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Abstract: We study differential privacy in the context of gathering real-time congestion of entire routes in smart cities.
Gathering this data is a distributed task that poses unique algorithmic and privacy challenges. We introduce
a model of distributed traffic monitoring and define a notion of adjacency for this setting that allows us to
employ differential privacy under continual observation. We then introduce and analyze three algorithms that
ensure ε differential privacy in this context. First we introduce two algorithms that are built on top of existing
algorithmic foundations, and show how they are suboptimal in terms of noise or complexity. We focus, in
particular, on whether algorithms can be deployed in our distributed setting. Next, we introduce a novel
hybrid scheme that aims to bridge between the first two approaches, retaining an improved computational
complexity and a decent noise level. We simulate this algorithm and demonstrate its performance in terms of
noise.

1 INTRODUCTION

Smart cities are an ongoing trend in large urban areas,
where communities seek to leverage data analytics in
order to optimize aspects of their infrastructure. One
prominent example of this is smart traffic manage-
ment (Gade, 2019; Bhardwaj et al., 2022). The goal
is to minimize congestion and reduce overall point-to-
point travel time. Solutions in this context rely on live
data to predict movements and react accordingly. This
usually requires tracking vehicles as they move about
the city to discern movement patterns that span large
parts of or even the entire city (for example, see (Dja-
hel et al., 2015; Khanna et al., 2019; Rizwan et al.,
2016)).

From a privacy perspective, however, tracking in-
dividual citizens day and night, possibly storing this
data at a central location, is, of course, a nightmare.
Local legislation (e.g. the GDPR in the EU) may
even prohibit some of those solutions, threatening the
adoption of modern traffic management. Legal risks
aside, massive data collection at a centralized loca-
tion poses significant risks from a information secu-
rity perspective (Gracias et al., 2023). Ultimately,
cities need solutions that minimize the sensitivity of
the data that is stored and reduce the privacy risks to
affected individuals.

Differential Privacy (DP) (Dwork et al., 2006;

Dwork, 2006) is a well-known tool to design al-
gorithms that give quantifiable privacy guarantees.
Much research has gone into developing DP algo-
rithms for various statistical tasks, such as counting,
summing, top-k queries and the like (Dwork et al.,
2010; Dwork et al., 2015; Chan et al., 2011; Hen-
zinger et al., 2023) (see also Related Work below). DP
has also been applied to traffic and vehicle data anal-
ysis in the past (Hassan et al., 2019; Ma et al., 2019;
Zhou et al., 2018; Li et al., 2018; Sun et al., 2021).
However the monitoring of city-scale point-to-point
traffic movements centrally has, to our knowledge,
not been considered before, even though it has been
identified as a relevant research topic (Hassan et al.,
2019).

We consider the task of monitoring movements of
individual vehicles at locally distinct points through-
out a city and aggregating that data into a central
statistic that captures the number of vehicles traveling
along a set of routes within the city limits. We pro-
pose three different algorithms that provide ε DP in
this setting and compare their relative merits. Specif-
ically, we show how there appears to be a trade-off
between the noise incurred by DP and the complexity
of the algorithms that run centrally and at local track-
ing points.

Our contributions are as follows:

• We propose an architecture for distributed traffic



monitoring that is generic and applicable in mul-
tiple scenarios.

• We develop three DP algorithms for this architec-
ture and analyze their relative noise levels.

• We provide an analysis of the algorithmic prop-
erties of our three algorithms, where the input is
the size of the city, and the length of the monitor-
ing period. We pay particular attention to whether
algorithms can be deployed in a distributed fash-
ion at the various tracking locations throughout
the city.

Our three algorithms are designed to showcase the
engineering trade-offs that impact the noise level and
algorithmic properties. Much depends on the input
format and the notion of adjacency that is considered.

For example, counting, as a primitive, has been
studied extensively (Dwork et al., 2010) form a DP
perspective. The “binary tree technique” introduced
in (Dwork et al., 2010) and later studied in (Chan
et al., 2011; Henzinger et al., 2023) yields log(T )
noise, where T is the duration of the counting task.
But this technique, as we explain, cannot easily be
ported to our setting. Instead, the naive option of
sampling noise per time-step (cf. algorithm 3) outper-
forms any attempt to port the binary tree technique to
our setting in terms of noise. However, it cannot be
meaningfully deployed in a distributed way.

Next we introduce algorithm 4, which has a noise
bound linear in the number of tracked routes. Note
the number of routes itself is exponential in the du-
ration T of tracking, i.e. R ≤ V T+1, where V is the
number of vertices. However, the resulting algorithm
can be deployed in a distributed way. Its runtime is
also linear in the number of routes, both if deployed
centrally or in a distributed way.

Finally, we propose a third probabilistic hybrid
scheme (cf. algorithm 5) that bridges between these
two approaches. We analyze and simulate this third
approach and find that it strikes a balance between
both the “naive” approach (algorithm 3) and the
“noise per route” approach (i.e. algorithm 4) in both
runtime and noise. It is also easily deployable in a
distributed way.

Related Work Differential Privacy was introduced
for static databases (Dwork et al., 2006; ?). Subse-
quently, several algorithms giving (ε,0)- and (ε,δ)-
differentially private queries were introduced (see
also (Dwork et al., 2014)). However, since many ap-
plications require the continual release of statistics,
the notion of continual observation was introduced
and has since been studied extensively (Dwork et al.,
2010; Chan et al., 2011; Henzinger et al., 2023). As

a part of this, the notion of adjacency of input se-
quences, specifically user-level and event-level pri-
vacy, was introduced. User-level privacy requires the
continual mechanism to be DP-private independent of
how often a individual participates in the accumulated
statistical data. This continual counting mechanism
has since been improved (Dwork et al., 2015).

Besides counting events, histogram queries are of
interest and have been studied. For instance, (Hen-
zinger et al., 2023) considered an intermediate DP
histogram in order to continuously release differen-
tially private max-sum, top-k-, and histogram queries.
Therefore a changed stream definition was used that
modeled each time-step t as a vector of dimensional-
ity d. This parameter is defined by the number of in-
dividual partitions of the intermediate histogram. For
queries like max-sum or sum-select upper and lower
bounds on the accuracy have been established (Jain
et al., 2023).

Furthermore, there has been research into set-
tings where the sensitivity between histogram queries
is limited but the domain from which the items for
the histogram are sampled is unknown (Cardoso and
Rogers, 2022). There is also some prior work to cal-
culate dynamic sliding windows to minimize the error
bounds of such algorithms (Chen et al., 2023).

However, none of these works fit our use case of
continuously releasing traffic statistics that track ve-
hicles through a city. In this setting, counters are
not monotonic and many of those algorithms cannot
be applied. A dynamically generated sliding window
size is not feasible, since we have to reliable get up-
dated counts for different routes each phase. Lastly,
our adjacency notion differs significantly from the
previous definition (cf. section 3), which presents a
significant challenge to porting previous algorithms.

