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Abstract - As systems grow in complexity, the interdisciplinary 
nature of systems engineering makes the visualization and 
comprehension of the underlying system models challenging for 
the various stakeholders. This, in turn, can affect validation and 
realization correctness. Furthermore, stakeholder collaboration 
is often hindered due to the lack of a common medium to access 
and convey these models, which are often partitioned across 
multiple 2D diagrams. This paper contributes VR-SysML, a 
solution concept for visualizing and interacting with Systems 
Modeling Language (SysML) models in Virtual Reality (VR). 
Our prototype realization shows its feasibility, and our 
evaluation results based on a case study shows its support for 
the various SysML diagram types in VR, cross-diagram element 
recognition via our Backplane Followers concept, and depicting 
further related (SysML and non-SysML) models side-by-side in 
VR.  

Keywords - Systems Modeling Language (SysML); virtual 
reality; systems modeling; systems engineering; requirements 
traceability; test traceability; system testing; verification and 
validation. 

I.  INTRODUCTION 
This paper extends the immersive Systems Modeling 

Language (SysML) model visualization and interaction 
capabilities in VR-SysML [1]. Towards supporting immersive 
software (SW) verification and validation (V&V), it 
contributes semi-automated requirements traceability and test 
tracing capabilities visualized in VR. 

Systems engineering (SysE) is an interdisciplinary 
collaborative engineering field dealing with the design, 
integration, and management of complex system solutions 
over their lifecycle. The field faces a continuous challenge of 
growing system complexity, an increasing share of 
functionality shifted to software, system resource constraints, 
while coping with compressed development timeframes and 
project budget and resource constraints. Furthermore, the 
interdisciplinary nature of SysE means that diverse 
stakeholder types and groups with their specialty 
competencies and concerns are involved and who may not be 
readily acquainted with the model types and modeling 
languages involved. Any models may be digitally isolated or 
practically inaccessible to all stakeholder types, "hidden" 
within "cryptic" modeling tools that certain modeling 
specialists may understand. Due to the interdisciplinary nature 
of SysE, the inaccessibility and lack of model comprehension 

can hamper collaboration and affect overall system validity 
and correctness with regard to requirements. Visualized 
requirements traceability can help support validity checking. 
Furthermore, visualizing test traceability can help with the 
analysis of the testing effort and support V&V. 

While SysE can involve various models including 
physical, mechanical, electrical, thermodynamic, and 
electronic, the focus of this paper is on the Systems Modeling 
Language [2]. SysML is a dialect of the Unified Modeling 
Language (UML®) and defined as a UML 2 Profile. Views 
and their associated diagrams can help reduce cognitive 
overload, yet their divided nature also risks overlooking a 
relation or element and comprehending the overall model. 
Ideally, a model should be whole and complete to the 
appropriate degree for the reality it is depicting and 
simplifying. Yet the modeling languages and associated 
tooling typically assumes a 2D display and portrays portions 
of models sliced onto 2D diagrams. Although 3D models can 
be portrayed on 2D displays, they lack an immersion quality.  

VR is a mediated visual environment which is created and 
then experienced as telepresence by the perceiver. VR 
provides an unlimited immersive space for visualizing and 
analyzing a growing and complex set of system models and 
their interrelationships simultaneously in a 3D spatial 
structure viewable from different perspectives. Lacking a 
proper 3D system modeling notation, in the interim we 
propose retaining the well-known SysML notation and 
interconnecting 2D SysML diagrams in VR, which can suffice 
for depicting the relations between elements across diagrams 
and assist with navigating and validating complex models. As 
system models grow in complexity and reflect the deeper 
integration and portrayal of their system reality and 
environment, an immersive digital environment provides an 
additional visualization capability to comprehend the “big 
picture” model for structurally and hierarchically complex 
system models via interconnected diagrams and associated 
digital elements. 

As to our prior work in visualizing architecture in VR, VR-
UML [3] provides VR-based visualization and interaction 
with UML models. VR-EA [4] visualizes Enterprise 
Architecture (EA) ArchiMate models in VR. Extending VR-
SysML [1], this paper contributes VR-SysML+Traceability, a 
VR-based solution concept for visualizing and interacting 
with SysML while adding additional SysML automated 
requirements traceability and test tracing capabilities to 
support SW V&V. Our prototype realization shows its 



feasibility, and a case-based evaluation provides insights into 
its capabilities. 

