
VR-V&V: Immersive Verification and Validation Support for Traceability
Exemplified with ReqIF, ArchiMate, and Test Coverage

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract – To build quality into a software (SW) system
necessitates supporting quality-related lifecycle activities during
the software development. In software engineering, software
Verification and Validation (V&V) processes constitute an
inherent part of Software Quality Assurance (SQA) processes.
A subset of the V&V activities involved are: 1) bidirectional
traceability analysis of requirements to design model elements,
and 2) software testing. Yet the complex nature of large SW
systems and the dependencies involved in both design models
and testing present a challenge to current V&V tools and
methods regarding support for trace analysis. One of software’s
essential challenges remains its invisibility, which also affects
V&V activities. This paper contributes VR-V&V, a Virtual
Reality (VR) solution concept towards supporting immersive
V&V activities. By visualizing requirements, models, and
testing artifacts with dependencies and trace relations
immersively, they are intuitively accessible to a larger
stakeholder audience such as SQA personnel while supporting
digital cognition. Our prototype realization shows the feasibility
of supporting immersive bidirectional traceability as well as
immersive software test coverage and analysis. The evaluation
results are based on a case study demonstrating its capabilities,
in particular traceability support was performed with ReqIF,
ArchiMate models, test results, test coverage, and test source to
test target dependencies.

Keywords – Virtual reality; visualization; software verification
and validation; software requirements traceability; software test
traceability; software test coverage; code coverage; software
testing; ReqIF; ArchiMate.

I. INTRODUCTION
This paper extends out Virtual Reality (VR)-based

immersive test coverage capability presented in VR-
TestCoverage [1], extending its scope to support software
(SW) Verification and Validation (V&V) activities in VR, in
particular support for immersive trace analysis of
dependencies between requirements, design models such as
ArchiMate, test results, test coverage, and test source to test
target dependencies.

The IEEE 730-2014 Standard for Software Quality
Assurance Processes [2] includes evaluation tasks that
specifically include the terms verify and validate, otherwise
known as V&V. During the development lifecycle, software
validation is the technical process that evaluates and provides
evidence about software satisfying requirements, intended
usage, and user needs [3]. During the software development

lifecycle, software verification is the technical process of
evaluating the software or component and associated artifacts
for objective evidence that activities performed during each
development process satisfy the criteria for that lifecycle
activity [3]. The stated intention of V&V is to support an
organization in building quality into the software during its
development life cycle [4]. V&V does so by ensuring that
requirements meet certain quality criteria (e.g., complete,
correct, consistent, accurate). Conformance with an activity’s
requirements and the product’s requirements is determined by
assessing, analyzing, reviewing, inspecting, and testing
products and processes [4]. Depending on the required
integrity level, SW testing varies in the types, degree, and
scope performed to support V&V at various levels, e.g.,
construction verification via unit testing, integration testing,
or system testing. Furthermore, in Annex E of [2] for Industry-
specific guidance for applying IEEE 730-2014, the definition
of software verification for the medical device industry
includes: “Software testing is one of many verification
activities intended to confirm that software development
output meets its input requirements.” Indeed, without
executing SW dynamically via SW testing, one would be hard
pressed to confirm its requirements are satisfied. Traceability
analysis involving bidirectional tracing between elements is a
common task specified in many V&V activities. tracing
between (product/system or process) requirements, design,
construction, test, and other elements to check of correctness,
completeness, and consistency [4]. Thus, tracing (dependent
on traceability) and testing (either reviewing thereof or
performing) are inherent tasks accompanying V&V.

Despite the apparent importance of traceability, the
software industry lacks explicit support for bidirectional
traceability across software artefacts, e.g., via international
specifications, formats, automation, or non-proprietary
popular tools. This situation often results in traceability being
a manual effort documented utilizing spreadsheets or text
documents as exemplified in [5] and [6]. Confounding the
traceability issues for V&V are the inherent properties and
essential difficulties of software according to Brooks [7]: its
complexity, conformity, changeability, and invisibility.
Brooks stated that the invisibility of software is an essential
difficulty of software construction because the reality of
software is not embedded in space. With regard to V&V and
traceability support for larger SW systems, comprehension
challenges emerge for stakeholders due to two main aspects:
as the quantity and granularity of elements and related

artifacts increase, the inter- and intra-dependencies that
traceability considers exacerbate the complexity.
Furthermore, the invisibility of these “implicit” relations in
current tooling diminishes comprehension due to a lack of
visualization capability that can extend across artifacts,
model, and heterogeneous tool elements.

As a powerful visualization capability, Virtual Reality
(VR) could potentially address aspects of both: 1) invisibility,
due to its digital nature and ability to portray artificial
constructs, and 2) complexity, due to its unlimited immersive
space. VR thus provides an unlimited immersive space for
visualizing and analyzing 3D spatial structures viewable from
different perspectives. Müller et al. [8] compared VR vs. 2D
for a software analysis task, finding that VR does not
significantly decrease comprehension and analysis time nor
significantly improve correctness (although fewer errors were
made). While interaction time was less efficient, VR
improved the user experience, was more motivating, less
demanding, more inventive/innovative, and more clearly
structured. Via its unique visualization and immersive
capability, VR can support V&V trace visualization and
analysis while providing a motivational benefit.

As to our prior work, with regard to modeling in VR, VR-
UML [9] and VR-SysML [10] provide VR-based
visualization of Unified Modeling Language (UML) [11] and
System Modeling Language (SysML) [12] diagrams
respectively, with VR-EA [13] supporting immersive
ArchiMate [14] EA models. VR-SysML+Traceability [15]
investigated SysML-centric traceability support in VR via
automated extraction of manually placed requirement ID
annotations in code and test files referencing requirements
modeled in SysML and depicting test pass rates; yet it did not
address ReqIF [16] sources, ArchiMate, nor automated test
coverage nor test dependency aspects.