Although differential privacy is a well researched
field, smart cities as a possible application pose many
distinct challenges (Yao et al., 2023; Husnoo et al.,
2021). Privacy is one of the main factors that should
be kept in mind when designing smart city systems
(Kumar et al., 2022). And (Qu et al., 2019) already
stated that smart mobility in particular is one of the
main factors for security concerns, since the attacker
is able to learn locations of any single individual.
There are related works studying DP in scenarios like
vehicle-2-X communications in electric-charging or
vehicle trajectory estimation, such as (Li et al., 2018;
Ma et al., 2019). Those works do not focus on vehi-
cle tracking for the purpose of optimizing city traffic.
(Sun et al., 2021) study traffic volume measurement
and present an estimator that is DP under certain con-
ditions. The focus is on estimating traffic volume for
a given set of locations. In this paper, we study traf-



fic statistics for specific routes (ordered sequences of
locations) within a city.

2 PRELIMINARIES

Notation Given a set X , we write X∗ for all finite
(possibly empty) sequences of elements of X . Given
s ∈ X∗ we write s = s1 · · ·sl with the understanding
that si ∈ X for 1 ≤ i ≤ l. The length of s is |s|= l. A
prefix is a sequence s|i = s1 · · ·si where 0≤ i≤ |s|. If
i = 0, then s|0 = φ is the empty sequence of length 0.
If s′ is a prefix of s, we write s′⪯ s. The concatenation
of sequences s = s1 · · ·sl and s′ = s′1 · · ·s′l′ is written as
s∥s′ = s1 · · ·sls′1 · · ·s′l′ .

If we consider intervals of naturals numbers, we
sometimes write [a,b]N

def
= [a,b]∩N. We may drop the

subscript when it is obvious that we refer to intervals
of naturals numbers.

Differential Privacy Differential privacy (DP) was
introduced by (Dwork et al., 2006; Dwork, 2006) for
single databases (see (Dwork et al., 2014) for a com-
prehensive introduction) and later adapted to the con-
tinual setting (Dwork et al., 2010). Here one consid-
ers “adjacent” sequences of input. Several notions of
adjacency exist (in particular event level and user level
adjacency). We postpone the precise definition of ad-
jacency to section 3, where we will discuss why ex-
isting definitions of adjacency do not fit our use-case
well and propose a more tailored definition. The fol-
lowing definition of DP under continual observation
is adapted1 from (Dwork et al., 2010):

Definition 1. Let ε > 0. Let A be a randomized algo-
rithm that on input sequence s1, . . . ,sl , it produces an
output sequence A(s) ∈ Σl of the same length.

A provides ε-differential privacy, if for all adja-
cent input streams s,s′ and all S⊆ Σ∗

Pr[A(s) ∈ S]≤ exp(ε)Pr[A(s′) ∈ S]

We sometimes refer to A as the curator.

The following useful “post-processing” theorem
allows us to round outputs to the nearest integer with-
out loosing DP. We thus consider only algorithms pro-
ducing real numbers in this paper.

Theorem 1 (see (Dwork et al., 2014)). If A pro-
vides ε-differential privacy and B is any randomized
mapping defined on range(A), then B ◦A provides
ε-differential privacy.

1Different from the original definition, we do not con-
sider internal states and pan-privacy. We are only interested
in differentially private outputs.

Figure 1: System architecture

We say an algorithm A has (α,β) error, if for
any input sequence s of length L, the maximal dif-
ference between the true statistic f (s) and the com-
puted statistic A(s) is below α with probability at
least 1−β.

Pr
[

max
1≤t≤L

∥ f (s)t −A(s)t∥∞ ≤ α

]
≥ 1−β

Throughout this paper, Lap(b) refers to the
Laplace distribution of scale b > 0 with PDF p(x) =
(2b)−1 exp(−|x| ·b−1). We have that

p(x)≤ exp
(

1
b

)
· p(x±1) (1)

3 PROBLEM STATEMENT AND
ARCHITECTURE

We consider traffic monitoring in a smart city con-
text. Our goal is to compute the number of of vehicles
travelling along a certain route in a given time-period.
To this end, vehicles are recorded at specific track-
ing points in the city, such as at traffic lights. This
information is aggregated centrally into one statistic
about the number of vehicles traveling along a spe-
cific route. The overall situation is depicted in fig. 1.

Tracking vehicles requires two pieces of auxil-
iary data. Once a vehicle is detected, it is assigned
a unique ID u from a countable set U of possible IDs
along with a time-to-live (TTL) that is always initial-
ized to a fixed constant T ∈ N. Vehicles are recog-
nized via some sort of identifying information (e.g.
license plate). For privacy reasons, we hide this infor-
mation behind a randomized unique ID. The TTL is
decremented at each tracking point. Once it reaches
zero, the vehicle is no longer tracked. If the same
vehicle continues to move through the city, it will
instead by assigned a new unique ID u′ ̸= u and a
new TTL. In fact, the new unique ID will satisfy the



global : v ∈V ID of this tracking point

1 procedure PROCESSVEHICLE
input : I identifying information

2 u, t← LOOKUP(I)
3 if u =⊥ or t = 0 : // new vehicle
4 u← SELECTNEXTFREEID()
5 t← T
6 REPORT(u,v)
7 forall v′ ∈ Adj(v)
8 TRANSMIT(I,u, t−1)
9 end
Algorithm 1: Track a single vehicle at a tracking
point.

stronger property that it is distinct from any previ-
ously used ID. We will elaborate on why this is nec-
essary further below.

We model the city as a directed graph G = (V,E).
The vertices correspond to the tracking points. While
it is somewhat arbitrary what a tracking point is in
practice, it is perhaps easiest to simply think of track-
ing points as traffic lights in the context of this pa-
per. Given G , a route is a path r = r1 · · ·rm through
the graph: (ri,ri+1) ∈ E for 1 ≤ i < m. Repetitions
r j = ri for i ̸= j are possible. Note that we may as-
sume m ≤ T , because we never track vehicles along
more than T tracking points. Thus the set R of all
possible routes along which a vehicle can be tracked
is finite. We write Rmax = {r ∈ R | |r| = T} for the
maximal length routes in R . Note R is prefix-closed.

The overall process (without any concern for dif-
ferential privacy) is specified in algorithms 1 and 2.
While algorithm 1 is executed at every tracking point,
algorithm 2 is executed centrally (the gray server in
fig. 1). Tracking points report the unique ID of a ve-
hicle and transmit its TTL to neighboring locations
Adj(v) = {v′ ∈ V | (v,v′) ∈ E}. In subsequent DP al-
gorithms, additional data may be transmitted between
tracking points (such as “ghost cars” carrying noise).
This is explained in section 4.

“Identifying information” is whatever the detec-
tion system requires to recognize and identify a spe-
cific vehicle. In practice, this could be a license plate,
or an identifier stored on an RFID tag. It is possible
to re-use the identifying information as a unique ID
(see section 4 for how to ensure such a finite set ful-
fils or requirements for U). We opt for the presented
approach to allow for the option to obfuscate license
plates before transmitting PII to a central server.

