
VR-GitCity: Immersively Visualizing Git Repository Evolution
Using a City Metaphor in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract – The increasing demand for software functionality
necessitates an increasing amount of program source code that
is retained and managed in version control systems, such as Git.
As the number, size, and complexity of Git repositories
increases, so does the number of collaborating developers,
maintainers, and other stakeholders over a repository’s lifetime.
In particular, visual limitations of command line or two-
dimensional graphical Git tooling can hamper repository
comprehension, analysis, and collaboration across one or
multiple repositories when a larger stakeholder spectrum is
involved. This is especially true for depicting repository
evolution over time. This paper contributes VR-GitCity, a
Virtual Reality (VR) solution concept for visualizing and
interacting with Git repositories in VR. The evolution of the
code base is depicted via a 3D treemap utilizing a city metaphor,
while the commit history is visualized as vertical planes. Our
prototype realization shows its feasibility, and our evaluation
results based on a case study show its depiction, comprehension,
analysis, and collaboration capabilities for evolution, branch,
commit, and multi-repository analysis scenarios.

Keywords – Git; virtual reality; visualization; version control
systems; software configuration management; city metaphor.

I. INTRODUCTION
This paper is an extended version of our original paper on

VR-Git [1] and extends our solution to VR-GitCity, which
incorporates a city metaphor.

In this digitalization era, the global demand for software
functionality is increasing across all areas of society, and with
it there is a correlating necessity for storing and managing the
large number of underlying program source code files that
represent the instructions inherent in software. Program
source code is typically stored and managed in repositories
within version control systems, currently the most popular
being Git. Since these repositories are often shared, various
cloud-based service providers offer Git functionality,
including GitHub, BitBucket, and GitLab. GitHub reports
over 305m repositories [2] with over 91m users [3]. Even
within a single company, the source code portfolio can
become very large, as exemplified with the over 2bn Lines Of
Code (LOC) accessed by 25k developers at Google [4]. Over
25m professional software developers worldwide [5] continue
to add source code to private and public repositories.

To gain insights into these code repositories, various
command-line, visual tools, and web interfaces are provided.
Yet, repository analysis can be challenging due to the

potentially large number of files involved, and the added
complexity of branches, commits, and users involved over the
history of a repository. Furthermore, the analysis can be
hampered by the limited visual space available for analysis. It
can be especially difficult for those stakeholders unfamiliar
with a repository, or for collaborating with stakeholders who
may not be developers but have a legitimate interest in insights
to code development. Possible scenarios include someone
transferred to the development team (ramp-up), joining an
open-source code project, quality assurance activities,
forensic or intellectual property analysis, maintenance
activities, defect or resolution tracking, repository fork
analysis, etc. Furthermore, while repositories are dynamic and
retain historical information, it nevertheless can be
challenging to readily convey these aspects intuitively using
conventional Git tooling. Especially as the size of a repository
grows in number of elements (subfolders and files), it
becomes difficult to comprehend the “big picture” as to how
it has been evolving, which areas were the focus for changing
or adding code when, and depicting the final state.

Virtual Reality (VR) is a mediated visual environment
which is created and then experienced as telepresence by the
perceiver. VR provides an unlimited immersive space for
visualizing and analyzing models and their interrelationships
simultaneously in a 3D spatial structure viewable from
different perspectives. As repository models grow in size and
complexity, an immersive digital environment provides
additional visualization capabilities to comprehend and
analyze code repositories and include and collaborate with a
larger spectrum of stakeholders.

As to our prior work with VR for software engineering,
VR-UML [6] provides VR-based visualization of the Unified
Modeling Language (UML) and VR-SysML [7] for Systems
Modeling Language (SysML) diagrams. Our original paper
described VR-Git [1], a solution concept for visualizing and
interacting with Git repositories in VR. This paper contributes
VR-GitCity, which extends our VR-Git visualization
capabilities to incorporate a 3D treemap using a city metaphor
to convey repository evolution of relative files sizes in Lines
of Code (LOC), while using vertical planes for branch and
commit analysis. Our prototype realization shows its
feasibility, and a case-based evaluation provides insights into
its capabilities for repository comprehension, analysis and
collaboration.