Extending the immersive test coverage and tracing
capability of VR-TestCoverage [1], this paper contributes the
solution concept VR-V&V towards supporting immersive
V&V activities. It visualizes requirements extracted from
ReqIF together with design models and testing artifacts,
showing dependencies and trace relations immersively to
address invisibility and complexity issues. Thus,
comprehension for V&V tracing can be improved while being
intuitively accessible to a larger stakeholder audience (such as
SQA personnel). Our prototype realization shows its
feasibility. The case-based evaluation provides insights into
its capabilities, in particular traceability support with ReqIF,
ArchiMate models, test results, test coverage, and test source
to test target dependencies

The remainder of this paper is structured as follows:
Section II discusses related work. In Section III, the solution
concept is described. Section IV provides details about the
realization. The evaluation is described in Section V and is
followed by a conclusion.

II. RELATED WORK
In work related to requirements traceability visualization,

Li & Maalej [17] found traceability matrices and graphs
preferrable for management tasks. Graphs were preferred for
navigating linked artifacts, while matrices were preferred for

an overview. Users were not always capable of choosing the
most suitable visualization. Abad et al. [18] performed a
systematic literature review on requirements engineering
visualization. Madaki & Zainon [19] performed a review on
tools and techniques for visualizing SW requirement
traceability. In none of the above literature were immersive or
VR techniques mentioned, nor was our own literature search
able to find similar work. Some software tool vendors provide
proprietary product solutions to support some aspects of
traceability, e.g., IBM Engineering Requirements
Management DOORS Next [20], Perforce Helix ALM [21],
Sparx Systems Enterprise Architect [22], etc. Yet these
typically do not address heterogenous design models, cross-
diagram dependencies, integration with ReqIF requirements,
and test coverage and test target dependencies. In any case,
they do not support the display of such trace dependencies in
3D or VR.

Furthermore, our literature search found no other VR work
directly addressing test coverage (or code coverage). VR-
related work regarding software analysis includes VR City
[23], which applies a 3D city metaphor. While it briefly
mentions that its work might be used for test coverage, it
shows no actual results in this regard and in this regard only a
trace mode visualization is depicted.

Non-VR work on structural testing or code coverage
includes Dreef et al. [24], which applies a global overview
test-matrix visualization. Rahmani et al. [25] incorporates
JaCoCo to process coverage metrics and TRGeneration to
visualize a control flow graph and assist the tester in
determining the test input requirements to increase coverage.
VIRTuM [26] is an IntelliJ JetBrains plugin that provides
static and dynamic test-related metrics. Alemerien and Magel
[27] list various coverage tools they assess in their study,
determining that there is a wide range of differences in how
the metrics are calculated. Open Code Coverage Framework
(OCCF) [28] proposes a framework to unify code coverage
across many programming languages.

In contrast, our solution is VR-based and thus immersive
and 3D, leverages requirements in text form via ReqIF, yet
supports additional requirements modeling in ArchiMate
(which provides broad modeling support), supports cross-
diagram traceability, and integrates test dependency and test
coverage for enhanced V&V traceability. In utilizing
available standardized formats such as ReqIF and ArchiMate,
to support a non-proprietary and tool-independent integration
platform. As they are non-standardized, any tool-generated
code coverage or test report format can be converted into our
import format and utilized.

III. SOLUTION CONCEPT

A. Solution Positioning
While the solution concept in this paper is focused on

V&V and specifically traceability support, our other solution
concepts that address other aspects in the Software
Engineering (SE) and Enterprise Architecture (EA) area are
shown in Figure 1. VR-V&V utilizes our generalized VR
Modeling Framework (VR-MF) (detailed in [11]). VR-MF
provides a VR-based domain-independent hypermodeling

framework addressing four aspects requiring special attention
when modeling in VR: visualization, navigation, interaction,
and data retrieval. Our VR-based solutions specific to SE
(VR-SE) include: VR-V&V (the focus of this paper, shown in
black), which extends VR-TestCoverage [1], and VR-Git
[29]. In the modeling area, VR-UML [9] and VR-SysML [10]
and VR-SysML+Traceability [15]. Modeling support
extending into the EA area includes VR-EA [11], which
visualizes EA ArchiMate models in VR; VR-ProcessMine
[30] supports process mining and analysis in VR; and VR-
BPMN [31] visualizes Business Process Modeling Notation
(BPMN) models in VR. VR-EAT [32] integrates the EA Tool
(EAT) Atlas to provide dynamically-generated EA diagrams
in VR, while VR-EA+TCK [33] integrates Knowledge
Management Systems (KMS) and/or Enterprise Content
Management Systems (ECMS), and VR-EvoEA+BP [34].

Figure 1. Conceptual map of our various VR solution concepts.

B. V&V Considerations
1) Stakeholders: While V&V typically involves a broad

set of artifacts and activities, SW validation inherently
involves and references requirements, while SW verification
regarding realized SW elements will also typically involve or
assess SW testing. Thus, V&V stakeholders are likely to
require knowledge of requirements and the ability to assess
SW testing coverage, as they are an essential part of V&V
assessments. V&V activities may be performed by
independent personnel, known as Independent V&V
(IV&V), and these stakeholders may not be as familiar with
the requirements, various internals of the SW architecture,
and associated tests. Thus, an intuitive visualization and
accessibility of relevant information and tracing can be
supportive for such stakeholders.