Discussion: The masking of license plates by
unique IDs already provides some privacy, but this is
difficult to quantify. A vehicle on a very low-traffic

1 procedure GATHERREPORTS
input : u unique ID
input : v location of tracking point

2 route← LOOKUP(u)
3 newroute← route∥v
4 UPDATE(u,newroute)

// update statistic
5 DECREMENT(route)
6 INCREMENT(newroute)
7 end
Algorithm 2: Gathers reports made by tracking
points in algorithm 1.

route may still be identifiable. DP provides more ro-
bust and quantifiable guarantees in this situation.

In practice, it is possible that vehicles take a long
time to travel from v to v′, even for adjacent (v,v′) ∈
E (e.g. because the driver stops to buy coffee). In
such situations, the resulting sequence of locations
v1, . . . ,vt for that ID will contain “gaps” – time pe-
riods, where the vehicle is not tracked anywhere.

In the remainder of this paper, we assume that
every vehicle is recorded at every time index until
it stops moving or its TTL elapses – i.e. that there
are no “gaps” in recording. This is no limitation, be-
cause such gaps will not change how our algorithms
work. However, accounting for these corner-cases
in the mathematical notation below is tedious while
adding little value.

In a similar vein, we assume that all tracking
points report their data simultaneously. Again, this
is not a realistic assumption. But similar to our “no
gaps” assumption, it simplifies proofs while not af-
fecting the way our algorithms work.

4 DIFFERENTIAL PRIVACY IN
TRAFFIC MONITORING

In this section we propose three different algorithms
that ensure differentially private traffic monitoring.
The algorithms work on input sequences of different
types. However, all such input sequences are (partial)
functions from unique IDs to some domain D (either
R or V ). Specifically, all algorithms studied in this
paper process sequences of the form s = (s1, . . . ,sL),
where for each 1≤ i≤ L

si = (si,u)u∈U ∈DU

for some domain D . Note we sometimes use vector
notation (su)u∈U with su ∈D instead of functional no-
tation s(u) ∈D . We stress that these vectors or func-
tions can be partial. In such cases, we write su =⊥ if
u /∈ dom(s) and require that ⊥ /∈D .



Differential privacy in continual settings (i.e.
where sequences of events are processed) has been
studied before (e.g. (Dwork et al., 2010; Jain et al.,
2023; Henzinger et al., 2023; Cardoso and Rogers,
2022; Chan et al., 2011)). However, our case is subtly
different. To illustrate, we recall the following defini-
tion of differential privacy from (Dwork et al., 2010):

Definition 2 (Adjacency). Let X be some set of
events, L ∈N and s = (s1, . . . ,sL), s′ = (s′1, . . . ,s

′
L) ∈

X L . Then s,s′ are adjacent if there exists some sub-
set I ⊆ {1, . . . ,L} and x,x′ ∈ X , such that s′i = si for
all i /∈ I and s′i = x′ for all i ∈ I if si = x.

This definition does not fit our case well, because
it is restricted to two fixed symbols x,x′ that are being
exchanged. Simply removing a single tracking point
is clearly not enough to hide the presence of a given
individual. Instead, we would like to remove a spe-
cific unique ID from the entire sequence (or alter its
route), which requires changing the value of several
functions s∈DU at one point u∈U. We therefore in-
troduce a slightly adapted notion of adjacency. Given
any function f : A→ B, a ∈ A and b ∈ B, write f [a/b]
for the function f [a/b](x) = f (x) for all x ̸= a and
f [a/b](a) = b. We now define:

Definition 3 (ID Adjacency). Let X = DU , L ∈ N
and s = (s1, . . . ,sL), s′ = (s′1, . . . ,s

′
L) ∈ X L . Then

s,s′ are ID adjacent if there exists some subset I ⊆
{1, . . . ,L}, u ∈U and d ∈ D ∪{⊥}, such that s′i = si
for all i /∈ I and s′i = si[u/d] for all i ∈ I.

Note that d = ⊥ is possible, effectively dropping
(some) occurrences of u in the sequence.

In this paper we study only ID adjacency. There-
fore, whenever we use the word “adjacent” in what
follows, we mean ID adjacency.

We can now understand why we assume that IDs
from U are never reassigned. This assumption al-
lows us to define adjacency without considering cor-
ner cases, such as whether the occurrences of an
ID in s and s′ overlap, and without defining what it
means for repeated occurrences of the same ID to be
“causally connected”. In practice, any set of IDs can
be made infinite with no risk of reassigning by taking
the Cartesian product with the set of all timestamps.
Remark 1. In this paper we consider algorithms that
process input sequences of unbounded length. Be-
cause of the bounded TTL, differences in two ID ad-
jacent sequences will always affect at most T distinct
time steps of the execution of the algorithm

4.1 Route Counting

In this section we study an approach that processes
(sequences of) mappings of IDs to routes and simply

1 procedure PROCESSROUTES
input : vector v = (ru)u∈U

2 c← 0 ∈RR

3 for r ∈ R
4 µ← Lap(2 · ε−1 ·T )
5 cr← mr(v)+µ

output: c
6 end

Algorithm 3: Counting routes.

counts the number of IDs per route. In this setting, the
actual tracking of IDs along routes (cf. algorithm 2)
is done as a preprocessing step before the curator is
even fed the actual data: In this situation, the curator
works as a post-processing step.

In the event that the input to the curator is a
(partial) mapping of unique IDs to routes, the statis-
tics function is particularly simple: Given v ∈ R U

and r ∈ R write mr(v) = |{u ∈ U | vu = r}| for the
number of IDs that v maps to r. If we enumerate
R = {r1, . . . ,rd}, we can write the statistics function
f : (R U)∗→ (Nd)∗ as

f (s1, . . . ,sL) = m̄(s1), . . . , m̄(sL) ∈
(
N

d
)L

where m̄(si) = (mr1(si), . . . ,mrd (si)) ∈Nd , 1≤ i≤ L.
To simplify notation, we write f s

t,r
def
= (( f (s))t)r for

1≤ t ≤ L and r ∈ R in the remainder of this paper.
The simplest solution to create differential privacy

in this setting is to add noise per reported route. Our
setting might seem similar to event counting (Dwork
et al., 2010), and so one might expect that the log2(T )
noise bound from the binary tree mechanism intro-
duced in (Dwork et al., 2010) carries over to our set-
ting. This seems not to be the case! We will elaborate
on the reasons at the end of this subsection.

For our first algorithm, we therefore rely on the
straightforward method of adding independent noise
per time step. This is shown in algorithm 3.
Theorem 2. Algorithm 3 gives ε differential privacy
with (ε−1 · 2T ln(LR

β
),β) error on input sequences of

length at most L tracking R = |R | routes.

Proof. Let s,s′ be two ID adjacent sequences of
length L differing in ID u. Let w.l.o.g. u enter
the sequence at time t = 1 and let ρ be the route
that u takes in s. Let likewise ρ′ be the route that
u takes in s′. The output A(s) can be seen a ran-
dom matrix (As

t,r)1≤t≤L,r∈R , where As
t,r = f s

t,r + µt,r

for µt,r ∼ Lap(2T · ε−1). The RVs µt,r are mutually
independent and the PDF of this matrix is

ps(z) =
L

∏
t=1

∏
r∈R

p(zt,r− f s
t,r) (∗)



(a) Covering an initial set of time-steps.