The remainder of this paper is structured as follows:
Section 2 discusses related work. In Section 3, the solution

concept is described. Section 4 provides details about the
realization. The evaluation is described in Section 5 and is
followed by a conclusion.

II. RELATED WORK
With regard to VR-based Git visualization, Bjørklund [8]

used a directed acyclic graph visualization in VR using the
Unreal Engine, with a backend using NodeJS, Mongoose, and
ExpressJS, with SQLite used to store data. GitHub Skyline [9]
provides a VR Ready 3D contribution graph as an animated
skyline that can be annotated.

For non-VR based Git visualization, RepoVis [10]
provides a comprehensive visual overview and search
facilities using a 2D JavaScript-based web application and
Ruby-based backend with a CouchDB. Githru [11] utilizes
graph reconstruction, clustering, and context-preserving
squash merge to abstract a large-scale commit graph,
providing an interactive summary view of the development
history. VisGi [12] utilizes tagging to aggregate commits for
a coarse group graph, and Sunburst Tree Layout diagrams to
visualize group contents. It is interesting to note that the paper
states “showing all groups at once overloads the available
display space, making any two-dimensional visualization
cluttered and uninformative. The use of an interactive model
is important for clean and focused visualizations.” UrbanIt
[13] utilizes an iPad to support mobile Git visualization
aspects, such as an evolution view. Besides the web-based
visualization interfaces of Git cloud providers, various
desktop Git tools, such as Sourcetree and Gitkracken, provide
typical 2D branch visualizations.

The city metaphor is a well-known software visualization
paradigm. An early paper to apply it was the File System
Navigator (FSN) [14], and although it did not explicitly use
the word ‘city,’ it nevertheless used a landscape paradigm
with a network of roads, buildings, and towns. MediaMetro
[15] applies the metaphor to media documents. CodeCity [16]
is a 3D software visualization approach based on a city
metaphor with the Moose reengineering framework
implemented in SmallTalk. In this context, Buildings
represent classes, districts represent packages, and visible
properties depict selected metrics. ExplorViz [17] uses a city
metaphor for live trace exploration, implemented in
JavaScript as a browser-based WebVR application using
Oculus Rift together with Microsoft Kinect for gesture
recognition. Code2CityVR [18], which is a VR implementation
of the previously mentioned CodeCity [16], focuses on
metrics and smells for Java code.

In contrast to the above work, VR-GitCity utilizes a city
metaphor for Git repositories in VR, depicting their dynamic
evolution with regard to LOC size, while mapping familiar 2D
visual Git constructs and commit content to VR to make its
usage relatively intuitive without training. In contrast to other
approaches that apply clustering, aggregating, merging,
metrics, or data analytics, our concept preserves the
chronological sequence of commits and retains their content
details in support of practical analysis for Software
Engineering (SE) tasks. To reduce visual clutter, detailed
informational aspects of an element of interest can be obtained
via the VR-Tablet.

III. SOLUTION CONCEPT
Our VR-Git solution concept is shown relative to our other

VR solutions in Figure 1. VR-Git is based on our generalized
VR Modeling Framework (VR-MF) (detailed in [14]). VR-
MF provides a VR-based domain-independent hypermodeling
framework addressing four aspects requiring special attention
when modeling in VR: visualization, navigation, interaction,
and data retrieval. Our VR-SE area includes VR-GitCity (a
superset of our VR-Git) and the aforementioned VR-UML [6]
and VR-SysML [7]. Since Enterprise Architecture (EA) can
encompass SE models and development and be applicable for
collaboration in VR. Our other VR modeling solutions in the
EA area include: VR-EA [19] for visualizing EA ArchiMate
models; VR-ProcessMine [20] for process mining and
analysis; and VR-BPMN [21] for Business Process Modeling
Notation (BPMN) models. VR-EAT [22] integrates the EA
Tool (EAT) Atlas to provide dynamically-generated EA
diagrams, while VR-EA+TCK [23] integrates Knowledge
Management Systems (KMS) and/or Enterprise Content
Management Systems (ECMS).

Figure 1. Conceptual map of our various VR solution concepts.

In support of our view that an immersive VR experience
can be beneficial for a software analysis, Müller et al. [24]
compared VR vs. 2D for a software analysis task, finding that
VR does not significantly decrease comprehension and
analysis time nor significantly improve correctness (although
fewer errors were made). While interaction time was less
efficient, VR improved the user experience, was more
motivating, less demanding, more inventive/innovative, and
more clearly structured.