2) Testing: Software testing is also a Knowledge Area
(KA) within the SWEBOK [35]. Both the SWEBOK and the
international software testing standard ISO/IEC/IEEE 29119
[36] include test coverage measures within their test
technique descriptions. Test effectiveness is always a
challenging factor to measure. While test coverage (a.k.a.
code coverage, in this paper we assume statement coverage)
as a single factor may not be strongly correlated with test
effectiveness [37], it nevertheless is still low to moderately
correlated, and this can be helpful and supportive data for the
test effort and verification. Considering the adoption rate of
test coverage by software developers, for an insight into the
industrial popularity of test coverage, of 512 developers
randomly surveyed at Google in a 2019 survey [38], 45%
indicated they use it (very) often when authoring a changelist

and 25% sometimes. When reviewing a changelist, 40% use
coverage (very) often and 28% sometimes. Only 10% of
respondents never use coverage, which conversely means
90% do. So overall, a substantial number of developers apply
code coverage regularly and find value in it. Voluntary
adoption at the project level went from 20% in 2015 to over
90% by 2019. As to modeling tests (or test modeling), while
a UML Test Profile is available to extend UML, its industrial
usage is relatively rare, since the expense of modeling and
realizing the solution often exact the project effort and
budget, and typically the preference is for utilizing the testing
budget for writing and executing tests, rather than expending
effort on the modeling of tests, which don’t actually expand
the testing coverage. The first form of traceability to support
verification is to determine which test actually tested which
test target. This type of verification is often not performed nor
supported by test tooling. Usually, if code coverage is
utilized, it usually does not offer a detailed assessment of
exactly which test reached which test target line, but rather a
summary of which lines or branches were reached via some
test suite. Thus, the bidirectional traceability data is typically
missing between unit test and test target, and is usually
assumed using the test names.

3) Complexity: A V&V visual scalability challenge is
that with increasing digitalization, the software scope,
capabilities, and features often increase, resulting in increases
to requirements, code size, and complexity. Codebases can
grow and become very large for software projects, be they
open-source, commercial, or other organizations, as
exemplified with the over 2 billion Lines of Code (LOC)
across 9 million source files in a single monolithic repository
accessed by 25k developers at Google [39]. There are
estimated to be over 25m professional software developers
worldwide [40] who continue to add source code to private
and public repositories. One quality aspect to consider is how
well this code is tested, and if any codebase changes have
been covered by tests. With large code bases, visualization of
test coverage can provide helpful insights, especially into
what is not covered. As software projects grow in size and
complexity, an immersive digital environment can provide an
additional visualization capability to comprehend and
analyze both the software production code (i.e., test target)
and the software test suite and how they relate, as well as
determine areas where the code coverage achieved by a test
suite is below expectations.

4) Modeling: With regard to the choice of modeling
notations, ArchiMate has a much broader modeling scope
than UML (and SysML, which extends UML via a profile),
overlapping many modeling notations and thus is able to act
as a bridge across modeling notations. Besides requirements,
ArchiMate also supports modeling externally relevant
aspects such as behavior, interfaces, deployment, and
infrastructure and how it may interact with other external
systems. While UML entails approximately 150 modeling
concepts, compared to the approximately 50 in ArchiMate,
ArchiMate is relative lightweight, and its simplicity and
broad support for enterprise and business modeling suggests
it can perhaps more flexibly support the use of requirements
with design models. Whereas UML is constrained to fixed

diagram types, ArchiMate permits custom stakeholder-
oriented views. UML is object-oriented (OO), whereas
ArchiMate is not constrained in this way, and has, e.g.,
separate service and interface concepts. As to requirements,
UML offers primarily use cases. In contrast, The Open
Group’s Agile Guide for using ArchiMate [41] explicitly
mentions modeling user stories, where “epics” (modeled as
outcomes), which in turn are realized by “features” (modeled
as requirements), which are themselves aggregated from
individual “stories” (also modeled as requirements).
However, both modeling notations can be used together, as
described in by an Open Group whitepaper [42]. Thus, while
our solution concept is design model notation agnostic, for
demonstration purposes, our prototype realization will focus
on ArchiMate.

5) Requirements: Software requirements is a KA within
the Software Engineering Body Of Knowledge (SWEBOK)
[35]. Both the SWEBOK and the requirements engineering
process ISO/IEC/IEEE 29148 [43] mention requirements
tracing and traceability, also in conjunction with
requirements validation. We selected ArchiMate for
requirements traceability modeling, among other reasons for
its ability to model actors, system goals, and associated
requirements independent of the narrow concept of Use
Cases, the only direct form of requirement support that UML
offers. Furthermore, ArchiMate offers various motivation
elements such as Principles, Constraints, Value, Meaning,
Outcome, Driver, Assessment in addition to Goal and
Requirement, and these offer broad support for the typical
concepts involved during requirements elicitation and related
activities. While ArchiMate models support the modeling of
such requirements concepts, typically they are nevertheless
not the starting point for requirements. Rather, these are often
formulated in text form, either more formally in a Software
Requirements Specification (SRS) or System Requirements
Specification (SyRS) that may be compliant with
ISO/IEC/IEEE 29148, or these may come from more agile
user stories or use cases. These requirements sources are thus
not directly included or mapped in the design model such as
ArchiMate. Since the modeling of requirements could incur
errors, for V&V we thus consider the requirements source to
be of principal character, and wish to have access to these
sources in VR. Since ReqIF is a specified exchange format
supported by requirements engineering tools, we chose to
support importing ReqIF requirements into VR. This ensures
that requirement information is complete and nothing is
overlooked. This does not preclude the powerful
requirements modeling support in ArchiMate, but rather
supports V&V of such requirements modeling to the original
source while remaining contextually immersed in VR.

6) Traceability: The lack of a traceability standard or
exchange format limits automation and tool accessibility.
While vendors may have a proprietary solution, typically the
inclusion of tracing information is a manual documentation
effort utilizing spreadsheets or text documents, as
exemplified in Figure 2 as a typical form template, and with
a filled-in example in Figure 3.

Figure 2. Screenshot from a V&V traceability matrix form [5].

Figure 3. Screenshot of an example filled-in V&V traceability matrix [6].

We thus inserted tracing information manually.