(b) Two routes covered by the same set of segments.
Figure 2: Binary Tree Technique and Route Counting.

where p is the Lap(2T · ε−1) PDF.
Note that for every 1≤ t ≤ T (recall u enters at t =

1 and |ρ| ≤ T ) we have ∑r∈R | f s
t,r− f s′

t,r| ≤ 2, because
there are at most two routes per time-step that differ
(where u drives in s and where u drives in s′). If u does
not participate at all in either s or s′, then the sum is
even bounded by 1, and we could work with half the
noise. Hence for all 1≤ t ≤ T by eq. (1)

∏
r∈R

p(zt,r− f s
t,r)≤

(
exp
(

ε

2T

))2

∏
r∈R

p(zt,r− f s′
t,r)

and for any T < t ≤ L we get ∏r∈R p(zt,r − f s
t,r) =

∏r∈R p(zt,r− f s′
t,r). Together we get a factor of exp(ε)

as desired.
For every µ∼ Lap(b) and λ > 0 we have Pr[|µ|>

λ · b] = exp(−λ) (this is straightforward to verify,
e.g. by integrating the PDF of the Laplace distribu-
tion). Hence per time-step and route we have Pr[|µ|>
− ln(η) 2T

ε
] ≤ η for any η ∈ (0,1). Let η = β

LR . A
union bound over the entire sequence of length L and
all routes gives the result.

For event-counting, (Dwork et al., 2010) intro-
duced a binary tree mechanism, that maintains T
noise values in a binary tree, but only applies log(T )
of those values to each count. The resulting noise de-
pends only logarithmically on T . However, this tech-
nique is not portable to our scenario. The reason is
subtle but showcases some of the unique challenges
of applying DP to traffic monitoring.

We very briefly sketch the binary tree technique
to present a self-contained paper (see (Dwork et al.,
2010; Henzinger et al., 2023; Dwork et al., 2014) for a
detailed treatment): To implement a counter of events
over some sequence of length T , construct a complete
binary tree of height ⌈log(T )⌉ and draw Laplace noise
for each node in that tree. Given a leaf 0≤ t ≤ T −1,
take the sum of the log(T ) noise values along the path
from t to the root and add the result µt to the counter
at time t + 1. The reason this technique provides ε

DP with Laplace noise scaled to only log(T ) · ε−1

lies in the crucial fact that given any initial segment
{0, . . . , t − 1} of leafs, one can find a set of at most
log(T ) nodes in the tree, whose subtrees (a) cover ex-
actly the set {0, . . . , t− 1} of leafs and (b) are mutu-
ally disjoint (see fig. 2a). The fact that only log(T )
such segments are needed is important: Only log(T )
noise values must change to account for a missing (or
added) event.

In our case, at any time t and for any non-maximal
route r, we do not know which way a given ID will
travel. Consider fig. 2b, where two routes (green and
red) have the same prefix, but diverge after four steps.
The last subtree (indicated by second brace below)
spans across the point of divergence. If the count cor-
responding to this subtree is altered, it will affect two
routes, not one.

Whenever we use the binary tree technique in
our setting, we must ensure that we can find log(T )
noise values that will affect only one route of maxi-
mal length. There are ways to use multiple trees and
achieve ε DP; but they have worse noise properties
than algorithm 3 (e.g. maintain one tree per maximal
route r∗; for route r at time t, add the noise µt for every
tree r∗ ⪰ r).

4.2 Location Tracking

In the previous section we studied algorithms that
process vectors of routes, indexed by IDs from U.
The actual tracking of vehicles to map IDs to routes
was not part of the curator. In this and the next
subsection, we study two algorithms that process se-
quences of vectors of locations – formally vertices in
V . The inputs are now sequences of partial functions
s = (su) ∈V U .

To compute the same statistic, f : (V U)∗ →
(NR )∗ must now track IDs across time-steps. For-
mally, let s be a sequence of length L, let 1 ≤ k ≤ L
and r ∈ R . Define

cr (s|k) =
∣∣∣{u ∈U | ∃t ∈ [0,T −1]N0 :

sk−t(u) · · ·sk(u) = r∧∀t ′ < k− t : st ′(u) =⊥}
∣∣∣

Note that we bound the suffix-length by T and require
that u does not occur in s1, . . . ,sk prior to time k− t.
That is, the route r = sk−t(u) · · ·sk(u) is maximal for
u at time k. Note also that we implicitly require that
s j(u) ̸= ⊥ for k− t ≤ j ≤ k (recall our assumption
from section 3 that tracking contains no gaps).

Now the statistics function is given by:

f (s) = (cr(s|1))r∈R , · · · ,(cr(s|L))r∈R ∈
(
N

R
)L



global : R database holding routes per ID
global : L database IDs and associated noise

1 procedure PROCESSLOCS

input : f ∈V U

2 c← 0 ∈RR

3 forall ⟨uF ,µ,r⟩ ∈ L
4 decompose r = v∥r′ with v ∈V
5 if |r′|= 0 :
6 DROP(L,uF )
7 else
8 UPDATE(L,uF ,µ,r′)
9 cr← cr +µ

10 forall v ∈V
11 forall routes r = v∥r′ ∈ R starting at

v
12 µ← Lap

( 2
ε

)
13 uF ← SELECTNEXTFREEID()
14 INSERT(L,uF ,µ,r′)
15 cv← cv +µ

// the actual counting
16 forall u ∈ f−1(v)

// r = φ if u new ID
17 r← LOOKUP(R,u)
18 r← r∥v
19 cr← cr +1
20 r← UPDATEORINSERT(R,u,r)

output: c
21 end

Algorithm 4: Location tracking with Per-Route
Noise

Algorithm 4 computes f and adds noise. To this
end, at each time t and for every location v ∈V , noise
µ is sampled from Lap(2 · ε−1) for each route r that
begins in v. This noise is then assigned an ID and
is then sent along that route. A TTL is not required,
because it is implicit in the length of the route.

Theorem 3. Algorithm 4 provides ε-differential pri-
vacy with (2 · ε−1 ·

√
8 ·
(

R · ln(2)− ln
(

β

2LR

))
,β) er-

ror, where L is the length of the sequence and R= |R |.

Proof. Denote the algorithm by A . Let s,s′ be two ID
adjacent sequences of length L differing in ID u. Let
w.l.o.g. u enter the sequence at time t = 1 and let ρ

be the route that u takes in s. The output A(s) can be
seen as a sequence of random vectors zs

1, . . . ,z
s
L where

each zs
t = (zs

t,r)r∈R . The random variables zs
t,r and zs′

t,r
are i.i.d. whenever t > |ρ|, or r does not correspond
to ρ|t . We therefore consider only zs

t,r for values of
1 ≤ t ≤ |ρ| and r = ρ|t . We may therefore drop the
redundant subscript r in the remainder of this proof,
writing zs

t instead of zs
t,r.