The remainder of this paper is structured as follows: 
Section 2 discusses related work. In Section 3, the solution 
concept is described. Section 4 provides details about the 
realization. The evaluation is described in Section 5 and is 
followed by a conclusion. 

II. RELATED WORK 
As to visualization approaches with SysML, Nigischer and 

Gerhard [5] proposed a lightweight 3D visualization for 
SysML models in Product Data Management. They describe 
an approach and concept, but no prototype is shown. Barosan 
et al. [6] describes a 3D SysML digital-twin-in-loop virtual 
simulation environment of a distribution center for truck 
driving test scenarios integrating IBM Rhapsody with 
Unity3D; VR and immersion are not considered. Mahboob et 
al. [7] describe a model-based approach to generate VR object 
collision simulation scenes from SysML behavior models. 

Besides our own VR-UML [3], VR features are not yet 
commonplace in UML tools: Ozkaya [8] analyzed 58 different 
UML tools without any mention of VR, and Ozkaya and Erata 
[9] surveyed 109 practitioners to determine their UML 
preferences without any mention of VR. Non-VR 3D-based 
UML visualization includes X3D-UML [10], VisAr3D [11], 
and the case study by Krolovitsch and Nilsson [12]. 

Work related to requirements traceability visualization 
includes Li & Maalej [13], which found traceability matrices 
and graphs preferrable for management tasks. Matrices were 
preferred for an overview, while graphs were preferred for 
navigating linked artifacts. They noted that users were not 
always capable of choosing the most suitable traceability 
visualization. Abad et al. [14] performed a systematic 
literature review on requirements engineering visualization. 
Madaki & Zainon [15] performed a review on tools and 
techniques for visualizing SW requirement traceability. None 
of the above literature mentioned immersive or VR 
techniques; our literature search did not find similar work. 

With regard to test traceability, we found no VR work 
directly addressing this topic. VR-related work regarding 
software analysis includes VR City [16], which applies a 3D 
city metaphor. While it briefly mentions that its work might 
be used for test, it shows no actual results in this regard and in 
this regard only a trace mode visualization is depicted.  

In contrast, VR-SysML+Traceability provides an 
immersive visualization and experience with SysML models, 
providing automatic layout of views as stacked 3D 
hyperplanes, visualizing the reality of inter-view relations and 
recurrence of elements, and enabling interactive modeling in 
VR. Furthermore, it provides traceability of requirements and 
test status to immersively support V&V. Hypermodeling 
support enables SysML, UML, and other relevant models to 
be simultaneously visualized in the same virtual space, 
supporting cross-model analysis across various diagram types 
and stakeholder concerns. 

III. SOLUTION CONCEPT 
Our solution concept is based on VR. In support of our 

view that an immersive VR experience can be beneficial for 

model analysis, Müller et al. [17] compared VR vs. 2D for a 
software analysis task, finding that VR does not significantly 
decrease comprehension and analysis time nor significantly 
improve correctness (although fewer errors were made). 
While interaction time was somewhat less efficient than the 
common daily 2D interactions one is used to and has been 
trained in for years, it is important to note that VR improved 
the user experience, was more motivating, less demanding, 
more inventive/innovative, and more clearly structured. 

 
Figure 1.  Conceptual map of our various VR solution concepts. 

SysML is a general-purpose architecture modeling 
language for systems and systems-of-systems, supporting 
their specification, analysis, design, verification, and 
validation. Out of UML 2’s diagrams, it reuses seven 
(modifying four of these) while adding two additional ones. 
Thus, for VR-SysML (Figure 1) we chose to extend our VR-
UML [3] solution concept, which is based on our generalized 
VR Modeling Framework (VR-MF) (detailed in [4]). VR-MF 
provides a VR-based domain-independent hypermodeling 
framework addressing four aspects requiring special attention 
when modeling in VR: visualization, navigation, interaction, 
and data retrieval. Our other VR architectural modeling 
solutions include VR-BPMN [18], VR-ProcessMine [19], 
VR-EA [4], and VR-EAT [20], which integrates the EA tool 
Atlas to provide dynamically-generated EA diagrams in VR. 
VR-EA+TCK [21] adds additional capabilities, integrating 
enterprise Tool, Content, and Knowledge such as a 
Knowledge Management Systems (KMS) and/or Enterprise 
Content Management Systems (ECMS). While SysML is 
popular for embedded and model-based systems, it is also 
applicable to domains such as EA. In the Software 
Engineering (SE) area, which we group under VR-SE, 
whereby VR-TestCoverage [22] and VR-Git [23] address test 
coverage and code repository aspects in VR.  