A. Visualization in VR
A hyperplane is used to intuitively represent and group the

commits related to a repository. Each commit is then
represented by a vertical commit plane. These commit planes
are then sequenced chronologically on the hyperplane as a set
of planes. Since VR space is unlimited, we can thus convey
the sequence of all commits in the repository. Each 2D plane
then represents each file involved in that commit as a tile.
These are then colored to be able to quickly determine what
occurred. Green indicates a file was added, red a file removed,
and blue that a file was modified. On the left side of the
hyperplane, a transparent branch plane (branch perspective)
perpendicular to the hyperplane and the commit planes depicts
branches as an acyclic colored graph to indicate which branch
is involved with a commit. This allows the user to travel down
that side to follow a branch, see to which branch any commit
relates, and to readily detect merges. Accordingly, the commit

VR-SysML
SysML

Enterprise
Models

Enterprise
Views
ATLAS

Blueprints

Archimate
Data Retrieval

Naviga@on

Visualiza@on

Interac@on

KMS ECMS
VR-EAT VR-EA

VR-MF VR-EA+TCK

VR-BPMN
BPMN

Git
VR-GitCity
VR-SE

UML
VR-UML

VR-ProcessMine

VR-Git

planes are slightly offset vertically, as they dock to a branch,
thus “deeper” or “higher” commits indicate how close or far
they relatively are from the main branch. Via the anchor,
commit planes can be manually collapsed (hidden), expanded,
or moved to, for example, compare one commit with another
side-by-side. In order to view the contents of a file, when a file
tile is selected, a content plane (i.e., code view) extends above
the commit plane to display the file contents.

B. Navigation in VR
A navigation challenge resulting from VR immersion is

supporting intuitive spatial navigation while reducing
potential VR sickness symptoms. We thus incorporate two
navigation modes in our solution concept: gliding controls for
fly-through VR (default), while teleporting instantly places
the camera at a selected position either via the VR controls or
by selection of a commit in our VR-Tablet. While teleporting
is potentially disconcerting, it may reduce the likelihood of
VR sickness induced by fly-through for those prone to it.

C. Interaction in VR
As VR interaction has not yet become standardized, in our

concept we support user-element interaction primarily
through VR controllers and a VR-Tablet. The VR-Tablet is
used to provide detailed context-specific element information
based on VR object selection, menu, scrolling, field inputs,
and other inputs. It includes a virtual keyboard for text entry
via laser pointer key selection. As another VR interaction
element, we provide the aforementioned corner anchor sphere
affordance, that supports moving, collapsing / hiding, or
expanding / displaying hyperplanes or vertical commit planes.

IV. REALIZATION
The logical architecture for our VR-GitCity prototype

realization is shown in Figure 2. Basic visualization,
navigation, and interaction functionality in our VR prototype
is implemented with Unity 2020.3 and the OpenVR XR
Plugin 1.1.4, shown in the Unity block (top left, blue). Scripts
utilize Libgit2Sharp [25] to access the Git commit history of
one or more repositories from within Unity. Thus, data about
the repository is not stored in a separate database but accessed
on-the-fly, avoiding synchronization, data-loss, storage
format, transformation, and other issues. Note that only
realization aspects not explicitly mentioned in the evaluation
are described in this section to reduce redundancy.

Figure 2. VR-GitCity logical architecture.

Internally, a tree data structure is used to represent a
repository. Directory nodes represent a folder characterized by
a name and path, and may contain files or subfolders
(children). File nodes keep references to the parent directory

node that contains them. Dictionaries are used to track the
state and the size of a node, with the commit SHA serving as
a key and used to identify the time of a change. With each
SHA commit stored in the dictionary, the difference via a file
compare is performed and the delta as Lines of Code (LOC)
is retained.