There is precisely one noise value sampled at time
t = 1 for route ρ and this noise value progresses along
the route prefixes at times t = 1, . . . , |ρ|. Thus

Pr [zs
t ≤ xt ] = Pr [µ≤ xt − f s

t ]

=Pr
[
µ≤ xt − ( f s′

t ±1)
]
≤ exp

(
ε

2

)
Pr
[
zs′

t ≤ xt

]
The same reasoning gives an identical probability
bound for the route ρ′ that u takes in s′. Since the
two noise values are independent, the claim follows
by multiplication of probabilities.

Computing the noise bound is more subtle. Us-
ing a Chernoff bound, one can show2 similar to, e.g.
(Dwork et al., 2014; Henzinger et al., 2023):

Proposition 4. Let X1, . . . ,Xn ∼ Lap(b) be i.i.d.
RVs, b > 0. Write Y = ∑

n
i=1 Xi, then ∀β ∈ (0,1):

Pr
[
|Y |>

√
2b
(

n ln(2)− ln
(

β

2

))]
≤ β

When Rv = |{r∈R | first(r)= v}| noise values are
sampled at some time t, their values affect the count of
route v at time t. At subsequent time steps, the number
nt,r of those noise values affecting the count for any
extension of v ⪯ r can only be lower (the noise “fans
out” across all possible routes starting in v). Hence,
nt,r ≤ Rv ≤ R for all t and all r ∈ R . Thus, using the
above proposition we have:

Pr

|zt,r− ft,r|>

√
8 ·
(

R · ln(2)− ln
(

β′

2

))
ε

≤ β
′

for any β ∈ (0,1) and any t,r. Setting β′ = β

LR and
taking a union bound proves the claim.

Remark 2. Algorithm 4 can be adapted to run at the
tracking points in a distributed fashion. Each tracking
point v ∈V then requires access to the set Rmax(v) of
maximal routes starting in v (or needs to re-compute
this set at every time-step on input G). This spreads
out the runtime across all points v ∈V , but it remains
exponential in G at each tracking point.

4.3 Location Tracking – A Hybrid
Approach

In this subsection, we study a hybrid and probabilis-
tic approach that bridges between algorithms 3 and 4.
Where algorithm 4 sampled noise per route at each
time-step t and then sends that noise along its corre-
sponding route, we now use a random number n∈N0
of noise values that we sample at each location v ∈V
at each time-step t. For each of those n noise val-
ues, a neighbor v′ ∈ Adj(v) of v is chosen uniformly

2A proof can be found in the appendix.



Figure 3: A number n = 3 of ghost cars traverse G starting
at time t. The last car leaves route r at time t +2.

at random and the noise is passed along to v′. During
step t +1, that noise value is again sent on to another
neighbor v′′ ∈ Adj(v′) and so on, until T steps have
elapsed. In essence, the n noise values behave like n
“ghost cars” that perform a random walk on G . This
situation is depicted in fig. 3.

Since the noise values travel along a random path,
it is possible that a given route is without noise at
some time-step t. This destroys differential privacy,
if left untreated3. However, this event is detectable
and can be solved by falling back to algorithm 3.

Algorithm 5 implements this idea. Note that the
magnitudes of the parameter b of the Laplace distri-
bution for the two kinds of noise differ substantially.
This algorithm, as defined, is based on the assump-
tion that no car takes a route shorter than T . It can be
adapted to work for the general case, by adding dedi-
cated ghost cars per possible route length 1, . . . ,T .

Theorem 5. Algorithm 5 provides ε differential pri-
vacy, provided the adjacent sequences differ in a route
of length T .

For the proof we require the following lemma4.
For p : R → R, let p(1) = p and p(k) = p ∗ p(k−1)

(where ∗ is the convolution), k ≥ 2. It is well known
that if p is the PDF of k i.i.d. random variables, then
p(k) is the PDF of their sum.

Lemma 6. Let b > 0 and p(x) be the Lap(b) PDF.
Then exp(b) · p(k)(x)≤ p(k)(x+1)≤ exp

( 1
b

)
· p(k)(x)

for all x ∈R and 1≤ k ∈N.

Proof of Theorem 5. Let s,s′ be two adjacent se-
quences of length L. Let u be the differing ID and
let ρ be the route u takes in s, ρ′ be the route u takes
in s′. We assume |ρ| = |ρ′| = T . The case where u
does not occur in either s or s′ is again treated in the
same way.

Write the output of A(s) as a sequence of random
vectors zs

1, . . . ,z
s
L, where for each 1 ≤ t ≤ L and each

r ∈ R we write zs
t,r for the component at r ∈ R . Sup-

pose u enters at time t0 and leaves at time t1. Then
the random variables zs

t,r and zs′
t,r are i.i.d. whenever

t /∈ [t0, t1] or whenever r is not a prefix of ρ or ρ′. It
is thus sufficient to consider the case where t ∈ [t0, t1]

3We do obtain (ε,δ) differential privacy for δ > 0 in this
case, but δ is prohibitively large.

4A proof can be found in the appendix.

global : R database holding routes per ID
global : L database IDs and associated noise

1 procedure PROCESSLOCS

input : f ∈V U

2 c← 0 ∈RR

3 covered← (⊥, . . . ,⊥)
4 forall ⟨uF ,µ,r, l⟩ ∈ L
5 if l = 0 :
6 DROP(L,uF )
7 continue
8 v← Uniform[Adj(last(r))]
9 r′← r∥v

10 UPDATE(L,uF ,µ, , l−1)
11 cr′ ← cr′ +µ
12 coveredr′ ←✓
13 forall v ∈V
14 while continue with probability p
15 µ← Lap

( 2
ε

)
16 l← T
17 uF ← SELECTFREEID()
18 INSERT(L,uF ,µ,v, l)
19 cv← cv +µ
20 coveredv←✓

// the actual counting
21 forall u ∈ f−1(v)

// r = φ if u is new ID
22 r← LOOKUP(R,u)
23 r← r∥v
24 r← UPDATEORINSERT(R,u,r)
25 cr← cr +1

// fallback: noise per
time-step

26 forall r ∈ R with coveredr ̸=✓
27 coveredr =✓
28 cr← cr +Lap

( 2T
ε

)
output: c

29 end
Algorithm 5: Location tracking – Hybrid Approach

and r ⪯ ρ. We focus on ρ first. The proof for ρ′ is
identical.

To simplify notation, we let w.l.o.g. t0 = 1. More-
over, since we only consider prefixes of ρ, it is suffi-
cient to drop all references to r from our notation and
refer only to time index t, which then uniquely deter-
mines the prefix ρ|t . That is, we write zs

t for zs
t,ρ|t . We

also drop the superscript s whenever we do not need
to distinguish between the output of A on s or s′.

Noise values travel along prefixes of ρ until, at
some time t, they follow along different path (in line 8
of algorithm 5). Otherwise, the noise value moves on
to the next longer prefix of length t +1. In this event,



we say the noise value is alive (at time t +1).
Note that for t ′ ≤ t, the random variables zt and

zt ′ are not independent. In fact, the event that a noise
variable µ is alive at t implies that is alive at t ′. But
during execution of the algorithm and for any route,
there exists a time-index τ ∈ [0,T ], such that some
noise is alive at τ, but no noise is alive at τ+1. Note
that it is possible that τ corresponds to the length of
the route, in which case noise remained alive for the
entire duration of the route. In the other extreme, τ =
0 means that no noise was sampled.