A. Visualization in VR 
Our concept attempts to leverage the best of 2D and VR: 

to support diagram comprehension, we chose not to diverge 
significantly from the SysML notation. Yet placing 2D 
SysML images like flat screens in front of users would provide 
little added value in the 3D VR space. A plane is used to 
intuitively represent a diagram. Stacked hyperplanes are used 
to support viewing multiple diagrams at once, while 
permitting a user to readily have an overview of the number 
and types of diagrams. Furthermore, hyperplanes serve a 
grouping function and allow us to utilize the concept of a 
common transparent or invisible backplane to indicate 
common elements across diagrams via multi-colored inter-



diagram followers. Versus side-by-side, stacked diagrams are 
a scalable approach for larger projects since the distance to the 
VR camera is shorter. Multiple stacks can be used to group 
diagrams or delineate heterogeneous models. Diagrams of 
interest can still be viewed side-by-side by moving them from 
the stack via an anchor sphere affordance on a diagram corner, 
which is also used to hide or collapse diagrams to reduce 
visual clutter. To distinguish SysML elements types, 2D icon 
images can be placed on generic (e.g., block) model elements, 
in order to reduce the effort of modeling each SysML element 
type as a separate 3D form for VR. 

B. Navigation in VR 
One navigation challenge arising from the immersion VR 

offers is supporting intuitive spatial navigation while reducing 
potential VR sickness symptoms. Thus, we incorporate two 
navigation modes in our solution concept: the default uses 
gliding controls for fly-through VR, while teleporting 
instantly places the camera at a selected position.  Although 
potentially disconcerting, it may reduce the likelihood of VR 
sickness induced by fly-through for those prone to it. 

C. Interaction in VR 
As VR interaction has not yet become standardized, in our 

concept user-element interaction is supported primarily 
through VR controllers and a Virtual Tablet. The VR-Tablet 
provides detailed element information with context-specific 
Create, Retrieve, Update, Delete (CRUD) capabilities 
including a virtual keyboard for text entry via laser pointer key 
selection. The aforementioned corner anchor sphere 
affordance supports moving / hiding / displaying diagrams. 
Inter-diagram element followers can be displayed, hidden, or 
selected (emphasized). 

D. Traceability 
A modeling tool such as Sparx Systems Enterprise 

Architect can be used to provide requirement and test 
traceability information via SysML. Our solution then extracts 
traceability-related information from relevant SysML 
diagrams (Requirements and/or Use Case diagrams), 
including elements such as Requirement (stereotype 
«requirement») and Test Case, and relations such as «satisfy», 
«verify», and «deriveReqt», etc. 

 
Figure 2.  Depicting (sub/super)-requirement dependencies, with degree of 
implementation on the left and test implementation on the right edge. 

For tracing requirements with their dependent code 
implementation status, annotations are placed in the code to 
indicate with requirement IDs are addressed. These are 
extracted by a tool that parses all (test) code files and generates 
a report. The result is then visualized on the relevant 

requirement element edges in the diagram in VR (e.g., red 
means that requirement ID was not found in the (test) code, 
green if at least one reference was found, and for parent 
requirements yellow if partially addressed based on some 
child element(s) missing a reference (see Figure 2). Also, a 
total degree of implementation considering the elements on 
that diagram level is also provided on the side of a diagram. 

To trace test results to their requirements, the test results 
are extracted from a test tool report, e.g., in the JUnit XML 
format used by pytest and JUnit. The test result is then 
visualized on the relevant requirement diagram elements in 
VR (e.g., red if no test was found, yellow if not all passed, and 
green if passed). Also, a total degree of test implementation 
considering the elements on that diagram level is also 
provided on the diagram side. 

Connectors can be followed to trace these to the actual 
artifacts, the content of which can be shown in the VR-Tablet. 

Note that while the traceability model utilizes information 
from SysML in addition to other sources, we chose to 
visualize it in VR independent of SysML conformant 
constraints, opting for a more intuitive visual depiction of 
traceability for the stakeholder. Placing a VR-SysML model 
next to a traceability model is intended and supported. That 
way, the VR-SysML expresses the exact model it does in a 
SysML tool, while the traceability model can include the 
additional automatically extracted implementation and test 
features without encumbering the SysML model.  