C. Data Retrieval
Our solution concept includes a data hub, which is used to

handle the importing, adapting, and storing of data for internal
VR access. It supports the import of XML-based ArchiMate
Model Exchange File Format [44] and ReqIF files to an
internal JSON format stored in a local database accessible to
the VR implementation.

D. Visualization in VR
A plane is used to group the production code (test suite

target) as well as the test suite. A tree map using a step
pyramid paradigm (or mountain range) is used to stack
containers (i.e., groups, collections, folders, directories,
packages) in the third dimension (height) on the plane.

For modeling test target to test source dependencies, a
visualization challenge was that we initially thought we could
depict the test target code by simply overlaying a layer on the
production code and indicating which test “covered” what
production code. However, once we completed the
dependency analysis of large projects, we found that while one
test may have a test target focus, it nevertheless may indirectly
invoke various other dependent portions of the test target,
resulting in n-m relations between tests and the test targets.
This quickly becomes visually cluttered. Thus, we chose to
keep the visual depiction of the test suite separated from the
test target (since it can have its own hierarchical organization),
yet apply the same visualization paradigm to depict
“containers” or collections as packages or folders.

E. Navigation in VR
The space that can be traversed in VR can become quite

large, whereas the physical space of the VR user may be
constrained, e.g., to a desk. Thus, the left controller is used for
controlling flight (moving the VR camera), while the right
controller is used for interaction.

F. Interaction in VR
Since interaction in VR is not yet standardized, in our

concept, user-element interaction is supported primarily
through the VR controllers and our VR-Tablet. The VR-Tablet
is used to provide context-specific detailed element
information, supporting an internet browser for access to any
documentation. It provides a virtual keyboard for text entry
via laser pointer key selection. While it may be potentially
cumbersome to enter text via a virtual keyboard in VR
compared to a real keyboard, most V&V traceability analysis
will likely be focused on confirming or marking or noting
issues. A potential workaround would be to record the audio
during the immersion and then transcribe the notes outside of
VR. Our solution could be readily extended to add annotation
capabilities to elements directly.

IV. REALIZATION
To avoid redundancy, only realization aspects not

explicitly mentioned in the concept or in the evaluation
sections are described in this section.

The logical architecture of our VR implementation is
shown in Figure 4. VR was realized with Unity and tested with
HTC Vive. Internally, besides any localized intra-model
graphs, a MetaGraph script is used to determine and model
both inter- and intra-relations (edges) between elements
(nodes) to support bidirectional tracing across any elements or
models. All exported data is stored in the data hub and
accessed via scripts from Unity. The JSONUtility library was
used for JSON processing.

Figure 4. VR-V&V logical architecture.

A. Requirements Traceability with ReqIF and ArchiMate
While our VR-V&V requirements traceability solution

concept is generic, for the prototype demonstration we
focused on supporting ReqIF and ArchiMate. As shown in
Figure 5, the content of an XML-based ReqIF file consists of
a ReqIF Header, ReqIF ToolExtensions, and ReqIF
CoreContent. CoreContent consists of primitive strongly-
typed Datatypes definitions (String, Boolean, Integer, Real,
Enumeration, Date, and XHTML that can include an image).
SpecTypes are used to define requirement types, such as
functional, quality, performance requirements, including their
attributes and possible relationship types. A SpecObject is an
actual requirement, and acts as container for a requirement and
holds user-defined attributes, each of a specific SpecType

and/or Datatype. SpecRelations represent relationships
between SpecObjects and can have attributes. Specifications
are a structured view of SpecObjects using hierarchical trees.
A RelationGroup can be used to group relationships. The
ReqIFSharp [45] library was used for importing ReqIF files.

Figure 5. ReqIF structure.

The ArchiMate Exchange File (XF) format consists of
three XML Schema Definitions (XSDs) that build on or
include the prior: first model, then view, and then diagram
exchange. Since ArchiMate is much more involved and is a
full enterprise modeling language, the EF is also much more
involved and won’t be described here, we refer to [44] for
more information.

To demonstrate traceability, in ReqIF Studio [46]
ArchiMate element ID strings were manually added to ReqIF
SpecObjects as External Elements: attribute TraceForeignId
(e.g., id-791), TraceTypeHint (e.g., BusinessActor),
TraceOriginName (filename), TraceOriginType (e.g.,
ArchiMate), and Trace Text to optionally name the trace, as
shown in Figure 6.

Figure 6. ReqIF Studio External Elements used for ArchiMate tracing.

Figure 7. ReqIF file snippet example of use case.

Alternatively, Requirement IDs could also be added to
ArchiMate element properties to refer to the requirement.
These ReqIF attributes were utilized by the MetaGraph to
determine the traces. An example use case snippet from a
ReqIF file is shown in Figure 7. A user story example ReqIF
file snippet is shown in Figure 8.

Figure 8. ReqIF file snippet example of user story.

To compare the realization of our VR visualization of an
ArchiMate model, we use the ArchiSurance [47] example.
The 2D view available in Archi [48] is shown in Figure 9. The
equivalent ArchiMate diagram in VR-V&V is shown in
Figure 10. Our backplane concept, with randomly colored
traces of elements that exist on other diagram planes, is
depicted in Figure 11. To reduce visual clutter across the
diagrams, these leave from below the element and go to a
backplane on which all ArchiMate diagrams are aligned,
allowing one to follow a trace between diagram planes. This
capability is not available in typical ArchiMate tools that offer
2D views.

Figure 9. Screenshot of partial model of ArchiMate ArchiSurance example
in the desktop Archi tool.

Figure 10. ArchiMate ArchiSurance example model in VR-V&V.

Figure 11. ArchiMate ArchiSurance example model in VR-V&V.