Writing zs≤ x for zs
i ≤ xi, 1≤ i≤ |ρ|, we now have

Pr [zs ≤ x] =
|ρ|

∑
i=0

Pr[τ = i] ·
|ρ|

∏
j=i+1

Pr
[
zs

j ≤ x j
]

·Pr [zs
1 ≤ x1, . . . ,zs

i ≤ xi | τ = i] (2)

because for j > τ, the values of z j, are independent
(new noise is sampled in each step). Given τ = i:

|ρ|

∏
j=i+1

Pr
[
zs

j ≤ x j
]
=

|ρ|

∏
j=i+1

Pr
[
µ≤ x j− f s

j
]

≤exp
(

ε · (|ρ|− i)
2T

) |ρ|

∏
j=i+1

Pr
[
µ≤ x j− f s′

j

]
≤exp

(
ε

2

) |ρ|

∏
j=i+1

Pr
[
µ≤ x j− f s′

j

]
As for the second term in eq. (2): For any fixed i,

in the event τ = i, denote by N j = {µ1, . . . ,µm j} the
m j noise values that are still alive at time 1 ≤ j ≤ i.
Clearly N1 ⊇ N2 ⊇ ·· · ⊇ Ni ̸= /0. So µ1, . . .µm1 is an
enumeration of all noise values affecting z1, . . .zi and
µ1, . . . ,µmi (note mi ≤ m1) is the subset of those that
are still alive at time i.

Pr [zs
1 ≤ x1, . . . ,zs

i ≤ xi | τ = i]

=Pr

[
m1

∑
k=1

µk ≤ x1− f s
1 , . . . ,

mi

∑
k=1

µk ≤ xi− f s
i

]

For σi
def
= ∑

mi
k=1 µk we get by lemma 6:

Pr [σi ≤ xi− f s
i ±1]≤ exp

(
ε

2

)
Pr
[
σi ≤ xi− f s′

i

]
Moreover, in this event all remaining sums also in-
crease or decrease by 1. By |ρ| = T ≥ τ the term
f s
i − f s′

i is constant in i. The claim follows by ap-
plying the same calculation to ρ′.

Note that algorithm 5 can be implemented in a dis-
tributed fashion: by transmitting the noise values for

the ghost cars to neighboring tracking-points and re-
porting them to the central server as part of their reg-
ular location reports. The tracking-points would not
provide DP by themselves, because they still have to
transmit an ID, which necessarily differs between two
adjacent sequences of inputs.

The noise bound for algorithm 5 is difficult to state
and prove, because it is an amalgamation of the noise
bounds for a sum of Laplacians and the noise bound
for algorithm 3. We instead simulate the algorithm in
the following section.

5 COMPARISON OF
APPROACHES

5.1 Simulation

It is clear that algorithm 3 has better noise properties
than algorithm 4. But when we consider algorithm 5,
the picture is not so clear. This algorithm shares ele-
ments with algorithm 4, but spawns less noise on the
first hops of a route (depending on p). On the other
hand, it periodically falls back to algorithm 3. It is
also not clear whether the ghost cars spawned in al-
gorithm 5, which produce less noise per car, will sur-
vive long enough to reduce the overall noise. Note
that if too many such cars are spawned, their com-
bined noise might dominate the overall noise value
and we converge to algorithm 4. To investigate this,
we implemented the hybrid approach and algorithm 3
using numpy (Harris et al., 2020). We then compared
these two approaches by simulating each one for a to-
tal of m = 10000 times using evenly spaced values
for ε between 0.1 and 1.0. We seeded our RNG with a
pseudo-random seed chosen as the SHA-256 hash of
the string “ICISSP’24 Simulation” to produce repro-
ducible yet unbiased results. The code for our evalua-
tion can be found here. Moreover, we chose multiple
values for p between 0.6 and 0.99. However, the value
of T and the probability of a noise value staying alive
along a route are somewhat more difficult to select
and model.

The probability of a noise values being alive at any
given time clearly depends on the route and specifi-
cally on the degrees of the vertices along that route.
We approximated the probability of selecting the next
neighbor for a ghost car by 1

d , where d is the degree
of the graph. Clearly d depends heavily on the city
and will vary in general. However, we posit that most
crossings have≈ 4 ingoing edges, rarely more. More-
over, it is often not permitted to “U-turn”. We thus
chose to set d = 3. However, as we will see next, set-
ting d = 4 gives similar results.

https://drive.google.com/file/d/1Zlc41sw8h1nPEibDVLSwV3xgXZEMZrXS/view?usp=sharing


Figure 4: Pr[τ = i] for various degrees and values of i.

To find a meaningful value for T , we need to see
how long noise will remain alive on average. Recall
τ is the RV denoting the last position along a route
where noise is still alive. Writing δ(v) for the degree
of v ∈V , it can be shown5:

Proposition 7. Let T ∈N, and G a graph. Fix a route
r ∈ R and write qi = ∏

i−1
j=1

1
δ(ri)

for 1≤ i≤ T . Define

qT+1
def
= 0. Then

Pr[τ = i] =

{
(1− p) i = 0

(1−p)p(qi−qi+1)
(1−p(1−qi+1))(1−p(1−qi))

1≤ i≤ T

Using this result, we plotted the probabilities of
Pr[τ = i] for various values of i. The results can be
seen in fig. 4. We see that for low and (in our opinion)
plausible values of d, noise rarely survives beyond t =
8. However, we also see that if routes offer only two
outgoing edges per tracking point, the survival rate of
noise is much higher. Because we believe d = 2 to be
a fringe-case, we chose T = 10. We also see from the
figure that d = 3 and d = 4 do not differ much in terms
of where the probability mass is mostly concentrated
(around t = 2 to t = 6).

We then performed measurements using T = 10,
d = 3 and plotted the maximum and average6 noise
for various values of p and ε (note that parameter p
does not affect algorithm 3). The results are shown in
table 1 and plotted in fig. 5.

We can see that the hybrid approach outperforms
algorithm 3 both in terms of maximum and in terms
of average noise. The benefit is present over the en-
tire range of ε values. Algorithm 3 requires roughly
1.33× the average noise of the hybrid approach and

5See the appendix for a proof.
6The average is computed for the absolute values. The

expected noise of (sums of) Laplacians centered at 0 is 0.
The absolute values give a more meaningful picture.

Figure 5: Noise values (d = 3).

roughly 1.17× the maximum noise over the entire
range of values for ε that were simulated.

Note that increasing values of p achieve increas-
ingly better results. This is somewhat surprising, be-
cause large values of p also imply a large number of
ghost cars which then carry noise. It seems that with
the given parameters, p= 0.99 is small enough for the
benefits to outweigh the costs.

5.2 Computational Complexity

We close this section by comparing the algorithmic
properties of the three algorithms. We consider two
deployment scenarios:
Centralized The algorithm runs completely in the

context of the curator. The tracking points behave
as is algorithm 1.

