicle-to-X net-
works (Du et al., 2015), probe vehicles (Feng et al.,
2014), and even drone-based approaches (Bisio et al.,
2022). DIP-based approaches do not require any co-
operation from the vehicles and are thus compatible
with existing vehicle technology. When combined
with license-plate recognition (LPR) software (Jain
et al., 2019; Du et al., 2013), they offer the possibil-
ity to track vehicles through a city and build statistics
from these data.

Privacy is a particular concern when LPR is used.
First, the license plate clearly is a piece of person-
ally identifiable information (PII) — unlike, for ex-
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ample, a birds-view snapshot of a busy intersection.
Second, indiscriminate scanning of license plates is
difficult to base on explicit consent (which is rela-
tively straightforward to do when using vehicle-to-X
networks, for instance). As a result, solutions rely-
ing on LPR usually employ some form of pseudo-
anonymization (see e.g. (Gao et al., 2019)). Exist-
ing commercial solutions rely on anonymization tech-
niques (swa, 2024), replacing the license plate by an
opaque, pseudo-random ID for each vehicle that is
used to correlate individual locations at a central (e.g.
cloud) service. Using pseudo-random IDs in this way
is a relatively straightforward technique that is simple
to implement. This approach can also be augmented
with differential privacy (Gelderie. et al., 2024). Yet
its security properties are not fully understood (see
also Related Work below).

We study the question: “What information can be
inferred from the anonymized data collected in this
way, if the attacker has prior knowledge on the traffic
patterns?” More specifically, we study this question
in two settings: In its most basic nature, the data is
simply anonymized and transmitted to a server. We
call this the anonymization scenario. This scenario
corresponds to what we have observed in commercial
products and literature (see Related Work for details).
By contrast, the differential privacy scenario consid-
ers the case where the obfuscated data that reaches
the server satisfies the requirements of differential pri-
vacy (Dwork, 2006 Dwork et al., 2006)). Our main
contribution is a precise mathematical treatment of



these scenarios in the framework of information the-
ory.

In the anonymization scenario, we ask: Can the
server de-anonymize the data given prior knowledge
about a victim’s route preferences? This is the well-
known de-anonymization attack. Given an opaque ID
and the route which it travels (both are part of the
data-set such a server consumes as part of its opera-
tion), we show that an adversarial server learns infor-
mation inversely proportional to the routes popularity
(the number of cars expected to drive on it at a given
time).

In the differential privacy scenario, the server sees
data that is anonymized and subjected to randomized
noise. In accordance with the typical definition of dif-
ferential privacy, the server receives a given data set
with roughly equal probability regardless of whether
some specific individual drove along some route or
not. We ask: What can the server ascertain about
the probability of a specific individual driving along
a given route under these circumstances, given that
the server has prior knowledge about the overall traf-
fic patterns (i.e. the underlying probability distribu-
tion). We show that an attacker can infer information
about a target vehicle, if said vehicle shows a strong
preference for a specific route. Since this is a fairly
common situation, the privacy of individuals is at in-
creased risk, even if differential privacy is guaranteed.

The role of prior knowledge in the study of pri-
vacy is both well-known and easy to ignore. In the
context of differential privacy, for example, it is al-
ready discussed in some detail in (Dwork et al., 2014)
to motivate the formal definition of differential pri-
vacy). Indeed, the definition of differential privacy
is intended to quantify privacy by excluding prior
knowledge from the equation (see again (Dwork et al.,
2014)). This is a sensible approach from a formal
point of view. But in practice, prior knowledge exists
and needs to be taken into account when the de-facto
privacy of a system is to be quantified. We think that
our results show that simply anonymizing data and
adding differential privacy does not sufficiently pro-
tect users under all circumstances. Care must be taken
to restrict monitoring to sufficiently popular routes.
We hope this paper can serve as a first step in study-
ing the actual privacy guarantees that can be offered
to a travel participant by modern license plate moni-
toring systems in practice.