B. Test Tracing Realization
While our VR-V&V test coverage solution concept is

generic, for the prototype demonstration we focused on the
.NET platform. As a test coverage tool, we utilized JetBrains
dotCover. This Microsoft Visual Studio plugin is a .NET Unit
test runner and code coverage tool that can generate a
statement coverage report in JSON, XML, etc. as shown in
Figure 12. While it is a static analysis tool, it can also import
coverage reports. A challenge we faced is that among the
coverage tools we considered, they only report on
dependencies between test targets, and do not explicitly
indicate or name direct dependencies to the invoking test.

Thus, to determine C# code dependencies, Visual Studio
2022 Enterprise Edition (EE) was used, which provides a
Code Map that is stored as a Directed Graph Markup
Language (DGML) file. Its XML-like format is converted to
JSON as shown in Figure 13. This dependency report is then
partitioned into a node report and a link report. Only direct
dependencies between test and test target are considered,
otherwise the dependency structure could readily become very
complex with large sets of intermediate nodes and their
interdependencies.

Figure 12. DotCover coverage report snippet for the Geocoding.net project.

Figure 13. Code Map snippet (in JSON) for the Geocoding.net project for
determining dependencies.

With regard to VR visualization, to attempt to retain the
intuitive paradigm of test “coverage,” we elected to place the
test suite visualization directly above the test target, rather
than on the sides as shown in Figure 14. That way,
dependencies can be followed from top to bottom during VR
navigation. Since the most concrete tests are typically the
smallest (greatest depth being the structural leaves), the test
suite uses depth to bring these closer to its target.
Dependencies are then shown as lines between the test and test
target, analogous to puppet strings. A selected line can be

either highlighted or alternatively configured to ghost all
others.

Testers focused on test coverage are typically concerned
about the overall coverage (e.g., to compare its level against
some high-level test goal), while also concerned about
assessing details and risks as to which areas were not covered
by tests. Thus, in VR our visualization of the System Under
Test (SUT) or test target is shown on a plane using stepped
pyramids for a 3D effect, with the coverage percentages for a
container (folder, directory, package) shown on each side.

The lowest level container is on the bottom and represents
the entire project. The test suite is projected above this onto a
separate plane and upside-down, also using stepped pyramids
for containers.

Figure 14. VR-V&V: test suite and test results visible on top, test target and
code coverage shown on bottom; the VR-Tablet is visible on the right as are
dependencies (magenta lines).

The test coverage of the test targets is indicated via a bar
on all four sides so that from any perspective the coverage is
visually indicated as seen in Figure 15. A bar graph is used on
all sides, with blue visually indicating the percentage of
coverage and black used for the rest (the exact coverage
percentage is also shown numerically). A stepped pyramid
paradigm is used to portray the granularity, with the highest
cubes having the finest granularity or depth, and the lowest
being the least granular. For instance, a user can quickly hone
in on overall areas with little to no blue, meaning that coverage
there was scarce, and one can quickly find and focus on details
(without losing the overview) by focusing on the higher
elevations.

Figure 15. VR-V&V: test coverage showing stepped pyramid with highest
points being finest granularity.

Figure 16. VR-Tablet showing coverage report details for the selected
element (non-selected elements become transparent).

Selecting a test target element causes all other target
elements and unassociated dependency links to become
transparent, while element-relevant details from the coverage
report can be inspected in the VR-Tablet as shown in Figure
16.

V. EVALUATION
We base the evaluation of our solution concept on design

science method and principles [49], in particular, a viable
artifact, problem relevance, and design evaluation (utility,
quality, efficacy). To evaluate our prototype realization of our
solution concept, a case study is used based on two main
scenarios supporting V&V: 1) requirements and design model
tracing, and 2) test coverage and test source tracing.

A. Requirements Traceability with ArchiMate Scenario
For an example ArchiMate design model we used the

ArchiSurance [47] to demonstrate requirements traceability
between ReqIF-based requirements and an ArchiMate model
in VR. The requirements examples used are shown in ReqIF
Studio for use cases in Figure 17 and user stories in Figure 18.
User stories and use cases are written as plain text.

For visualization in VR, requirements specified in a ReqIF
file are placed on purple planes, with either all on a single
plane or split across multiple planes if desired. A requirement
can be a use case (denoted with the stereotype <<UseCase>>),
a user story (denoted by the stereotype <<UserStory>>), or
any other type of requirement. The color of the requirement
indicates the number of relations with external elements:
• if none, it is colored red (perceived as peach here, as a

warning the requirement has no trace and may be
unaddressed);

• if it has at least one relation and all elements are shown,
it is green (see Figure 19);

• and if it relates to more elements than can be shown on
the plane, it is blue.

This can be seen in Figure 20, where only two elements
are seen in the requirement, but once selected, actually four
elements are traced to the external elements plane below. A
selected element is outlined with red.

Figure 17. Screenshot of a use case document in ReqIF Studio.

Figure 18. Screenshot of a user story document in ReqIF Studio.

Figure 19. Selected user story (left) with requirements traces (blue) showing
referenced ArchiMate elements; further use cases (to its right) depicted on
requirements plane.

Figure 20. Selecting a blue requirement highlights additional external
elements.

As shown in Figure 21, external elements specified in the
ReqIF file are placed on a gray external elements plane shown
below the requirements plane, and used to relate requirements
elements to ArchiMate elements. Any external elements that
are missing links or relations to a requirement (SpecObject,
e.g., Use Case / User Story) have red colored cubes to draw
attention a potential issue, while elements with satisfied
associations remain gray cubes to not draw attention. Since an
ArchiMate model is present and these elements are linked to
it, those icons are used to indicate the type. If an element is
non-existent in the ArchiMate model, then a question mark is
used as its icon (the VR-tablet will still provide access to its
details, the available text as provided in the ReqIF file).

Figure 21. External elements plane: Financial Software element selected
(outlined in red), green trace to location on other planes; bottom left shows
an unassociated element (red) of unknown type (question mark icon).