For our city metaphor visualization, a directory node is a
cuboid with equal x and z (depth) lengths. A bit matrix is used
to distribute any children (folders or files) as compactly as
possible, and these are stacked as cream-colored common
height blocks in the y dimension (height). To follow the city
metaphor, a building should be used to represent modules or
in our case files. However, we wanted to primarily convey the
dynamic evolution of the size of repository elements over
time, rather than depicting any structural modularization. So,
to be intuitive in visually transmitting the size information
dynamically over time, we chose to utilize the metaphor of a
glass of water and its fullness to represent the size state of any
file. However, to not break with the city metaphor, these can
be viewed as a glass skyscraper or glass elevator as shown in
Figure 3. It is a cuboid in blue glass tone, with the maximum
LOC file size ever reached (relative to all others) represented
by its height. Its current size is transparent glass with a glass
level to show how full it is currently (relative to max), with a
more greyish tone above to differentiate anything less than
full. The final size is marked by a grey fat slab (like concrete).
Selecting a certain commit via the VR-Tablet will depict its
changes to the repository by coloring the aqua cuboid green
for added files, red for deleted files, and blue for changed files.

As to color choices, transparent (glass) was used as the
default for building sides, in order to avoid buildings from
hiding objects behind it, to better see the foundation, and for
objects involved in a commit (opaque colors), to be more
pronounced. This also permits the metaphor of a water glass
with its fullness represented by slab levels. However, the
building colors could readily be randomly distributed or
custom-defined per object or folder by the user via a
configuration file or the VR-Tablet. Also, in place of opaque
colors, alternatively the border outlines of a building could be
color-coded for the commit accordingly.

Figure 3. VR-GitCity: files as glass buildings stacked on their containing
folders (box height is its all-time max LOC size, aqua slab its current size,
and thick grey slab the final size).

3D Environment

Laser Pointer
via Controller

Selec5on
Menu

Structure
Visualiza5on

3D Object
Selec5on

ScriptsAssets

Unity Git

Libgit2Sharp Repository

Repository

Repository

The VR-Git view functionality supports detailed commit
information visualization, with commits represented on
vertical planes. To support interaction on specific commits, an
anchor (ball) is placed on one corner of a hyperplane and is an
affordance in order to move or expand/collapse an entire
hyperplane, as shown in Figure 4. The anchors are also placed
at the left bottom corner of all commit planes and colored and
aligned with the branch with which they are associated.

Figure 4. Vertical commit planes on hyperplane with anchor affordances.

Figure 5. Viewing Git commit messages in VR-Tablet.

To support navigation, projects can be selected via the
VR-Tablet and provide a teleporting capability to its project
hyperplane or a specific commit plane. A list of Git commit
messages including their commit ID (Secure Hash Algorithm
1 (SHA-1)) and the date and timestamp in the VR-Tablet, as
shown in Figure 5.

V. EVALUATION
For the evaluation of our solution concept, we refer to the

design science method and principles [26], in particular, a
viable artifact, problem relevance, and design evaluation
(utility, quality, efficacy). For this, we use a case study
applying four Git repository scenarios in VR:

A. Repository evolution scenario
B. Branch analysis scenario
C. Commit analysis scenario
D. Multi-Repository Analysis Scenario

A. Repository Evolution Scenario
To support repository evolution comprehension and

analysis, the VR-GitCity city metaphor depiction is used. Two
Repositories, denoted as R1 and R2, were used as the basis for
the scenario depictions. Note that the counting utility ignored
file types and code unfamiliar to it.
• R1 consists of approximately 23 (sub)folders, 99 files,

and at least 47K LOC (across ~50 files with JSON,
HTML, JS, XML, CSS, and Markdown), as can be seen
in Figure 6.

• R2 consists of approximately 660 (sub)folders, 2700
files, and at least 123K LOC (across ~377 files with C#
and JSON), as shown in Figure 7.

Figure 6. R1 cloc report.

Figure 7. R2 cloc report.

In VR, the front and side views of the repository show
aligned stacked cream-colored blocks as (sub)folders that
provide a single quick overview of the involved (sub)folders
and their containing parent, as seen in Figure 8.

Figure 8. VR-GitCity R1 front view showing aligned stacked (sub)folders.

The deepest path of subfolders is placed on the front, thus
the rear view typically shows a declining set of folder blocks
with regard to height, as seen in Figure 9. Thus, the greatest
depth of folder containment can be readily determined.

Figure 9. VR-GitCity R1 rear view with declining (sub)folder foundation.

Where applicable, additional parallel subfolders may be
viewed from the left or right side based on placement, as seen
in Figure 10. A closeup from the rear is shown in Figure 11.

