
VR-SysML+Traceability: Immersive Requirements Traceability and Test
Traceability with SysML to Support Verification and Validation in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract - As systems grow in complexity, the interdisciplinary
nature of systems engineering makes the visualization and
comprehension of the underlying system models challenging for
the various stakeholders. This, in turn, can affect validation and
realization correctness. Furthermore, stakeholder collaboration
is often hindered due to the lack of a common medium to access
and convey these models, which are often partitioned across
multiple 2D diagrams. This paper contributes VR-SysML, a
solution concept for visualizing and interacting with Systems
Modeling Language (SysML) models in Virtual Reality (VR).
Our prototype realization shows its feasibility, and our
evaluation results based on a case study shows its support for
the various SysML diagram types in VR, cross-diagram element
recognition via our Backplane Followers concept, and depicting
further related (SysML and non-SysML) models side-by-side in
VR.

Keywords - Systems Modeling Language (SysML); virtual
reality; systems modeling; systems engineering; requirements
traceability; test traceability; system testing; verification and
validation.

I. INTRODUCTION
This paper extends the immersive Systems Modeling

Language (SysML) model visualization and interaction
capabilities in VR-SysML [1]. Towards supporting immersive
software (SW) verification and validation (V&V), it
contributes semi-automated requirements traceability and test
tracing capabilities visualized in VR.

Systems engineering (SysE) is an interdisciplinary
collaborative engineering field dealing with the design,
integration, and management of complex system solutions
over their lifecycle. The field faces a continuous challenge of
growing system complexity, an increasing share of
functionality shifted to software, system resource constraints,
while coping with compressed development timeframes and
project budget and resource constraints. Furthermore, the
interdisciplinary nature of SysE means that diverse
stakeholder types and groups with their specialty
competencies and concerns are involved and who may not be
readily acquainted with the model types and modeling
languages involved. Any models may be digitally isolated or
practically inaccessible to all stakeholder types, "hidden"
within "cryptic" modeling tools that certain modeling
specialists may understand. Due to the interdisciplinary nature
of SysE, the inaccessibility and lack of model comprehension

can hamper collaboration and affect overall system validity
and correctness with regard to requirements. Visualized
requirements traceability can help support validity checking.
Furthermore, visualizing test traceability can help with the
analysis of the testing effort and support V&V.

While SysE can involve various models including
physical, mechanical, electrical, thermodynamic, and
electronic, the focus of this paper is on the Systems Modeling
Language [2]. SysML is a dialect of the Unified Modeling
Language (UML®) and defined as a UML 2 Profile. Views
and their associated diagrams can help reduce cognitive
overload, yet their divided nature also risks overlooking a
relation or element and comprehending the overall model.
Ideally, a model should be whole and complete to the
appropriate degree for the reality it is depicting and
simplifying. Yet the modeling languages and associated
tooling typically assumes a 2D display and portrays portions
of models sliced onto 2D diagrams. Although 3D models can
be portrayed on 2D displays, they lack an immersion quality.

VR is a mediated visual environment which is created and
then experienced as telepresence by the perceiver. VR
provides an unlimited immersive space for visualizing and
analyzing a growing and complex set of system models and
their interrelationships simultaneously in a 3D spatial
structure viewable from different perspectives. Lacking a
proper 3D system modeling notation, in the interim we
propose retaining the well-known SysML notation and
interconnecting 2D SysML diagrams in VR, which can suffice
for depicting the relations between elements across diagrams
and assist with navigating and validating complex models. As
system models grow in complexity and reflect the deeper
integration and portrayal of their system reality and
environment, an immersive digital environment provides an
additional visualization capability to comprehend the “big
picture” model for structurally and hierarchically complex
system models via interconnected diagrams and associated
digital elements.

As to our prior work in visualizing architecture in VR, VR-
UML [3] provides VR-based visualization and interaction
with UML models. VR-EA [4] visualizes Enterprise
Architecture (EA) ArchiMate models in VR. Extending VR-
SysML [1], this paper contributes VR-SysML+Traceability, a
VR-based solution concept for visualizing and interacting
with SysML while adding additional SysML automated
requirements traceability and test tracing capabilities to
support SW V&V. Our prototype realization shows its

feasibility, and a case-based evaluation provides insights into
its capabilities.

The remainder of this paper is structured as follows:
Section 2 discusses related work. In Section 3, the solution
concept is described. Section 4 provides details about the
realization. The evaluation is described in Section 5 and is
followed by a conclusion.