For our traceability visualization, we thus chose to layer 
the information ordered by degree of abstraction as shown in 
Figure 3. The top layers are SysML model-related: Use cases 
being the highest abstraction and thus on top, requirements 
being more concrete and a level below, and test cases being 
used to verify requirements and thus below requirements but 
shifted to the side to indicate they relate to testing. The lower 
layers consist of file trees that visualize the test source code 
files implementing test cases, and the implementation layer 
consisting of source code files that implement the 
requirements. 

 
Figure 3.  VR-SysML visual layering for traceability. 

In general, a backplane is used with colored trace lines to 
show all the traces, thus indicating the total available traces 
and the degree of traceability. This avoids a spider web-like 



tracing of lines across all elements. However, when an 
element of interest is selected, then direct trace lines specific 
to that element are also depicted (analogous to a spotlight). 

IV. REALIZATION 
The realization of the solution focused on two aspects: 1) 

realizing a correct portrayal of the various SysML diagrams 
and providing a way to trace the same element to its 
occurrence in other diagrams (which we name VR-SysML), 
and 2) the extraction and visualization of requirements 
traceability information from SysML diagrams and 
implementation files and test code files.  

A. VR-SysML Realization  
The logical architecture for our VR-SysML prototype 

realization is shown in Figure 4.  

 
Figure 4.  VR-SysML logical architecture. 

SysML models are imported in XMI format to our Data 
Hub that is implemented in Python. Xmitodict is used to 
convert the XMI to a key-value dictionary and the built-in 
JSON package is used for JSON conversion. Pymongo is used 
to store the JSON (as BSON) in the NoSQL document 
database MongoDB. The scripts in the Unity environment 
utilize json.NET. SysML XMI files produced from 
SparxSystems Enterprise Architect were used. Our prototype 
currently does not consider the Allocation Table (relationship 
matrices). 

B. Requirements Traceability Realization 
The logical architecture for our traceability realization is 

shown in Figure 5.  

 
Figure 5.  VR-SysML logical architecture for traceability realization. 

 
Figure 6.  Python modules contained in the Code Analyzer tool. 

The Code Analyzer tool has a Command Line Interface 
(CLI) and is implemented in Python. Based on input 
parameters, it scans the given files and extracts information 
such as requirements IDs from code, test reports in JUnit 
XML, and SysML Enterprise Architect XMI files, producing 
a JSON file as output that is then imported by the VR 
application running on the Unity platform. Its modular 
realization is shown in Figure 6.  

Within SysML models, a diagram element with the 
property “id” serves as the reference for identifying and 
differentiating requirements as shown in Figure 7 and for test 
cases as shown Figure 8.  The Python library 
xml.dom.minidom is used to extract the ID, element types, 
element position and size, relations between elements, and 
properties, comments, or annotations.  

 
Figure 7.  Requirement “id” as property in SysML. 

 
Figure 8.  Test case “id” as property in SysML. 

 
Figure 9.  Traceability annotation example: associating a test method in 
test code to a requirement and test target (the implementation). 

 
Figure 10.  Traceability annotation example: associating all methods in a 
test source file to one (or more) requirement(s). 

 
Figure 11.  Example file tree with folders. 



Since almost all programming languages support 
comments, the annotations are provided as comments and can 
thus be utilized in any programming language. For this, 
lang.py must be extended for each additional language. 
Within source code, the keyword “REQID” indicates the 
unique identifier (ID) of a requirement, and can be associated 
with a (test) method, as shown in Figure 9. When a (test) 
method satisfies multiple requirements, multiple IDs can be 
separated via commas. The keyword "TESTID" is used to 
associate a SysML diagram. Finally, “TESTTARGET” is 
only used within test files to indicate the test target. Multiple 
references are possible separated by commas. Some 
requirements are overarching and it would be arduous to 
associate each method separately. Thus, for the case when all 
methods in a file address one (or more) requirement(s), 
“REQID” can be placed at the top of the file (separate from 
method declarations or definitions), thus implicitly indicating 
it is associated with all methods in that file, as exemplified in 
Figure 10.  

To build balanced file trees to portray the test source and 
implementation source, with each tree consisting of folders 
and files (see Figure 11), an implementation of Reingold-
Tilford algorithm [24] was adapted. 

V. EVALUATION 
We base the evaluation of our solution concept on design 

science method and principles [25]. 