Distributed Part of the algorithm is executed at the
tracking points. These parts differ between algo-
rithms. The tracking-points execute these parts in
addition to algorithm 1.
We begin by defining how we measure algorith-

mic complexity, which is traditionally measured in
terms of input size. In our case, this might mean the
input per time step, the overall design parameters (e.g.
the graph G or the duration T , or both). We will fo-
cus on the design parameters, disregarding the input
per time-step.

The input per time-step is misleading: Consider
algorithm 3 which has inputs of the form v ∈ R U . It
runs linearly in this vector. However note the vector
first needs to be built from the reports by individual
tracking points (cf. section 3). On the other hand, al-
gorithms 4 and 5 compute the same vector internally
from an input proportional to the number P of IDs
currently moving through the in the city. Ultimately,
both algorithms need to process all routes, which is a
function of the number T and the graph G . Hence, we



Table 1: Noise Values (d = 3)
(a) Hybrid (Algorithm 5)

p ε
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

Average Noise
0.6 179.76 90.1546 60.187 44.9128 35.9133 29.8941 25.7821 22.5026 19.9598 18.0358

0.73 173.044 86.6364 57.6857 43.294 34.4829 28.7725 24.7632 21.7792 19.2939 17.3447
0.86 164.259 81.5817 54.4553 41.058 32.8701 27.3812 23.3966 20.4218 18.3088 16.3498
0.99 149.67 74.3359 49.8462 37.3506 29.9638 24.8269 21.5065 18.6528 16.6512 15.0286

Max Noise
0.6 558.502 278.99 187.068 140.083 111.4 92.5214 79.889 69.8763 61.9741 55.9016

0.73 550.002 274.61 183.93 137.93 109.379 91.9244 78.5733 69.035 60.8245 55.3188
0.86 537.232 266.589 176.419 133.537 107.124 89.3853 75.8848 66.7421 59.4957 53.4784
0.99 497.295 248.684 166.418 124.294 99.7349 83.0822 71.5099 62.2997 55.4173 50.2797

(b) Algorithm 3

ε
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

avg 199.072 100.465 66.4164 50.1661 40.165 33.098 28.4976 24.8917 22.2226 20.0027
max 580.695 294.562 194.252 145.865 118.074 97.1609 83.2701 72.5793 65.0409 58.3871

measure runtime not in the input per time-step, but in
the overall design parameters G = (V,E), T , and (in
the case of algorithm 5) p. Usually we will use the
proxy variable |R | ≤ ∑

T
i=1 |V |i ≤ |V |T+1.

We will treat sampling a Laplacian as constant
cost. Likewise, we will treat all database-lookups
as constant costs (which, in the average case, can be
achieved using an appropriately sized hash-table).

Finally, it is easy to see that both algorithms 3
and 4 are asymptotically linear in the number |R |
of routes. From an asymptotic perspective, the algo-
rithms perform almost equally well. In our opinion,
this unfairly hides the fact that algorithm 4 needs to
iterate over R twice (or perform twice the work per
loop iteration) compared with algorithm 3. We there-
fore do not consider asymptotic complexity, but rather
count loop iterations in terms of the parameters laid
out above.

Centralized Algorithm 3 run linearly in |R |. If we
add computing the statistic from per-vehicle reports to
its runtime, then it runs in time |R |+P (where again P
is the number of participants in the system at the given
time-step). Algorithm 3 requires no storage. Again,
if we add the task of computing the statistic from per-
vehicle reports, some sort of mapping of ID to route-
prefixes is needed and we require storage on the order
of P.

Algorithm 4 runs in time |Rmax|+ |R |+P, where
the first term is to spawn one ghost-car per route, the
second is to add the noise to the route-counts and to
propagate the ghost-cars, and the third is to compute
the actual noise-counts from per-vehicle reports. Stor-
age is required to store both the ghost cars in the sys-

tem and the ID-to-route mapping per participant. This
means storage on the order of P+ |R | is needed.

Finally, algorithm 5 runs in time P+ |R |+ T ·|V |·p
1−p .

Note that p
1−p is the expected number of ghost-cars

spawned for each |V |. They remain in the system for
T rounds. These cars need to be propagated in every
step. Additionally, the P reports by “real” need to be
processed. Finally, we need to check for each route,
if noise was added to it and fall back to algorithm 3
otherwise. Space is required to store the route (and
possibly noise) for all real and ghost cars, meaning
storage on the order of P+ |V |·T ·p1−p .

Distributed Only algorithms 4 and 5 can be imple-
mented in a distributed fashion. Algorithm 4 would
offload creating ghost noise per r ∈ Rmax to each
v ∈ V . The tracking points forward the ghost cars to
each other just like they do for real cars (cf. algo-
rithm 1). The runtime per tracking point v ∈V then is
Pv + |Rmax(v)|, where Pv is the number of participants
at v and Rmax(v) is the set of maximal length routes
beginning in v. Storage is required only to store the
set Rmax(v). The curator now reduces to algorithm 2
and runs in time P+ |R |.

Algorithm 5 similarly offloads the generation of
ghost cars to the tracking points. These now run in
time at most T ·|V |·p

1−p +Pv each. They might run sig-
nificantly faster on average, depending on the struc-
ture of G : The T ·|V |·p

1−p ghost cars will distribute over
G in general, but not necessarily uniformly (vertices
receive ghost cars proportional to their in-degree in
every time-step). The tracking points need only store
a representation of Adj(v), which is required for algo-



rithm 1 anyway. The curator is as above.
Note that the overall storage now seems much

lower. This is misleading, because the actual storing
of noise to ID bindings happens at the network link
level, which witnesses an increased load as a result of
the decentralized deployment.

Discussion We see that while algorithm 4 is opti-
mal in terms of noise, it has worst complexity in the
centralized setting and the distributed setting. Algo-
rithm 3 on the, other hand, cannot be implemented
in a distributed fashion and incurs a large amount
of noise. We can see that algorithm 5 strikes a bal-
ance between both algorithms in terms of runtime and
space – both in the centralized and distributed settings
– provided p is chosen appropriately. The previous
subsection showed that it can outperform algorithm 3
in terms of noise to some extent.

6 CONCLUSION

We have introduced a model for decentralized traffic
monitoring in the smart city based on vehicle track-
ing. We then introduced a notion of adjacency that fits
this model and permits us to study ε DP in this con-
text. Building on that, we presented three algorithms
that each achieve ε DP in our setting. Each algorithm
has unique advantages and disadvantages in terms of
noise, runtime, and their ability to be deployed in a
distributed fashion. Together, they showcase the var-
ious engineering tradeoffs that a practioner might en-
counter when applying this model to a specific city.

Our first algorithm is simple to implement, yet in-
curs high noise as it requires Laplace noise scaled to
T . Moreover, it cannot be run in a distributed fash-
ion. Remarkably, despite the superficially similar set-
ting, the well-known binary tree technique cannot be
ported to this setting. We next showed that a depen-
dence on T in terms of noise is altogether unneces-
sary. The resulting algorithm can run in a distributed
fashion, but incurs high runtime overhead. Our third
algorithm is a hybrid approach that strikes a balance
between the first two algorithms. Its noise bound is
difficult to compute due to its hybrid and probabilis-
tic nature. Yet it is reasonably efficient in a distributed
setting. Moreover, when simulated, it outperforms the
first algorithm in terms of noise.