II. RELATED WORK
As to visualization approaches with SysML, Nigischer and

Gerhard [5] proposed a lightweight 3D visualization for
SysML models in Product Data Management. They describe
an approach and concept, but no prototype is shown. Barosan
et al. [6] describes a 3D SysML digital-twin-in-loop virtual
simulation environment of a distribution center for truck
driving test scenarios integrating IBM Rhapsody with
Unity3D; VR and immersion are not considered. Mahboob et
al. [7] describe a model-based approach to generate VR object
collision simulation scenes from SysML behavior models.

Besides our own VR-UML [3], VR features are not yet
commonplace in UML tools: Ozkaya [8] analyzed 58 different
UML tools without any mention of VR, and Ozkaya and Erata
[9] surveyed 109 practitioners to determine their UML
preferences without any mention of VR. Non-VR 3D-based
UML visualization includes X3D-UML [10], VisAr3D [11],
and the case study by Krolovitsch and Nilsson [12].

Work related to requirements traceability visualization
includes Li & Maalej [13], which found traceability matrices
and graphs preferrable for management tasks. Matrices were
preferred for an overview, while graphs were preferred for
navigating linked artifacts. They noted that users were not
always capable of choosing the most suitable traceability
visualization. Abad et al. [14] performed a systematic
literature review on requirements engineering visualization.
Madaki & Zainon [15] performed a review on tools and
techniques for visualizing SW requirement traceability. None
of the above literature mentioned immersive or VR
techniques; our literature search did not find similar work.

With regard to test traceability, we found no VR work
directly addressing this topic. VR-related work regarding
software analysis includes VR City [16], which applies a 3D
city metaphor. While it briefly mentions that its work might
be used for test, it shows no actual results in this regard and in
this regard only a trace mode visualization is depicted.

In contrast, VR-SysML+Traceability provides an
immersive visualization and experience with SysML models,
providing automatic layout of views as stacked 3D
hyperplanes, visualizing the reality of inter-view relations and
recurrence of elements, and enabling interactive modeling in
VR. Furthermore, it provides traceability of requirements and
test status to immersively support V&V. Hypermodeling
support enables SysML, UML, and other relevant models to
be simultaneously visualized in the same virtual space,
supporting cross-model analysis across various diagram types
and stakeholder concerns.

III. SOLUTION CONCEPT
Our solution concept is based on VR. In support of our

view that an immersive VR experience can be beneficial for

model analysis, Müller et al. [17] compared VR vs. 2D for a
software analysis task, finding that VR does not significantly
decrease comprehension and analysis time nor significantly
improve correctness (although fewer errors were made).
While interaction time was somewhat less efficient than the
common daily 2D interactions one is used to and has been
trained in for years, it is important to note that VR improved
the user experience, was more motivating, less demanding,
more inventive/innovative, and more clearly structured.

Figure 1. Conceptual map of our various VR solution concepts.

SysML is a general-purpose architecture modeling
language for systems and systems-of-systems, supporting
their specification, analysis, design, verification, and
validation. Out of UML 2’s diagrams, it reuses seven
(modifying four of these) while adding two additional ones.
Thus, for VR-SysML (Figure 1) we chose to extend our VR-
UML [3] solution concept, which is based on our generalized
VR Modeling Framework (VR-MF) (detailed in [4]). VR-MF
provides a VR-based domain-independent hypermodeling
framework addressing four aspects requiring special attention
when modeling in VR: visualization, navigation, interaction,
and data retrieval. Our other VR architectural modeling
solutions include VR-BPMN [18], VR-ProcessMine [19],
VR-EA [4], and VR-EAT [20], which integrates the EA tool
Atlas to provide dynamically-generated EA diagrams in VR.
VR-EA+TCK [21] adds additional capabilities, integrating
enterprise Tool, Content, and Knowledge such as a
Knowledge Management Systems (KMS) and/or Enterprise
Content Management Systems (ECMS). While SysML is
popular for embedded and model-based systems, it is also
applicable to domains such as EA. In the Software
Engineering (SE) area, which we group under VR-SE,
whereby VR-TestCoverage [22] and VR-Git [23] address test
coverage and code repository aspects in VR.