A. VR-SysML Evaluation 
A case study is used with an emphasis on SysML diagram 

type support, how these are visualized in VR, and additional 
capabilities in VR. A sample SysML project with all 9 SysML 
diagram types is used to compare the visualization in 
Enterprise Architect to that in VR-SysML, grouped as 
requirement, behavior, or structure diagram types. 

As shown in Figure 12, the various diagrams of the SysML 
model are mapped to stacked hyperplanes that provide an 
anchor affordance (black sphere) with which to expand, 
collapse, or move a diagram. Planes and elements have a 
shallow 3D depth with labeled edges to support recognition 
from different viewing angles. The colors of the planes can be 
configured to help with differentiation or grouping. 
Furthermore, our backplane concept creates followers that 
allow one to quickly find the same element across different 
diagrams in the same model, to readily see in which diagrams 
that element participates, or to determine that the element is 
only shown on one diagram (it not having a follower). The 
colored followers can be selected (made bold) and the other 
followers can be hidden if desired to reduce visual clutter for 
larger models. 

1) SysML Requirement Diagram. SysML extends UML 
with an additional diagram type, the Requirement diagram. It 
can be used to specify functional and non-functional 
requirements for the model. An example viewed in EA is 
shown Figure 13 and in VR in Figure 14. In VR, elements are 
labeled on edges to support reading from different angles. 
The VR Tablet can provide more details or interaction 
capabilities for a selected element, and while support for 

modeling capabilities is shown on the interface, these are 
currently placeholders and have not yet been fully 
implemented in the prototype (create, modify, delete, export). 

 
Figure 12.  VR-SysML backplane with inter-diagram followers. 

 
Figure 13.  Requirement Diagram in EA. 



 
Figure 14.  Requirement Diagram in VR. 

2) SysML Use Case Diagram. As a behavior diagram, 
SysML includes the Use Case Diagram from UML as shown 
from EA in Figure 15 and VR in Figure 16. In order to more 
readily recognize and differentiate the diagram type, an oval 
shape was used for the use cases. However, the actors utilize 
our generic cube concept with notation symbols placed on the 
various sides. This provides a flexible mechanism for quickly 
supporting various notation element types and tailoring or 
extending model element types using any icons or images. 

 
Figure 15.  Use Case Diagram in EA. 

 
Figure 16.  Use Case Diagram in VR. 

3) SysML Activity Diagram. Another dynamic behavior 
diagram type that can be used to specify dynamic system 
behaviors, such as control flow and object flows, is the 
Activity diagram in SysML from EA in Figure 17 and VR in 
Figure 18. It is slightly modified from that in UML, adding 
additional semantics for Continuous Flow and Probability. 

 
Figure 17.  Activity Diagram in EA. 

 
Figure 18.  Activity Diagram in VR. 

4) SysML Sequence Diagram. Sequence diagrams 
(unmodified from UML) provide a further dynamic behavior 
diagram, showing interactions via message sequences, from 
EA in Figure 19 and VR in Figure 20. 

 
Figure 19.  Sequence Diagram in EA. 



 
Figure 20.  Sequence Diagram in VR. 

5) SysML State Machine Diagram. State machine 
diagrams (unmodified from UML) are a dynamic behavior 
diagram showing states transitions that occur in response to 
events, from EA in Figure 21 and VR in Figure 22. 

 
Figure 21.  State Machine Diagram in EA. 

 
Figure 22.  State Machine Diagram in VR. 

6) SysML Block Definition Diagram (BDD). A BDD is a 
static structural diagram, analogous to the UML Class 
diagram type with certain modifications, and shows system 
components, their contents (as properties, behaviors, 
constraints), interfaces, and relationships. See Figure 23 for 
an example from EA and Figure 24 for VR. It can be used for 
describing the system structure as a hierarchy of relations 
between systems and subsystems typically consisting of 
“black-box” blocks. As a possible specialization, it can be 
useful to explicitly model constraints separately, referred to 
as Constraint Block diagrams (see Figure 25 for an EA 
example and Figure 26 for VR), which can be referenced by 
Parametric diagrams.  

 
Figure 23.  Block Definition Diagram (BDD) in EA. 

 
Figure 24.  Block Definition Diagram (BDD) in VR 

 
Figure 25.  Constraint Block Diagram in EA. 

 
Figure 26.  Constraint Block Diagram in VR. 