Figure 22. Highlighted ArchiMate element (red box) and green trace above.

On ArchiMate diagrams in VR, any connectors on the
ArchiMate diagrams (that lie flat) have the same layout and
meaning as in ArchiMate. We introduced backplane traces

(see Figure 22 and Figure 23) to link and make apparent
identical elements on different diagram planes. These
backplane traces are randomly multi-colored and trace to the
same identity elements on other diagrams and depart below
the element and follow along a backplane to reduce clutter.

Selecting an external item (Figure 21) or an ArchiMate
element referenced within a requirement (Figure 23) will
highlight the element itself and all other elements representing
the underlying artefact in the MetaGraph with an outlined red
box (Figure 24). This will also produce a green trace line
departing above the element linking these same elements
across diagrams. A blue trace line also links the containing
requirement to the external element plane.

Figure 23. Financial Software element in requirement user story outlined in
red with green trace to its location on other planes.

Figure 24. Financial Software element in ArchiMate diagram outlined in red
with green trace its location on other planes.

Figure 25. VR-Tablet showing details for a selected external element (not
associated here with a diagram).

The VR-Tablet enables access to selected element details
while in VR, such as an external element (see Figure 25), a
user story (see Figure 26), a use case (see Figure 27), or an
Archimate diagram element (see Figure 28).

Figure 26. VR-Tablet showing details of a selected user story.

Figure 27. VR-Tablet showing details of a selected use case.

Figure 28. VR-Tablet showing details of an element selected on an
ArchiMate diagram.

Thus, VR-V&V helps support trace analysis of
requirements and associated elements to design model
elements such as those in ArchiMate. It shows the feasibility
of supporting V&V in VR, and that analogously other design
modeling notations could be similarly supported. Hence, VR-
V&V can support software comprehension for V&V
traceability tasks by partially addressing invisibility, making
links and traces visibile in the digital reality of VR, and
addressing complexity limitations via the unlimited space
available to present and visualize all design diagrams and
requirements comprehensively.

B. Test Tracing Scenario
Our test coverage scenario considers V&V support for

analyzing: 1) test results, 2) test coverage, and 3) test
dependencies. For demonstration purposes, Geocoding.net
[50] was used as an example C# project. However, any C#
project could be used by the prototype, and currently any

coverage tool could be used by mapping and transforming the
report format to the DotCover JSON format.

1) Test Result Visualization
In VR, tests (and their containers) in the test suite (a.k.a.

test source) are colored based on the test result status: green
for successful, red if any test failed, and yellow for other (such
as ignored). To depict test results and overall pass (or success)
rate, the test suite is visualized as a tree map of all tests using
a step pyramid for the third dimension to indicate granularity
via depth. Analogously to how coverage was shown as a
colored bar on all four sides of a container, on the test suite
green is proportionally shown for success rate and red for
failure (yellow for other), with its numerical value also given
as shown in Figure 29.

Figure 29. Test suite overview; bar indicates pass percentage for a collection
(green for pass, red for failed).

A closeup view showing how test case and unit test
information is provided, showing the test cases (lowest and
closest to the test target), the test unit (showing name and
percentage), and a test container (folder or directory) is
provided in Figure 30. The VR-Tablet can be used to inspect
the test results for a selected test.

Figure 30. Test suite success shown by test case, test unit, and test container
(folder or directory).

2) Test Coverage Visualization
Coverage of the test targets is shown as a bar on all four

sides and on the elevation, with the blue area visually
indicating the percentage of coverage, and black used for the
rest, with the percentage also shown numerically, as shown in
Figure 15. Details on a coverage target can also be retrieved
via the VR Tablet as shown in Figure 16.

3) Test Dependency Trace Visualization
V&V support for test dependencies is typically not

supported by test tools. Thus, VR-V&V supports a test

dependency view, with which stakeholders can view which
tests are directly invoking or reaching which target code.
Typically, by convention tests are named in such a way to
express the test target, yet the actual dependencies could
nevertheless differ from expectations. This is especially true
if the test suite consists not only of unit tests but also
integration or system tests. By eliminating the guess work,
dependencies could be used to determine which tests are
primarily reaching a target, and then focus on extending that
test in order to increase the target coverage. One challenge is
that there is not necessarily a 1-1 match of a test to its test
target, thus dependency links provide a way to visualize these
hitherto hidden dependencies.

Figure 31. Magenta traces can be followed to dependent test cases.

VR-V&V depicts the test dependencies of a selected target
as a magenta-colored trace line. When a selected test target or
trace is followed, the associated test cases in the test suite are
opaque, perceived as dark green in Figure 31. And tests can
be followed to the most granular level of the test case which
remain opaque as seen in Figure 32. Unassociated tests are
made partially transparent (perceived as bright green, bright
red, or grey).

Figure 32. Bottom view showing dependent test cases and pass rate.

The VR-Tablet can be used to inspect test report details
about a selected test object, with the test method
(CanCompareForEqualityWithNormalizedUnits), test data

input values (miles: 1, kilometers: 1.609344), and test status
(success) shown in Figure 33.

Figure 33. VR-Tablet showing test case details.

Figure 34. When a test element is selected, non-applicable target areas are
greyed out.

These traces can be followed to the test target plane to
determine what (sub)target(s) a selected test is actually
reaching, as can be seen in Figure 34. The non-relevant test
target areas are then partially transparent.

Figure 35. All test dependencies shown (by toggling selection).

By unselecting a test element, all dependency traces are
restored and all test elements opaque, as can be seen in Figure
35. Thus, one can trace overall test groups or determine that
certain tests are perhaps in preparation, or not (as yet)
traceable or related to the test target if trace dependencies are
missing. E.g., this might occur if tests were written before the
production code has been implemented (e.g., in the case of
acceptance test-driven techniques). Alternatively, this could
be an indicator of a test suite and test target mismatch, perhaps
if the production code was significantly changed without
making associated changes to the test suite.