1.1 Related Work

Traffic Monitoring The area of traffic monitoring
is a wide field and only a subset of the existing re-
search is pertinent to this paper. Generally, traffic

monitoring systems fall into three categories (Jain
et al., 2019): i) in situ (e.g. sensors embedded into the
road surface) ii) vehicular (e.g. probe vehicles or ve-
hicular networks) iii) digital image processing (DIP).
Many papers presenting specific technical solutions
exist (Biswas et al., 2016} Jain et al., 2019; [Feng
et al., 2014; [Du et al., 2015} |Baran et al., 2014; [Kr-
ishnamoorthy and Manickam, 2018; Bhardwaj et al.,
2022; [Khanna et al., 2019; |Rana et al., 2021} Rizwan
et al., 2016).

Of particular relevance to this paper is the third
category. Again there are many works on DIP based
systems (Du et al., 2013; |Baran et al., 2014; Krish-
namoorthy and Manickam, 2018)) from the conven-
tional pole mounted camera to even drone-based traf-
fic monitoring systems (Bisio et al., 2022)).

Altogether, these prior works highlight the rele-
vance of analyzing and addressing gaps in privacy
guarantees offered by proposed anonymization tech-
niques.

Differential Privacy Differential Privacy (DP) was
introduced by Dwork, Nissim, McSherry, and Smith
in (Dwork et al., 2006} [Dwork, 2006). DP has since
seen sustained and intensive research activity, result-
ing in a slew of research studying various application
domains (works pertaining to traffic monitoring and
smart cities are discussed below). Of general inter-
est are observations on the limits of DP, particularly
if the adversary is assumed to have prior knowledge
(Dwork et al., 2014).

Some works on DP investigate continual release
of statistics that are built from streams of events
(Dwork et al., 20105 |Shi1 et al., 2011; Kellaris et al.,
2014; (Chan et al., 2011; Jain et al., 2023)). Those
works lay algorithmic foundations and provide lower
bounds on the noise that is required to achieve DP. In
particular, some works study the aggregation of statis-
tics from multiply locations or agents (Bonawitz et al.,
2017} Bittau et al., 2017} |Cheu et al., 2019} |Corrigan-
Gibbs and Boneh, 2017; |Chan et al., 2012)). One
important aspect of these works is that they classify
DP algorithms as either working in a central model
or a local model. In the central model, DP is imple-
mented by a trusted party (the curator) that sees all
data-points in the clear. This curator then outputs a
perturbed version of this statistic that meets the def-
inition of DP. In the local model, on the other hand,
one ensures that even subsets of agents involved in
the collection of data (so-called coalitions) see only
DP data. In particular, they usually ensure that the
curator sees only a perturbed version of the raw data.

While the decentralized nature and focus on time-
series data considered in these works is relevant to



traffic monitoring, their focus is on algorithmic foun-
dations and security guarantees in the context of DP.
Prior knowledge of an adversary is not taken into ac-
count and, in some cases (e.g. smart metering) would
be different from the use-case of traffic monitoring.

Privacy in Traffic Monitoring Many papers have
tackled the problem of privacy in traffic monitoring
from a solutions perspective (e.g. (Li et al., 2018;
Qu et al., 2019} Jain et al., 2019; [Sun et al., 2021}
Gelderie. et al., 2024))). Those papers typically pro-
pose a specific privacy measure and analyze its se-
curity in the underlying model. For example, works
with a focus on differential privacy (Gelderie. et al.,
2024; Sun et al., 202 1)) prove that the definition of DP
is satisfied. But by itself, DP says very little about
the situation when an attacker has prior knowledge.
Unfortunately, in traffic monitoring it is particularly
easy for the attacker to acquire at least partial knowl-
edge about the probabilities of certain traffic patterns
(e.g. via products like Google Maps or because many
cities publish such data). We must assume that the ad-
versary has intimate knowledge of the overall traffic
movement patterns and their probability distribution.

In this vein, there are efforts quantifying privacy
loss (Gao et al., 2019). Gao et. al. study the privacy
of LPR in a somewhat similar setting to ours. Their
study is of an empirical nature and is based on a large
LPR dataset. We seek to augment these results by
performing a systematic mathematical analysis in the
framework of information theory.