7) SysML Internal Block Diagram (IBD). An IBD is a 
static structural diagram that depicts the internal 
(encapsulated) composition (structural contents) of a Block 
in a BDD, i.e., a “white-box” view. This includes properties, 
parts, interfaces, connectors, and ports, and can be used to 
depict the flow of inputs and outputs between them. See 
Figure 27 for an example in EA and Figure 28 for VR. 

 
Figure 27.  IBD in EA. 

 
Figure 28.  IBD in VR. 

8) SysML Parametric Diagram. A static structural 
diagram type, Parametric diagrams (see Figure 29 for EA and 
Figure 30 for VR) are a specialization of IBD to model 
equations with parameters and can be used to enforce 
mathematical rules or constraints defined via Constraint 
Blocks. 

 
Figure 29.  Constraint Parametric Diagram in EA. 

 
Figure 30.  Constraint Parametric Diagram in VR. 

9) SysML Package Diagram. A SysML Package diagram 
(see Figure 31 for EA and Figure 32 for VR) is further static 
structural diagram based on the equivalent UML type (with 
minor modifications). Packages provide a general-purpose 
mechanism for grouping model elements and diagrams, and 
the diagram can be used to show their contents and the 
relationship between them. 

 
Figure 31.  Package Diagram in EA. 

 
Figure 32.  Package Diagram in VR. 

10) Multi- and Heterogeneous Model Depiction in VR. 
VR’s unlimited virtual space provides the potential to view, 
compare, and analyze multiple SysML (left and center 
models in Figure 33) or heterogeneous models side-by-side, 
exemplified with an ArchiMate enterprise architecture model 
on the right in Figure 33.  For SysE, this immersive approach 
also has the potential to support interdisciplinary 
collaboration between specialization experts for complex 
systems. 



 
Figure 33.  Multiple and heterogeneous side-by-side models in VR. 

B. Traceability Scenario: Requirements and Tests 
To evaluate the traceability scenario, an example project 

is used, consisting of a various source and test files with a 
SysML requirements diagram in EA (see Figure 34). As can 
be seen in the diagram, use cases related to requirements via 
satisfy, and further child requirements via derived relations, 
and test cases having a verify relation to the requirements. 

 
Figure 34.  Example requirements diagram in EA. 

Output of the code analysis tool is shown in Figure 35. A 
separate JSON file (not shown) with this information is 
generated for VR to process the information for visualization. 
The output shows the scanned use cases, derived 
requirements, test cases, test files, and implementation source 
files, and their relations. 

The visualization of the traceability layers (Figure 36) and 
relations backplane (Figure 37) are shown in VR. Use cases 
(biege) are the most abstract at the top (Figure 38), with satisfy 
relations following requirements. The number of requirements 
layers (dark grey) (Figure 39) are variable, depending on the 
depth of derivation hierarchy, in this case two additional 
layers. The test cases layer (Figure 40) is shown in (blue) and 
offset to the right of the stack. File trees for the 
implementation and the tests (shifted to the right) are depicted 
on the lowest purple planes as seen in Figure 41.  

 
Figure 35.  Code analyzer output. 

 
Figure 36.  Annotated traceability layers and relations backplane in VR 
(without element selected). 

 
Figure 37.  Traceability relations on backplane. 



 
Figure 38.  Use case layer. 

 
Figure 39.  Requirements layers (one element selected showing direct 
spotlight relations). 

 
Figure 40.  Test cases layer (one element selected). 

 
Figure 41.  Test files layer showing tree (faintly in grey) of folders and files 
(with one element selected). 

Requirements elements are colored on the edges (see 
Figure 42): the left side for implementation status and the right 
side for test case implementation status. The status is colored 
in three segments: red indicates the percentage of a (product 
or test) implementation missing, green the percentage 
completed, and yellow partial fulfillment. Thus, from the 
perspective of one side of all layers one can get a quick 
impression of the overall requirements implementation status 
or from the right side the test implementation status on a per-
layer basis. 

 
Figure 42.  Use case layer. 

The requirements layer shows a total fulfillment degree on 
the diagram edges: left for implementations and right for test 
cases. For example, in Figure 43 on that requirements layer 
three requirements are unimplemented while one is, so on the 
left edge 25% is shown for green and 75% in red, while in 
Figure 44 since three out of four requirements have tests, on 
the right edge red shows 25% and green shows 75%. This 
might be the case if the test team is ready with tests before the 
implementation has made progress, e.g., as with Acceptance 
Test-Driven Development (ATDD). 

 
Figure 43.  Requirements layer left side (implementation fulfillment). 