Figure 10. VR-GitCity R1 side view with parallel folder depiction.

Figure 11. VR-GitCity R1 closeup from the rear.

When conveying the elements affected by a specific
commit selected in the VR-Tablet, green is used to indicate
that files were added, as shown in Figure 12. Red is used for
deleted files, as shown in Figure 13. The glass thin slab level
shows the current relative size in LOC compared to other files,
with the max size being the cuboid overall height, with a thick
grey slab conveying the final file size.

Figure 12. VR-GitCity R1 showing added files in green.

Figure 13. VR-GitCity R1 showing deleted files in red.

Blue is used to convey files that were changed by a
commit, as shown in Figure 14. Thus, by scrolling through
commits on the VR-Tablet, a dynamic changing picture
equivalent to a video of the repository evolution is presented.
In portraying the maximum size as well as the end final size,
it can be understood to show the evolution of any single
element to its maximum as well as end target size, while not
forgetting the maximum it once had if it later shrunk (as a type
of ghosting) or a file was removed.

Figure 14. VR-GitCity R1 showing changed files in blue.

Figure 15. VR-GitCity R1 overview.

An overview of repository R1 can be seen in Figure 15. It
visually and immersively conveys the grouping and
containment of elements in subfolders, the number of files, the
maximum relative sizes achieved, the current size as a fill
level, and the affected elements by a specific commit via
colors.

Figure 16. VR-GitCity R2 overview.

Figure 17. VR-GitCity R2 indicating a changed file in center as blue.

To test the scalability of the concept, the repository R2 was
used and is shown in Figure 16 and Figure 17. Note that R2
consists of over 600 subfolders and almost 10K files. While
these screenshots are not intended to be legible in this paper,
they portray the capability of VR-GitCity to scale to very large
repositories and provide a “big picture” of their evolution over
time. Up close via immersion, fly-through navigation,
selection, and the VR-Tablet, additional detailed information
about an element or affected files in a commit can be
determined.

B. Branch Analysis Scenario
To support branch analysis, our hyperplane concept with

vertical planes is used. To the left side of a hyperplane, an
invisible branch graph plane is rendered perpendicular to the
hyperplane and a color-coded list of all the branches can be
seen next to the first commit plane, seen in Figure 18. These
colored labels can be used for orientation. By selecting a
branch label, the user can be teleported to the first commit of
that branch. We chose not to repeat the branch labels
throughout the graph to reduce the textual visual clutter.

Figure 18. VR-Git branch overview.

The branch perspective of the hyperplane (its left side)
shows a contiguous color-coded graph of the branches as
shown in Figure 19. Commit plane heights offset based on the
branch to which they are associated. This can provide a quick
visual cue as to how relatively close or far the commit is from
the main branch. A merge of two branches is shown in Figure
20.

Figure 19. VR-Git branch tree graph.

Figure 20. Branch merge.

Figure 21. Example Git log terminal output

As a reference, the terminal output in Git is shown in
Figure 21. In contrast, VR-Git provides equivalent branch
information, providing the labels and also using different
branch colors and spatial offsetting to indicate which branch a
commit relates to. To reduce visual clutter, commit messages
are not shown on the planes, but rather the VR-Tablet, which
includes the commit messages, timestamp, and commit ID
(SHA). Note that the commit ID is displayed at the top of each
commit plane to both differentiate and identify commits.

C. Commit Analysis Scenario
Git commits are a snapshot of a repository. In a typical

commit analysis, a stakeholder is interested in what changed
with a commit, i.e., what files were added, deleted, or
modified. To readily indicate this, tiles labeled with the file
pathname are placed on the commit plane to represent
changed files, with colors of green representing files added,
blue changed, and red for deleted. This is shown in Figure 22.
In addition, the number of lines of text are shown at the bottom
or a tile, with positive numbers in green indicating the number
of lines added, and negative red values below it for the lines
removed.

Figure 22. Commit files added (green), changed (blue), deleted (red);
number of lines affected indicated in each tile at the bottom.

The ability of VR to visually scale with commits affecting
a very large number of files is shown in Figure 23. As we see,
there is no issue displaying the data, and VR navigation and
the VR-Tablet can be used to analyze the commit further.