A related line of research is concerned with the
privacy of vehicle data, such as trajectory information
(Ma et al., 2019; Zhou et al., 2018)). In these works,
the vehicles themselves actively participate in the data
gathering. This means that those architectures have a
wealth of privacy enhancing options at their disposal
that cannot be easily ported to LPR settings.

In the larger context of smart cities, even more
related works on privacy exist (e.g. (Husnoo et al.,
2021; Hassan et al., 2019; [Yao et al., 2023} [Kumar
et al., 2022 |Qu et al., 2019; |Gracias et al., 2023}, Jain
et al., 2019)). The field is very diverse, but we are not
aware of any works that investigate the effect of prior
knowledge on the privacy afforded by license plate
obfuscation or similar use-cases.

2 SETTING: ANONYMIZED
TRAFFIC MONITORING

As mentioned, we study traffic monitoring via license
plate recognition. It is assumed that each vehicle is

-
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Figure 1: Architecture Overview

equipped with a unique and readable license plate
[ from some finite set L that is recorded at certain
points in the city. We call such locations tracking
points (TPs). At each TP, a camera, or group of cam-
eras, will record the license plate of every vehicle that
passes by. This is depicted in fig. [I]

Tracking points (depicted as circles in fig. [1]) are
physical locations in the city at which data about cur-
rent traffic is gathered. They reside alongside roads,
usually junctions (depicted as gray boxes). TPs re-
port the recorded vehicles to a central statistics server
(depicted in blue). This server then builds a central
statistic about the number of vehicles per route form
this data.

Tracking points form a graph structure that we call
the city graph. If one assumes that every junction on
the city is a tracking point, the city graph is a faith-
ful representation of the street map in terms of the
roads and how they are connected. The relative dis-
tances between junctures are not reflected in this rep-
resentation. There is an obvious trade-off between the
number of TPs and the accuracy with which the city
graph models the street map, but we do not explore
that trade-off in this paper.

Definition 1 (City Graph). The set V of all tracking
points forms a graph G = (V, E), where E C V? is the
directed edge relation defined by the rule that (v,v') €
E whenever V' can be reached from v without visiting
a tracking point in between. We call G the city graph.

Let G = (V,E) be the city graph as described
above. We define the set R of routes as

R={viva--v | (vi,viy1) EE, 1 <i< Il €N}

Note that if every junction is a tracking point,
there is exactly one edge per road and direction. In



this case G is an exact model of the city street map
from a graph theoretic point of view (of course, dis-
tances and other non-graph theoretic properties are
not represented in this model).

When a vehicle passes through a tracking point, its
license plate is recorded. The TP then transmits a re-
port to a central statistics server for every vehicle that
it records. The server can compute the target statis-
tic St R — No, which simply counts cars on a given
route, from these reports. The statistic S is implicitly
a function of time: S(r) can vary over time for each
r € R. In this paper we will study snapshots of S at
some unspecified, yet fixed point in time 7. Notably,
all probability distributions that are studied depend on
t. The fact that we consider snapshots is no limitation:
The attacker’s advantage is then simply the maximum
over her per-time-step advantages.

The information about the traffic statistic at pre-
vious times is relevant to an attacker: The victim
might be known to normally drive route r; during
rush hours, but divert to r; if a certain intersection is
congested. In that situation, knowing whether or not
said intersection was congested 20 minutes ago has
an impact on the adversaries knowledge on the situ-
ation right now. However, the analysis conducted in
this paper extends to situations where an attacker has
knowledge about the last 7' time-steps for some fixed
T. It merely affects the probability of vehicles collid-
ing on IDs (see below).

The reports to the central server are of interest.
If the reports of tracking points to the server include
licence plate information, they expose sensitive data
to a central location. This is undesirable from both a
privacy as well as a security perspective. As a result,
one usually anonymizes this data in some way.