 
Figure 44.  Requirements layer right side (test fulfillment). 



 
Figure 45.  Selected requirement highlights the verifying test cases. 

Figure 45 shows the traceability between a requirement to 
its associated verification test cases. 

As to the VR-Tablet, additional detailed information about 
an object is shown. In Figure 46 for the selected requirement 
ID 126 the name (Requirement D) is shown, the number of 
test files (1) that exist, the test cases covered (2), and that no 
implementation was found. Also note no downward trace to 
the left towards the implementation is shown, only to the right 
towards tests. In contrast, Figure 47 shows test files and 
implementations exist for ID 125 (with downward traces in 
both directions), which is why both its edges are green, while 
Figure 48 shows a requirement with neither tests nor 
implementation. 

 
Figure 46.  VR-Tablet shows detailed information about selected object. 

 
Figure 47.  VR-Tablet shows detailed information about selected object. 

 
Figure 48.  VR-Tablet shows detailed information about selected object. 

To determine use case satisfaction, the VR-Tablet 
indicates if a selected use case is satisfied (Figure 49) or not 
(Figure 50). 

 
Figure 49.  VR-Tablet shows selected use case satisfied since requirement 
implemented. 



 
Figure 50.  VR-Tablet shows selected use case unsatisfied since requirement 
not fulfilled. 

When viewing test files, the VR-Tablet indicates the 
number of test targets that exists (the target can be found by 
following the trace), and if the test passed (Figure 51) or failed 
(Figure 52).  

 
Figure 51.  VR-Tablet shows associated test implementation name as 
test_example1.py with a single test target. 

 
Figure 52.  VR-Tablet showing test case status Failed as “True” and this test 
case having no associated test target information. 

C. Discussion 
The case-based evaluation of VR-SyML showed its ability 

to depict the various SysML diagram types in VR. 
Furthermore, the backplane supports the ability to quickly find 
the same elements across the various diagram types. As 
systems grow in complexity, these permits one to quickly find 
an element of interest in its various contexts. VR-SysML 
enables an immersive experience in the model, with the 
unlimited VR space supporting for larger models, multiple 
diagrams, prior or legacy model versions for comparison, and 
even heterogenous models displayed simultaneously. 

Our traceability evaluation showed the code analyzer was 
able to automatically scan source code, test files and SysML 
diagram files and automatically ascertain traceability relevant 
information. The evaluation showed the ability of VR to 
provide an intuitive way to simply portray (via layers, the 
backplane, spotlights, and the VR-Tablet) the relevant 
artifacts and trace the relations between requirements, tests, 
and implementation to support V&V activities. This allows 
independent stakeholders who may not be system experts to 
evaluate the implementation and testing fulfillment without 
being inundated with perhaps irrelevant details in typical 
developer documentation. 

VI. CONCLUSION 
VR-SysML+Traceability contributes a VR-based solution 

concept for visualizing and interacting with SysML while 
adding automated requirements traceability and test tracing 
capabilities to support SW V&V. An immersive SysML 
model experience is provided for visually depicting and 
navigating SysML diagrams of models in VR. The solution 
concept was described, a VR prototype realized, while an 
evaluation using case studies showed its capabilities. Using 
VR hyperplanes, SysML diagrams are enhanced with 3D 
depth, color, and automatically-generated inter-diagram 
element followers based on our back-plane concept. 
Interaction is supported via a virtual tablet and keyboard. The 
unlimited space in VR facilitates the depiction and visual 
navigation of large models, while relations within and 
between elements, diagrams, and models can be analyzed. 
Furthermore, additional related (SysML or non-SysML) 
models can be visualized and analyzed simultaneously in VR, 
benefiting complex systems-of-systems architectures or 
collaboration. The sensory immersion of VR can support task 
focus during model comprehension and increase modeling 
enjoyment, while limiting the visual distractions that typical 
2D display surroundings incur. The semi-automated 
traceability capability enhances the V&V opportunities by 
creating a simple and intuitive way to navigate and readily 
determine the degree of implementation and test progress and 
requirement fulfillment, even for quality assurance personnel 
who are not deeply acquainted with the project. 

Future work includes support for creating models directly 
in VR, integrating further SysML tooling and simulation 
capabilities, supporting tighter and more comprehensive 
model verification and validation within the SysML diagrams, 
and conducting a comprehensive empirical study to evaluate 



usability with various stakeholder groups in collaborative 
situations. 
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