C. Discussion
The test tracing scenario shows the ability of VR-V&V to

support test result tracing, test coverage, and test dependency
tracing. To reduce test redundancy, measuring test target
coverage can help focus test development on those areas that
are not yet sufficiently tested or have the most risk. As
software projects grow, it can be difficult to visualize both the
software product and the software testing area and their
dependencies. While direct tracing of requirements to tests
was not shown in the evaluation, its feasibility is apparent via
inclusion of test associations in ReqIF SpecObject attributes
using a test-based TraceOriginType and associated attributes,
analogous to the ReqIF scenario.

VI. CONCLUSION
As software size and its quality expectations grow, its

invisibility and complexity affect software comprehension for
V&V stakeholders. VR-V&V contributes an immersive
solution concept for supporting bidirectional traceability of
requirements to design elements and analysis of software
testing dependencies and coverage. The prototype realization
showed the feasibility of supporting immersive bidirectional
traceability as well as immersive software test coverage and
analysis. The evaluation results based on a case study
demonstrated its capabilities, in particular traceability support
involving ReqIF, ArchiMate models, test results, test
coverage, and test source to test target dependency tracing.
Performing analysis tasks in VR provides a unique immersive
experience that can enhance and make visible often
“invisible” traces between various digital artifacts, while
providing a potential motivational aspect to V&V tasks in
general.

Future work includes: integration with VR-SysML, VR-
UML, and VR-Git with expanded support for traceability
across of all lifecycle artifacts; support for V&V collaboration
and annotations; and conducting a comprehensive empirical
study. An automated approach for detecting and associating
test and code artifacts with requirements is described in our
prior work VR-SysML+Traceability. We thus intend to
explore automated code-level traceability support and
integration of VR-Git to support commit traceability.

ACKNOWLEDGMENT
The author would like to thank Jakob Loskan and Lukas

Tobias Westhäußer and for their assistance with the design,
implementation, figures, and evaluation.

REFERENCES
[1] R. Oberhauser, "VR-TestCoverage: Test Coverage

Visualization and Immersion in Virtual Reality," The
Fourteenth International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2022), IARIA,
2022, pp. 1-6.

[2] IEEE, “IEEE Standard for Software Quality Assurance
Processes,” IEEE Std 730-2014, IEEE, 2014.

[3] IEEE, “Systems and software engineering—Vocabulary,”
ISO/IEC/IEEE 24765:2010, IEEE, 2010.

[4] IEEE, “IEEE Standard for System, Software, and Hardware
Verification and Validation,” IEEE Std 1012-2016, IEEE,
2017.

[5] Los Alamos National Laboratory, “Form 3056 - Software
Requirements Traceability Matrix (SWTM),” 2018. [Online].
Available from:
https://engstandards.lanl.gov/esm/software/Form-3056.docx
2023.11.13

[6] Los Alamos National Laboratory, “Source Tracker Software
Requirements Traceability Matrix,” 2016. [Online]. Available
from: https://engstandards.lanl.gov/esm/software/Form-
3056.docx 2023.11.13

[7] F.P. Brooks, Jr., The Mythical Man-Month. Boston, MA:
Addison-Wesley Longman Publ. Co., Inc., 1995.

[8] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, “How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations,” In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36.

[9] R. Oberhauser, “VR-UML: The unified modeling language in
virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design, Springer, Cham, 2021, pp. 40-58.

[10] R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[11] OMG, “Unified modeling language version 2.5.1,” Object
Management Group, 2019

[12] OMG, “OMG Systems Modeling Language Version 1.6,”
Object Management Group, 2019.

[13] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Shishkov, B. (ed.) BMSD 2019.
LNBIP, vol. 356, Springer, Cham, 2019, pp. 170–187.

[14] Open Group, “ArchiMate 3.2 Specification,” The Open Group,
2022.

[15] R. Oberhauser, "VR-SysML+Traceability: Immersive
Requirements Traceability and Test Traceability with SysML
to Support Verification and Validation in Virtual Reality,"
International Journal on Advances in Software, Volume 16,
Numbers 1 & 2, 2023, pp. 23-35. ISSN: 1942-2679

[16] OMG, “Requirements Interchange Format (ReqIF) Version
1.2”, OMG, 2016

[17] Y. Li and W. Maalej, "Which Traceability Visualization Is
Suitable in This Context? A Comparative Study," In: Regnell,
B., Damian, D. (eds) Requirements Engineering: Foundation
for Software Quality (REFSQ 2012), LNCS, vol 7195.
Springer, Berlin, Heidelberg, 2012.
https://doi.org/10.1007/978-3-642-28714-5_17

[18] Z.S.H. Abad, M. Noaeen, and G. Ruhe, "Requirements
Engineering Visualization: A Systematic Literature Review,"
2016 IEEE 24th International Requirements Engineering
Conference (RE), Beijing, China, 2016, pp. 6-15, doi:
10.1109/RE.2016.61.

[19] A.A. Madaki and W.M.N.W. Zainon, "A Review on Tools and
Techniques for Visualizing Software Requirement
Traceability," In: Mahyuddin, N.M., Mat Noor, N.R., Mat
Sakim, H.A. (eds) Proceedings of the 11th International
Conference on Robotics, Vision, Signal Processing and Power
Applications, Lecture Notes in Electrical Engineering, vol 829,
Springer, Singapore, 2022. https://doi.org/10.1007/978-981-
16-8129-5_7.