A typical pseudo-anonymization strategy ((swa,
2024} |Gao et al., 2019)) is to replace the license plate
with some random identifier. Here, TPs transmits an
opaque ID to the server instead of the license plate.
As long as the same vehicle is always assigned the
same opaque ID, the server can compute the same
statistic from this data. There are various ways in
which such a mapping can be implemented (for ex-
ample (swa, 2024) uses a hash function). We do not
consider those approaches in this paper. Instead, we
assume that there exists a binding of IDs, drawn from
a set U to license plates.

The mapping of license plates to IDs defined in
this way is of a temporary nature: Each time an ID is
assigned to a license plate, this binding has a time to
live (TTL). The TTL determines for how many hops a
license plate is tracked. It is always initialized to con-
stant value 7 € IN and decremented for every vertex

on the path that the given vehicle visit In particular,
the routes » € K that will be recorded have length at
most 7. Because of this, we will (abusing notation)
assume that & consists only of sequences of length at
most T and is, in particular, finite.

In this paper, we gloss over the fact that some ve-
hicles may not observed correctly: Their license plate
may be missing or otherwise unreadable, or the sys-
tem might fail to recognize them as vehicles due to
some unknown error. Note also that we do not con-
sider traffic participants that cannot be identified via a
license plate (cyclist and pedestrians).

The anonymization provided by the use of opaque
IDs hinges on the assumption that the knowledge
which license plate corresponds to a given opaque ID
is not known to an adversary. As mentioned before,
there are numerous ways in which such an assignment
could be implemented. If an approach involves cryp-
tography, for instance, the resulting security notion
is usually defined in terms of computational indistin-
guishability. By contrast, we define the security of the
system as follows:

Definition 2. A binding B: £ — U is secure, if B(I)
is a uniform random variable for each / € £ and B(!)
is independent of B(!') for all [ # I'.

Note that our security notion does not take the
challenges in implementing such a binding into ac-
count. For example, consider a system in which an
identifier U; € U is chosen uniformly at random for
each / € L. To ensure that all TPs report the same
value U; for [, this binding needs to be shared be-
tween TPs. This leads to a number of significant
cryptographic properties that the system must ensure,
such as (forward) secrecy and post-compromise secu-
rity. The way these systems ensure those properties
is another important aspect of the security of the sys-
tem. However, in this paper we focus purely on the
stochastic properties of the binding itself and leave an
investigation of the various technical options and se-
curity notions of secure bindings to future work.
Example 1. As an example, one might choose random
UUIDs (specifically variant 2 UUIDs in version 4; see
also (Leach et al., 2005)). Such a UUID contains 122
random bits. If N UUIDs are chosen uniformly at ran-
dom, this constitutes a secure binding.

Naturally, there may be collisions, though they are
rare: It is well-known (e.g. (Katz and Lindell, 2020))
that the probability of a collision is at most

N(N—1) _ N?
p(N) < h122 =122

'In practice, one will likely add another deprecation
mechanism based on elapsed time to account for situations
where a vehicle stops before the TTL expires.



So we have, say, p(N) < 107, whenever at most
N < 25! ~ 103 distinct vehicles traverse the city.
Since we can ignore collisions that do not occur si-
multaneously (i.e. where the two colliding occur-
rences of a UUID overlap in lifetime), we can lower
the number N of vehicles further to the maximum
number of vehicles that traverse the city within any
time-period.

3 SCENARIO 1: OBFUSCATED
TRAFFIC MONITORING

We now state formal privacy guarantees that are af-
forded by TMS using randomized bindings as out-
lined in section[2l Our main statement in theorem[2is
reminiscent of the well-known notions from cryptog-
raphy (see e.g. (Katz and Lindell, 2020)). Of note is
the role the expected value of cars per roads plays in
the privacy that the system affords.

In this section, we assume opaque identifiers are
chosen from the set U = ]B7‘, where A € N is a secu-
rity parameter. We assume secure bindings, as defined
in definition [2| However, we first study an idealized
setting, where we assume that collisions on IDs do not
occur: U; # Uy for all [ # I'. Such a binding is neither
practical, not secure in the sense of definition E] (the
variables U, are clearly not independent). We subse-
quently lift the result to the general case in theorem[2]

For notational convenience, we write [-] for events
defined by some function on the output of one or
more random variables. For example, if X1, ..., X, are
random variables with identical range, we may write
[Ji # j: X; # X;] for the event that not all X; are equal.