Figure 23. VR-Git commit visual scaling example for a very large file set.

Figure 24. Dual repository comparison with a branch focus.

Figure 25. Multiple repositories from a wide perspective.

Commits affecting a large number of files can be readily
determined, as seen in Figure 26. This can support analysis to
quickly hone in on commits with the greatest impacts.

Figure 26. Multiple repositories showing commits affecting a large number
of files.

Figure 27. Code View: collapsed and scrollable (left) and expanded (right).

By selecting a specific tile (file), a file contents plane (i.e.,
code view) pops up displaying the contents of that file for that
commit, seen in Figure 27. Since file contents can be too
lengthy and wide for practical depiction in our VR-Tablet, we
chose to display the plane above the commit plane, providing
a clear association. The contents are initially scrollable, and
can be expanded with the plus icon to show the entire file
contents if desired. Since VR is not limited, one can navigate
by moving the VR camera to any part of the code plane to see
the code there.

D. Multi-Repository Analysis Scenario
To support multiple repository analysis, hyperplanes are

used to represent each separate repository. Via the anchors,
these can be placed where appropriate for the user. Branch and
commit comparisons can be made from the branch
perspective, with visual cues being offered by the element
tiles, as shown in Figure 24. Here, one can see how the
branches developed with their commits. A larger visual
depiction of multiple repositories is shown in Figure 25. This
shows how the VR unlimited space can be used, e.g., to
determine which ones involved more commits, or where
larger commits with more elements were involved via the
extended commit planes.

E. Discussion
In summary, the evaluation showed that VR-GitCity

supports comprehension and analysis for key Git scenarios in
VR, including a repository’s evolution, commits, branches,
and scalable multi-repository comparisons. The city metaphor
is used to convey the dynamic evolution of a repository
visually and immersively, depicting the grouping and
containment of elements in subfolders, the number of files, the
maximum relative sizes achieved, the current size as a fill
level, and colors affected elements of a specific commit.
Branch comprehension and analysis were supported via the
branch plane. Commit comprehension and analysis were
supported via the commit planes, which readily showed the
number of files involved in a commit (based on the number of
tiles) and via their color if they were added, removed, or
changed. The metrics in each tile show the number of lines
affected. Multi-repository analysis showed the potential of
VR to display and compare multiple repositories, where the
limitless space can be used to readily focus and hone-in on the
areas of interest or differences between repositories. This type
of visual, immersive multi-repository analysis could support
fork analysis, intellectual property analysis and tracking,
forensic analysis, etc.

VI. CONCLUSION
VR-GitCity contributes an immersive software repository

experience for visually depicting and navigating repositories
in VR. It provides a convenient way for stakeholders who may
not be developers yet have a legitimate interest in the code
development to collaborate. This can further the onboarding
of maintenance or quality assurance personnel. The solution
concept was described and a VR prototype demonstrated its
feasibility. Based on our VR hyperplane principle,
repositories are enhanced with 3D depth and color. Interaction
is supported via a virtual tablet and keyboard. The unlimited
space in VR facilitates the depiction and visual navigation of
large repositories, while relations within and between
artifacts, groups, and versions can be analyzed. Furthermore,
in VR additional related repositories or models can be
visualized and analyzed simultaneously and benefit more
complex collaboration and comprehension. The sensory
immersion of VR can support task focus during
comprehension and increase enjoyment, while limiting the
visual distractions that typical 2D display surroundings incur.
The solution concept was evaluated with our prototype using
a case study based on typical Git comprehension and analysis
scenarios: branch analysis, commit analysis, and multi-
repository analysis. The results indicate that VR-Git can
support these analysis scenarios and thus provide an
immersive collaborative environment to involve and include
a larger stakeholder spectrum in understanding Git repository
development.

Future work includes support for directly invoking and
utilizing Git within VR, including further visual constructs,
integrating additional informational and tooling capabilities,
and conducting a comprehensive empirical study.

ACKNOWLEDGMENT
The authors would like to thank Nikolas Lindenmeyer,

Jason Farkas, and Marie Bähre for their assistance with the
design, implementation, figures, and evaluation.

REFERENCES
[1] R. Oberhauser, “VR-Git: Git Repository Visualization and

Immersion in Virtual Reality,” The Seventeenth International
Conference on Software Engineering Advances (ICSEA 2022),
IARIA, 2022, pp. 9-14.