[20] IBM Engineering Requirements Management DOORS Next.
[Online]. Available from:
https://www.ibm.com/products/requirements-management-
doors-next 2023.11.13

[21] Perforce Helix ALM. [Online]. Available from:
https://www.perforce.com/products/helix-alm 2023.11.13

[22] Sparx Systems Enterprise Architect. [Online]. Available from:
https://sparxsystems.com/enterprise_architect_user_guide/14.
0/model_navigation/elementrelationshipmatrix.html
2023.11.13

[23] J. Vincur, P. Navrat, and I. Polasek, “VR City: Software
analysis in virtual reality environment,” In 2017 IEEE
international conference on software quality, reliability and
security companion (QRS-C), IEEE, 2017, pp. 509-516.

[24] K. Dreef, V.K. Palepu, and J.A. Jones, “Global Overviews of
Granular Test Coverage with Matrix Visualizations,” 2021
Working Conference on Software Visualization (VISSOFT),
2021, pp. 44-54, doi: 10.1109/VISSOFT52517.2021.00014

[25] A. Rahmani, J.L. Min, and A. Maspupah, “An evaluation of
code coverage adequacy in automatic testing using control flow
graph visualization,” In 2020 IEEE 10th Symposium on
Computer Applications & Industrial Electronics (ISCAIE),
IEEE, 2020, pp. 239-244.

[26] F. Pecorelli, G. Di Lillo, F. Palomba, and A. De Lucia,
“VITRuM: A plug-in for the visualization of test-related
metrics,” Proc. Int’l Conf. on Adv. Visual Interfaces (AVI ’20),
ACM, 2020, pp. 1-3, doi: 10.1145/3399715.3399954

[27] K. Alemerien and K. Magel, “Examining the effectiveness of
testing coverage tools: An empirical study,” Int’l J of Software
Engineering and its Applications, 8(5), 2014, pp.139-162.

[28] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, and Y.
Fukazawa, "OCCF: A Framework for Developing Test
Coverage Measurement Tools Supporting Multiple
Programming Languages," 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation,
2013, pp. 422-430, doi: 10.1109/ICST.2013.59

[29] R. Oberhauser, “VR-Git: Git Repository Visualization and
Immersion in Virtual Reality,” The Seventeenth International
Conference on Software Engineering Advances (ICSEA 2022),
IARIA, 2022, pp. 9-14.

[30] R. Oberhauser, “VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality,” International
Conference on Information, Process, and Knowledge
Management (eKNOW 2022), IARIA, 2022, pp. 29-36.

[31] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) BMSD 2018. LNBIP, vol. 319, Springer, Cham, 2018,
pp. 83–97. https://doi.org/10.1007/978-3-319-94214-8_6

[32] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Shishkov B. (eds) Business Modeling and
Software Design. BMSD 2020. LNBIP, vol 391, Springer,
Cham, 2020, pp. 221-239. doi: 10.1007/978-3-030-52306-
0_14

[33] R. Oberhauser, M. Baehre, and P. Sousa, “VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality,” In: Shishkov, B. (eds) Business Modeling
and Software Design. BMSD 2022. LNBIP, vol 453, pp. 122-
140. Springer, Cham. doi:10.1007/978-3-031-11510-3_8

[34] R. Oberhauser, M. Baehre, and P. Sousa, “VR-EvoEA+BP:
Using Virtual Reality to Visualize Enterprise Context
Dynamics Related to Enterprise Evolution and Business
Processes," In: Shishkov, B. (eds) Business Modeling and
Software Design. BMSD 2023. LNBIP, vol 483. Springer,
Cham, 2023. https://doi.org/10.1007/978-3-031-36757-1_7

[35] ISO/IEC, “Software Engineering — Guide to the software
engineering body of knowledge (SWEBOK),” ISO/IEC TR
19759:2015, 2015.

[36] ISO/IEC/IEEE, “International Standard - Software and systems
engineering--Software testing--Part 4: Test techniques,"
ISO/IEC/IEEE 29119-4:2015, 2015, doi:
10.1109/IEEESTD.2015.7346375

[37] L. Inozemtseva and R. Holmes, “Coverage is not strongly
correlated with test suite effectiveness,” Proc. 36th Int’l Conf.
on Software Eng. (ICSE 2014), ACM, 2014, pp. 435-445.

[38] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code
coverage at Google,” Proc. 2019 27th ACM Joint Meeting on
European Software Engineering Conf. and Symposium on the
Foundations of Software Eng., ACM, 2019, pp. 955-963.

[39] R. Potvin and J. Levenberg, “Why Google stores billions of
lines of code in a single repository,” Communications of the
ACM 59, 7 (July 2016), 2016, pp. 78–87.
https://doi.org/10.1145/2854146

[40] Evans Data Corporation. [Online]. Available from:
https://evansdata.com/press/viewRelease.php?pressID=293
2023.11.13

[41] The Open Group, “Agile Architecture Modeling Using the
ArchiMate Language,” Guide (G20E), The Open Group, 2020.

[42] The Open Group, “Using the ArchiMate® Language with
UML,” White Paper (W134), The Open Group, 2013.

[43] ISO/IEC/IEEE, "ISO/IEC/IEEE International Standard -
Systems and software engineering -- Life cycle processes --
Requirements engineering," in ISO/IEC/IEEE 29148:2018(E),
2018, doi: 10.1109/IEEESTD.2018.8559686.

[44] The Open Group, “ArchiMate Model Exchange File Format for
the ArchiMate Modeling Language, Version 3.0,” U191, 2019.

[45] ReqIFSharp. [Online]. Available from: https://reqifsharp.org
2023.11.13

[46] ReqIF Studio. [Online]. Available from:
https://www.reqif.academy/software/reqif-studio/ 2023.11.13

[47] The Open Group: ArchiSurance Case Study, Version 2. The
Open Group (2017a).

[48] Archi. [Online]. Available from:
https://www.archimatetool.com 2023.11.13

[49] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105

[50] Geocoding.net [Online]. Available from:
https://github.com/chadly/Geocoding.net 2023.11.13