Formally, let (€,Pr) and (Q;,Pr;)?_, be proba-
bility spaces. Let X;: Q — €; be a random vari-
ables for 1 < i <n and ® a predicate on Q; X

X Q. We write [P(Xi,...,X,)] = {0 € Q|
DX (0),...,X,(0))} C Q for the event that P is
true.

As mentioned, we first study an idealized setting:
We assume that IDs are assigned via an injective func-
tion f: L — U that is chosen uniformly at random.
Write ¥ = {f: U — L | f injective}. We choose
f* < ¥ uniformly at random and assign to each/ € L
the ID f*(I). For notational convenience, we use a
random variable U; = f*(I) for [ € L.

We use some additional random variables for no-
tational convenience. Let [ € £ and write R; for the
random variable that assigns a route to /. If / does not
currently drive at all, then R; and U, take the special
value | ¢ UU L. Finally, we write D={l € L |U; #
L} for the random variable producing the set of cars
that drive.

Remark 1. Note that even if [ does not drive, the value
f*(1) is defined. However, we deliberately choose to
not define U; = f*(I) in the case where ! does not
drive. This is because in the model discussed in sec-
tion [2] IDs are only assigned to cars that drive. In
that situation, U; and R; cannot be independent. They
are only conditionally independent on the events ““/
drives”= [/ € D] or “I does not drive”= [/ ¢ D].

So, with a view to the more general situation of
theorem [2] we chose to adhere to this behavior even
though it would be possible to work around it in our
simplified setting.

It is sometimes useful to associate a route r € X_
withanID u € U. Foru € U, we write R, = {w e V" |
w consistent with u} for the random variable that de-
notes the set of all walks in G that can be associated
with u. If u is not currently assigned to any license
plate, then R, = 0. If there is a collision on u, then R,
may contain more than one route (or even sequences
of vertices that are not valid walks in G, though this
turns out to be irrelevant for the purposes of this anal-
ysis). Since we assume, for the moment, that IDs are
assigned using an injective function f*, R, is either
empty, or a singleton containing one valid route from
R C V*. We therefore write R, = r whenever it is
ensured that R, is a singleton.

For r € R, write N, = |{l € L | R; = r}| for the
random variable denoting the number of vehicles on
route r. Note that while f* <— ¥ is uniform by as-
sumption, we make no assumption about the distri-
bution of R; and U;. However, PrlU; =u |l € D] =
Prif*(l)=u] = |Uu~' =27~

Lemma 1. Foreveryre R, u € U and everyl € L
with Pr[R, = r] # 0 it holds that

Pr[Ul“&r]W

where the probabilities are taken over the uniform
choice of f* <— F and over the randomness of R;.

Proof. Observe that if Pr[U; = u] = 0, then Pr[U; =
1] =1 and Pr[R; = r] =0: If a ID is chosen, it is
chosen uniformly; so if Pr[U; = u] = 0 for one u € U
can only mean that the license plate in question does
not drive at all. In this case, both sides if the equation
are equal to zero. We may therefore assume Pr[U; =
u] #0.
If Pr[U; = u] # 0, we have:

PrlUi=u|R,=71]=

Pr[R, =r| U = u]

PR U=l




Note that Pr[R, = r | Uy = u] = Pr[R; = r | U; = u].
This is because there are no collisions on IDs by con-
struction (f* is injective). Thus:

Pr[R; =1, Uy = u]

Pr[R, = 7]

As noted before, U; and R; are not independent:
Pr[Rj=rnU;=1]=0forall r€ R, and ] € L, even
though we may have both Pr[U; = L] # 0 and Pr[R; =
r] # 0 for appropriate choices of [ and r. However,

conditioned on the event [/ € D], the two variables are
independent:

PrlU=ul|R,=71]=

PI‘[UZ =u,Rj=r ‘ l ED]
=PrlUy=ul|l€D]-Pr[Rj=r|l € D]
This is because the route / takes and the ID it is as-
signed stem from independent random sources. In-
deed, as noted above, Pr[U; = u |l € D] = |Uu|~".
Since moreover the event [/ € D] is a superset of
the event [U; = u € U] (whereby u # 1) and is like-
wise a superset of the event [Rj =r € R] (and thus
r# L), this gives forall u € U and all r € R:
PI‘[U[ = M,Rl = r]
=Pr[U; = u,R; =r| 1 €D]-Pr[l € D]
=Pr[U;=u|l€D]-Pr[R;=r|l € D] -Pr]l € D]
=|u|" - Pr[R; = 1]
Taken together, we get:
Pr[R =r]-|U|™
Pr[R, =7]
We consider the denominator next:

PrR, =r|=Y PrlUj=u,R =]
leL

PrlUi=u|R,=71]=

since the events on the right side are all disjoint (again
because there are no collisions on IDs). And by our
observation about independence:
Pr(R,=r]=|u|""- Y Pr[R =7]
leL
————
Xr
and so it suffices to show that y, = [E[N,].
Denote by 1,; the indicator random variable for
the event [R; =r|. Then IE[1,;] = Pr[R; = ] and by
linearity of expectation:

Xr= ZPI'[R[:}’]: Z]E[]]-rl]

leL leL

=E

Z ]]-r,l

leL

=K [Nr]

O

The assumption that f* is chosen uniformly from
the set F of all injective functions from L to U is,
of course, impractical. It is more natural to chose
on u € U per | € L uniformly at random (as is done
whenever we work with Variant 2, Version 4 UUIDs,
for example; see (Leach et al., 2005))).

If we draw IDs from the set 7/ = B* uniformly
at random, we may deal with collisions. This case
can be dealt with in the usual way using well-known
Birthday Paradox probability bounds. This is the con-
tent of the theorem below.

In the following, we recall that R, C V* is defined
to be the set of all sequences of vertices that are con-
sistent with u € U. This set can now contain more
than one element.

Theorem 2. Let A € N. Foreveryr € R, u € U and
every l € L with Pr[r € R,] # 0 it holds that

PrlR; =r L)?
Pr[UZ:u|r€Ru]—IL][N] ] §|27;|L

where the probabilities are taken over the uniform
choices of Uy = u and over the assignment of routes
(ifany)tol € L.

Proof. We condition on the complementary events
NoColl and Coll defined as NoColl = Coll and Coll =
[Hl,k eD: U =UNI #k]
We have:
Pr[U;=u|r €R,]
=Pr[U; =u| r € R,,NoColl] - Pr[NoColl | r € R,]
+Pr[U;=u|reR,, Coll]-Pr[Coll | r € R,]
=Pr[U; =u|r € Ry,NoColl] (%)
+Pr[Coll | r€R,]- (Pr[U; =u|r€R,,Coll
—Pr[U; =r | r € Ry,NoColl])
For the term (x), we note that the condition NoColl
puts us into the situation of previous theorem. We can
apply the corresponding proof and obtain:
Pr[R; = r | NoColl]
E [N, | NoColl]

Pr[U; =u | r € Ry,NoColl] =

But since NoColl and [R; = r] are independent for all
r € R and ! € L (the assignment of IDs is done uni-
formly at random independently of what route a car
drives, if it drives), this simplifies to the familiar

Pr[Rl = r] . E [Nr}

It suffices to show that the remaining term falls in
the interval [—|£|>-27%,|£|*-274]. Since (p —p')-
q € [—q,q| for any probabilities p, p’, g, it suffices to
show Pr[Coll | r € R,] < |L|?-27M



Note that

Pr[NoColl | r € R,]

I£|
=) Pr[NoColl | r € R,,|D| =k|-Pr[|D| =k | R,]
k=0
L k=1 9k _;
=) Pr{|D| = k| r€R,] (+)
: 2\
k=0 i=1
‘L‘ ‘L‘71 A 7[
zkxo ]’g S PHllDl =k |r R,
= =

|£]-1 n_; |£]|

:H 7 Y Pr[ID|=k|reR,)]
i=0 k=0

7‘L‘_1 27\ —i
- A
i=0 2

where () follows because k — 1 IDs are assigned col-
lision free an uniformly from the set U\ {u}. We get:

Pr[Coll | r € R,] =1 —Pr[NoColl | r € R,] <

SR i L)L 1)
1— <
g 2r = 2h

where the last inequality is well known (see e.g. dis-
cussion on the Birthday Paradox in (Katz and Lindell,
2020)). O

Remark 2. This result formalizes the intuitive notion
that driving anonymously along a very popular route
does not leak much information about the vehicle /.
Conversely, if the route is unpopular, then the system
leaks information consistent with the probability of
vehicle / driving that route.

In particular, we capture intuitively obvious ob-
servations, such as: If vehicle / is parked at a re-
mote location every night, then the expected number
of cars on all routes leading to that location is close
to 1. In this event the driver can be de-anonymized:
Pr[Ry =r] =0 forall I’ # 1.

4 SCENARIO 2: OBFUSCATION
& DIFFERENTIAL PRIVACY

It is well-known (see e.g. (Dwork et al., 2014)) that
the security guarantees afforded by DP make no state-
ment about the knowledge an adversary might draw
from prior knowledge. If a traffic monitoring system
provides (g,8)-DP, this just says that any two possi-
ble adjacent inputs produce the same output with al-
most equal probability. But of course, those two adja-
cent inputs could reasonably have very different prior

probabilities, meaning that an attacker can infer sig-
nificantly more information about the nature of the
input from observing the output than one might rea-
sonably expect from the notion of DP.

We recall the definition of differential privacy
(Dwork et al., 2006; [Dwork, 2006)). Note that ad-
Jjacency has not yet been defined; we give a use-case
specific definition below in definition 4]

Definition 3. Let £,8 > 0. Let M be a randomized
algorithm. Then M is said to have (g,d)-differential
privacy, if for all adjacent inputs x,x" € dom() and
all subsets S C range(M) it holds that

Pr[M (x) € S] < exp(e) - Pr[M (') € ]+ 8
The algorithms 4 is referred to as the curator.

In this section, we investigate the effect that an
(e,8)-DP curator M has on the conclusions an adver-
sary can rationally draw from the observed outputs.
Recall that we assign routes to vehicles via the ran-
dom variable R; € R W{L} for each [ € L, where
R; = | means that the vehicle with license plate [ is
not driving at all.

First, we introduce some notation. In what fol-
lows, it is convenient to interpret L as just another
route. We define ® = R w{L}. We denote by
X = (Ry)jer the random vector that assigns a route
(or 1) to every vehicle. Clearly X is a complete rep-
resentation of the input to a curator in the central DP
model (cf. section[I.1)). We recognize values of x of X
as functions x: L — QA{ Write X = ﬂA{L for the set of
all possible values X might take on. Note that since
L and R are finite (the latter because of the length-
bound enforced by the TTL), the set X is also finite.
In what follows, let p: X — [0, 1] the distribution of
X.

To reason about DP, we need to clarify adjacency
in our context:

Definition 4 (-Adjacency). Let/ € L and let x,x’ €
X. We call x and x" a-adjacent (or simply adjacent),
if x(s) = x'(s) for all s # [, and x'(I) # x(I). We write
x>y .

Note that our definition of adjacency is such that
no x is adjacent to itself: xp&; x forallx € X and/ € L.
This technicality will simplify the notation in some of
the proofs below. It has no other significance and, in
particular, the main theorem of this paper holds even
if we allow self-adjacency.

We consider all x € X that map / to some partic-
ular route r € R: A;, = {xe€ X |x(l) =r}. Iflis
clear from context, we write A,. An [-surrounding is
an element x € X_; = R\, Surroundings give a
complete description of the movements of every par-
ticipant except for /. Write x[//r] for the function de-
fined by x[I/r](t) = x(¢) for all t # [ and x[I/7](I) = r.



Note that this definition is applicable to both x € X
andx € X_;.

Observe that two distinct elements x # x' are [-
adjacent iff they have the same /-surrounding. Note
A =A{x[l/r] | x € X_;}. If x € X, we write x_; for
the corresponding /-surrounding.