A. Visualization in VR
Our concept attempts to leverage the best of 2D and VR:

to support diagram comprehension, we chose not to diverge
significantly from the SysML notation. Yet placing 2D
SysML images like flat screens in front of users would provide
little added value in the 3D VR space. A plane is used to
intuitively represent a diagram. Stacked hyperplanes are used
to support viewing multiple diagrams at once, while
permitting a user to readily have an overview of the number
and types of diagrams. Furthermore, hyperplanes serve a
grouping function and allow us to utilize the concept of a
common transparent or invisible backplane to indicate
common elements across diagrams via multi-colored inter-

diagram followers. Versus side-by-side, stacked diagrams are
a scalable approach for larger projects since the distance to the
VR camera is shorter. Multiple stacks can be used to group
diagrams or delineate heterogeneous models. Diagrams of
interest can still be viewed side-by-side by moving them from
the stack via an anchor sphere affordance on a diagram corner,
which is also used to hide or collapse diagrams to reduce
visual clutter. To distinguish SysML elements types, 2D icon
images can be placed on generic (e.g., block) model elements,
in order to reduce the effort of modeling each SysML element
type as a separate 3D form for VR.

B. Navigation in VR
One navigation challenge arising from the immersion VR

offers is supporting intuitive spatial navigation while reducing
potential VR sickness symptoms. Thus, we incorporate two
navigation modes in our solution concept: the default uses
gliding controls for fly-through VR, while teleporting
instantly places the camera at a selected position. Although
potentially disconcerting, it may reduce the likelihood of VR
sickness induced by fly-through for those prone to it.

C. Interaction in VR
As VR interaction has not yet become standardized, in our

concept user-element interaction is supported primarily
through VR controllers and a Virtual Tablet. The VR-Tablet
provides detailed element information with context-specific
Create, Retrieve, Update, Delete (CRUD) capabilities
including a virtual keyboard for text entry via laser pointer key
selection. The aforementioned corner anchor sphere
affordance supports moving / hiding / displaying diagrams.
Inter-diagram element followers can be displayed, hidden, or
selected (emphasized).

D. Traceability
A modeling tool such as Sparx Systems Enterprise

Architect can be used to provide requirement and test
traceability information via SysML. Our solution then extracts
traceability-related information from relevant SysML
diagrams (Requirements and/or Use Case diagrams),
including elements such as Requirement (stereotype
«requirement») and Test Case, and relations such as «satisfy»,
«verify», and «deriveReqt», etc.

Figure 2. Depicting (sub/super)-requirement dependencies, with degree of
implementation on the left and test implementation on the right edge.

For tracing requirements with their dependent code
implementation status, annotations are placed in the code to
indicate with requirement IDs are addressed. These are
extracted by a tool that parses all (test) code files and generates
a report. The result is then visualized on the relevant

requirement element edges in the diagram in VR (e.g., red
means that requirement ID was not found in the (test) code,
green if at least one reference was found, and for parent
requirements yellow if partially addressed based on some
child element(s) missing a reference (see Figure 2). Also, a
total degree of implementation considering the elements on
that diagram level is also provided on the side of a diagram.

To trace test results to their requirements, the test results
are extracted from a test tool report, e.g., in the JUnit XML
format used by pytest and JUnit. The test result is then
visualized on the relevant requirement diagram elements in
VR (e.g., red if no test was found, yellow if not all passed, and
green if passed). Also, a total degree of test implementation
considering the elements on that diagram level is also
provided on the diagram side.

Connectors can be followed to trace these to the actual
artifacts, the content of which can be shown in the VR-Tablet.

Note that while the traceability model utilizes information
from SysML in addition to other sources, we chose to
visualize it in VR independent of SysML conformant
constraints, opting for a more intuitive visual depiction of
traceability for the stakeholder. Placing a VR-SysML model
next to a traceability model is intended and supported. That
way, the VR-SysML expresses the exact model it does in a
SysML tool, while the traceability model can include the
additional automatically extracted implementation and test
features without encumbering the SysML model.

For our traceability visualization, we thus chose to layer
the information ordered by degree of abstraction as shown in
Figure 3. The top layers are SysML model-related: Use cases
being the highest abstraction and thus on top, requirements
being more concrete and a level below, and test cases being
used to verify requirements and thus below requirements but
shifted to the side to indicate they relate to testing. The lower
layers consist of file trees that visualize the test source code
files implementing test cases, and the implementation layer
consisting of source code files that implement the
requirements.

Figure 3. VR-SysML visual layering for traceability.