We believe that our results show the merit of hy-
bridizing DP algorithms in a probabilistic way, specif-
ically when working in the presented context of traffic
monitoring. While the resulting algorithms are more
difficult to analyze, they perform reasonably well. We
believe that future work can improve this situation.

For example, hybrid schemes could adapt to the topol-
ogy of the graph, covering routes that have a higher
probability of “loosing” a ghost with a higher number
of the same. Finally, the benefits of adopting (ε,δ)
DP, where δ > 0, may hold significant improvements
in terms of noise at the cost of a modest imbalance in
the privacy guarantees.
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APPENDIX

Proofs Section 4

Proof of Proposition 4

Proposition. Let X1, . . . ,Xn ∼ Lap(b) be i.i.d. ran-
dom variables, where b > 0. Denote their sum by
Y = ∑

n
i=1 Xi. Then for all β ∈ (0,1):

Pr
[
|Y |>

√
2b
(

n ln(2)− ln
(

β

2

))]
≤ β

The proof uses the well-known Chernoff bound,
which is a common tool in analysing noise levels of
DP algorithms (Dwork et al., 2014; Henzinger et al.,
2023).

Lemma. Let X1, . . . ,Xn ∼ Lap(b) be i.i.d. random
variables, where b > 0. Denote their sum by Y =
∑

n
i=1 Xi. Then for all α ∈ (0,b−1) and λ > 0:

Pr [|Y |> λ]≤ 2exp
(
−αλ+n · ln

(
1

1−α2b2

))

Proof. We use the well-known fact that the moment-
generating function E[exp(α · X)] = 1

1−α2b2 for any
random variable X ∼ Lap(b), whenever |α| < b−1.
Using a Chernoff bound, we get for all α ∈ (0,b−1):

Pr[Y > λ]≤exp(−αλ) ·E[exp(α ·Y )]
=exp(−αλ) ·E[exp(α ·X1)]

n

=exp(−αλ) ·
(

1
1−α2b2

)n

=exp
(
−αλ+n · ln

(
1

1−α2b2

))
By replacing α by −α we obtain an identical proba-
bility bound for the event Y <−λ.

If we denote the exponential in the above lemma
by β and solve for λ, we obtain:

Corollary. Let b,α,X1, . . . ,Xn and Y be as above. Let
β ∈ (0,1). Then

Pr

|Y |> n ln
(

1
1−α2b2

)
− ln

(
β

2

)
α

≤ β

Proposition 4 now follows by setting α = 1√
2·b .

Proof of Lemma 6

Let p : R→R. For 2≤ k ∈N write

p(k) = p∗ · · · ∗ p︸ ︷︷ ︸
k factors

for the k-fold convolution of p with itself. For k = 1
we let p(k) = p.

Lemma. Let b > 0 and let p(x) = (2b)−1 exp(−|x| ·
b−1) be the Lap(b) PDF. Then we have both

p(k)(x)≤ exp
(

1
b

)
· p(k)(x+1)

and

p(k)(x+1)≤ exp
(

1
b

)
· p(k)(x)

for all x ∈R and 1≤ k ∈N.

Proof. Let first k≥ 2. We have by associativity of the
convolution operator that p(k) = p∗ p(k−1) and so:

p(k)(x+1)

=
∫

∞

−∞

p(x+1− τ) · p(k−1)(τ)dτ

=
∫

∞

−∞

1
2b

exp
(
−|x+1− τ|

b

)
· p(k−1)(τ)dτ

≥
∫

∞

−∞

1
2b

exp
(
−|x− τ|+1

b

)
· p(k−1)(τ)dτ

= exp
(
−1

b

)
·
∫

∞

−∞

p(x− τ) · p(k−1)(τ)dτ

Moreover

p(k)(x−1)

=
∫

∞

−∞

1
2b

exp
(
−|x−1− τ|

b

)
· p(k−1)(τ)dτ

≥
∫

∞

−∞

1
2b

exp
(
−|x− τ|+1

b

)
· p(k−1)(τ)dτ

= exp
(
−1

b

)
·
∫

∞

−∞

p(x− τ) · p(k−1)(τ)dτ

The case k = 1 is a well-known property of the
Laplace distribution, but can be proven in the same
way by working with p directly.

Proof of Proposition 7

Proposition. Let T ∈N, and G a graph. Fix a route
r ∈ R and write qi = ∏

i−1
j=1

1
δ(ri)

for 1≤ i≤ T . Define

qT+1
def
= 0. Then

Pr[τ = i] =

{
(1− p) i = 0

(1−p)p(qi−qi+1)
(1−p(1−qi+1))(1−p(1−qi))

1≤ i≤ T



Proof. Let N denote the number of ghost cars. Then

Pr[τ = i] =
∞

∑
n=0

Pr[N = n]Pr[τ = i | N = n]

For i = 0 we obviously have

Pr[τ = 0 | N = n] =

{
1 n = 0
0 otherwise

and so

Pr[τ = i] =

{
(1− p) i = 0
∑

∞
n=1 Pr[N = n]Pr[τ = i | N = n] i > 0

Given N = n > 0, noise survives to i > 0 iff there are
k = 1, . . . ,n of those cars that arrive at i but all leave
the route at r. Write qi = ∏

i−1
j=1

1
δ(ri)

. Then qi is the
probability for any given ghost car to still be alive at i
(note that given N > 0 this probability is 1 for i = 1 as
implied by the empty product). Then for all 1 < i≤ T
and n > 0:

Pr[τ = i | N = n]

=
n

∑
k=1

(
n
k

)
qk

i ·
(

1− 1
δ(ri)

)k

(1−qi)
n−k

=
n

∑
k=1

(
n
k

)
(qi−qi+1)

k (1−qi)
n−k (⋆)

Note that if i = T , the term (1− 1
δ(rT )

)k must be re-
placed by 1, because the ghost cars will not proceed
further with probability 1 due to their elapsing TTL.
This is where our convention that qT+1 = 0 comes
into play, which covers this case in (⋆).

The sum may be extended to k = 0 and simplified
n

∑
k=1

(
n
k

)
(qi−qi+1)

k (1−qi)
n−k

=((qi−qi+1)+(1−qi))
n− (1−qi)

n

=(1−qi+1)
n− (1−qi)

n

Taken together this gives for i > 0
∞

∑
n=1

Pr[N = n]Pr[τ = i | N = n]

=(1− p)

(
∞

∑
n=1

(p(1−qi+1))
n−

∞

∑
n=1

(p(1−qi))
n

)

=(1− p)
(

1
1− p(1−qi+1)

− 1
1− p(1−qi)

)
Note the corrective−1 summands that are required to
make the sums begin at n = 0 cancel each other out.

From this on arrives via straightforward algebraic
manipulations at:

(1− p)p
qi−qi+1

(1− p(1−qi+1))(1− p(1−qi))