Recall that the information content of x is defined
def

as I(x) = —log(p(x)). We can now define:

Definition 5 (Preference Gap). Let/ € L and r € ?A{
The quantity

o(l,r) = sup sup I(x') —I(x)
XEA, X'>xyx
is called the preference gap of | and r. The quantity
o(l) =supo(l,r)
r€§A{
is called the preference gap of I.

The preference gap measures the greatest differ-
ence of the information contents of two /-adjacent val-
ues.

Proposition 3. Letl € Landr € R.
1. By definition, we have:
6(l,r) = sup sup log (p(x/) )
XEA] ;X' x p(x )

2. As a consequence of the previous item, we have
for any x € Ay, and all X' <y x with p(x) # 0 and

p(x’) # 0 that
p(x)
p¥')

3. o(l,r) = oo if and only if Pr[R; = 1] = 1, and

o(l,r) = —eo if and only if Pr[R; = r] = 0.

4. In particular, 6(1) # —oo foralll € L.

<exp(o(l,r)) <exp(c(l))

With the convention that exp(ee) = eo, we have:

Theorem 4. Let M be any (€,0)-DP curator defined
on X. .

For everyl € L, r € R and y € range(M) with
Pr[Y =y] > 0 it holds that:

PR = |V =] < <exp<e>Pr[R, £r]Y =y

)
+ Pr[Y:y]) -exp(o(/))

Let n, = |R|. If Pr[R; = r] # 0, then moreover:
Pr[R, #r|Y =y <n,- (exp(e)Pr[R; =r|Y=y]

+ -exp(a(!))

Proof. Note that if 6(I) = o, the statement is trivially
true. We may therefore assume 6(/) € R.

Pick an arbitrary f: A, — A, with the property
that x <; f(x) for all x € A,. For any x € X and
y € range(M) write g(x,y) = Pr[M (x) = y]. Now
note that

Pl =y, R =r] =Y p(x)-q(x,y)

XEA,

<exp(a(l)) Y. p(f(x)-(

XEA,

exp(e) - q(f(x),y) +9)

<exp(a(l))- (exp(e) Y p(x)-q(xy)

XEA,
+98-Pr[R, # r])

<exp(o(l)) - (exp(e) PrlY =y, R; # r] + )
For the second claim, let Pr[R; = r] # 0. Then

PrlY =y, R #r] =Y p(x)-q(x,y)
x¢Ar
= Y X Gl qll/r].y)
xe€X_jr#r
< ; Y. p(lt/r]) -exp(o(D)) - q(x[l/r'],y)
xeX_jr'#r
< Y exp(o(l)) ) (exp(e)
xeX_ r'#r
-p(x(L/r]) - q(x[1/r],y) +8)
=exp(o(l))n, (exp(e) PriR; = r,Y = y] +3)

For the last equality, note that | | = n, + 1. O

S CONCLUSION

We have considered traffic monitoring using
anonymized license plates. In this context, we have
studied the question, how prior knowledge about
the overall probability distributions of the general
driving behavior or individual participants affects
the privacy guarantees of such traffic monitoring
systems. We extended this study to systems that
provide differential privacy.

When no DP is involved, the knowledge an adver-
sary has about the probabilities of individual driving
behavior can greatly increase the confidence in un-
masking attacks, where an adversary tries to identify
the individual behind a certain opaque ID. Specifi-
cally, if the route in question is very unpopular, the
risk of unmasking is high.



We then studied how the guarantees of DP, stated
in terms of neighboring data-sets, generalize to guar-
antees about the likelihood of a particular individual
driving on a certain route. We found that the uneven-
ness of the underlying probability distribution of traf-
fic patterns can degrade the assurances made by the
DP mechanism significantly.

An interesting open question for future work is to
what extent the picture changes when the adversary
has only partial knowledge of the probability distri-
butions involved. For instance, an adversary may have
information about the probability of a given number
of vehicles per route at a given time, but not the prob-
abilities of individual vehicles being on that route.
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