[2] GitHub repositories [Online]. Available from:
https://web.archive.org/web/20220509204719/https://github.c
om/search 2023.12.01

[3] GitHub users [Online]. Available from:
https://web.archive.org/web/20220529205506/https://github.c
om/search 2023.12.01

[4] C. Metz, “Google Is 2 Billion Lines of Code—And It’s All in
One Place,” 2015. [Online]. Available from:
http://www.wired.com/2015/09/ google-2-billion-lines-
codeand-one-place/ 2023.12.01

[5] Evans Data Corporation. [Online]. Available from:
https://evansdata.com/press/viewRelease.php?pressID=293
2023.12.01

[6] R. Oberhauser, “VR-UML: The unified modeling language in
virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design, Springer, Cham, 2021, pp. 40-58.

[7] R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[8] H. Bjørklund, “Visualisation of Git in Virtual Reality,”
Master’s thesis, NTNU, 2017.

[9] GitHub Skyline [Online]. Available from:
https://skyline.github.com 2023.12.01

[10] J. Feiner and K. Andrews, “Repovis: Visual overviews and
full-text search in software repositories,” In: 2018 IEEE
Working Conference on Software Visualization (VISSOFT),
IEEE, 2018, pp. 1-11.

[11] Y. Kim et al., “Githru: Visual analytics for understanding
software development history through git metadata analysis,”
IEEE Transactions on Visualization and Computer Graphics,
27(2), IEEE, 2020, pp.656-666.

[12] S. Elsen, “VisGi: Visualizing git branches,” In 2013 First IEEE
Working Conference on Software Visualization, IEEE, 2013,
pp. 1-4.

[13] A. Ciani, R. Minelli, A. Mocci, and M. Lanza, “UrbanIt:
Visualizing repositories everywhere,” In 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2015, pp. 324-326.

[14] Rogers, B., Cunningham, S. J., & Holmes, G., "Navigating the
virtual library: A 3D browsing interface for information

retrieval," In: Proceedings of ANZIIS'94-Australian New
Zealand Intelligent Information Systems Conference, IEEE,
1994, pp. 467-471.

[15] Chiu, P., Girgensohn, A., Lertsithichai, S., Polak, W., and
Shipman, F., "MediaMetro: Browsing multimedia document
collections with a 3D city metaphor," In: Proceedings of the
13th annual ACM international conference on Multimedia,
2005, pp. 213-214.

[16] R. Wettel et al., "Software systems as cities: A controlled
experiment," in Proc. of the 33rd International Conference on
Software Engineering, ACM, 2011, pp. 551-560.

[17] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software
cities in virtual reality,” Proc. IEEE 3rd Working Conference
on Software Visualization (VISSOFT), IEEE Computer
Society, 2015, 130-134.

[18] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza,
“On the use of virtual reality in software visualization: The case
of the city metaphor,” Information and Software Technology,
114, 2019, pp.92-106.

[19] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Shishkov, B. (ed.) BMSD 2019.
LNBIP, vol. 356, Springer, Cham, 2019, pp. 170–187.

[20] R. Oberhauser, “VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality,” The Fourteenth
International Conference on Information, Process, and
Knowledge Management (eKNOW 2022), IARIA, 2022, pp.
29-36.

[21] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) BMSD 2018. LNBIP, vol. 319, Springer, Cham, 2018,
pp. 83–97. https://doi.org/10.1007/978-3-319-94214-8_6

[22] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Shishkov B. (eds) Business Modeling and
Software Design. BMSD 2020. LNBIP, vol 391, Springer,
Cham, 2020, pp. 221-239. https://doi.org/10.1007/978-3-030-
52306-0_14

[23] R. Oberhauser, M. Baehre, and P. Sousa, “VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality,” In: Shishkov, B. (eds) Business Modeling
and Software Design. BMSD 2022. Lecture Notes in Business
Information Processing, vol 453, Springer, Cham, 2022, pp.
122-140. https://doi.org/10.1007/978-3-031-11510-3_8

[24] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, "How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations," In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36

[25] Libgit2Sharp. [Online]. Available from:
https://github.com/libgit2/libgit2sharp 2023.12.01

[26] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105