In general, a backplane is used with colored trace lines to
show all the traces, thus indicating the total available traces
and the degree of traceability. This avoids a spider web-like

tracing of lines across all elements. However, when an
element of interest is selected, then direct trace lines specific
to that element are also depicted (analogous to a spotlight).

IV. REALIZATION
The realization of the solution focused on two aspects: 1)

realizing a correct portrayal of the various SysML diagrams
and providing a way to trace the same element to its
occurrence in other diagrams (which we name VR-SysML),
and 2) the extraction and visualization of requirements
traceability information from SysML diagrams and
implementation files and test code files.

A. VR-SysML Realization
The logical architecture for our VR-SysML prototype

realization is shown in Figure 4.

Figure 4. VR-SysML logical architecture.

SysML models are imported in XMI format to our Data
Hub that is implemented in Python. Xmitodict is used to
convert the XMI to a key-value dictionary and the built-in
JSON package is used for JSON conversion. Pymongo is used
to store the JSON (as BSON) in the NoSQL document
database MongoDB. The scripts in the Unity environment
utilize json.NET. SysML XMI files produced from
SparxSystems Enterprise Architect were used. Our prototype
currently does not consider the Allocation Table (relationship
matrices).

B. Requirements Traceability Realization
The logical architecture for our traceability realization is

shown in Figure 5.

Figure 5. VR-SysML logical architecture for traceability realization.

Figure 6. Python modules contained in the Code Analyzer tool.

The Code Analyzer tool has a Command Line Interface
(CLI) and is implemented in Python. Based on input
parameters, it scans the given files and extracts information
such as requirements IDs from code, test reports in JUnit
XML, and SysML Enterprise Architect XMI files, producing
a JSON file as output that is then imported by the VR
application running on the Unity platform. Its modular
realization is shown in Figure 6.

Within SysML models, a diagram element with the
property “id” serves as the reference for identifying and
differentiating requirements as shown in Figure 7 and for test
cases as shown Figure 8. The Python library
xml.dom.minidom is used to extract the ID, element types,
element position and size, relations between elements, and
properties, comments, or annotations.

Figure 7. Requirement “id” as property in SysML.

Figure 8. Test case “id” as property in SysML.

Figure 9. Traceability annotation example: associating a test method in
test code to a requirement and test target (the implementation).

Figure 10. Traceability annotation example: associating all methods in a
test source file to one (or more) requirement(s).

Figure 11. Example file tree with folders.

Since almost all programming languages support
comments, the annotations are provided as comments and can
thus be utilized in any programming language. For this,
lang.py must be extended for each additional language.
Within source code, the keyword “REQID” indicates the
unique identifier (ID) of a requirement, and can be associated
with a (test) method, as shown in Figure 9. When a (test)
method satisfies multiple requirements, multiple IDs can be
separated via commas. The keyword "TESTID" is used to
associate a SysML diagram. Finally, “TESTTARGET” is
only used within test files to indicate the test target. Multiple
references are possible separated by commas. Some
requirements are overarching and it would be arduous to
associate each method separately. Thus, for the case when all
methods in a file address one (or more) requirement(s),
“REQID” can be placed at the top of the file (separate from
method declarations or definitions), thus implicitly indicating
it is associated with all methods in that file, as exemplified in
Figure 10.

To build balanced file trees to portray the test source and
implementation source, with each tree consisting of folders
and files (see Figure 11), an implementation of Reingold-
Tilford algorithm [24] was adapted.

V. EVALUATION
We base the evaluation of our solution concept on design

science method and principles [25].

A. VR-SysML Evaluation
A case study is used with an emphasis on SysML diagram

type support, how these are visualized in VR, and additional
capabilities in VR. A sample SysML project with all 9 SysML
diagram types is used to compare the visualization in
Enterprise Architect to that in VR-SysML, grouped as
requirement, behavior, or structure diagram types.

As shown in Figure 12, the various diagrams of the SysML
model are mapped to stacked hyperplanes that provide an
anchor affordance (black sphere) with which to expand,
collapse, or move a diagram. Planes and elements have a
shallow 3D depth with labeled edges to support recognition
from different viewing angles. The colors of the planes can be
configured to help with differentiation or grouping.
Furthermore, our backplane concept creates followers that
allow one to quickly find the same element across different
diagrams in the same model, to readily see in which diagrams
that element participates, or to determine that the element is
only shown on one diagram (it not having a follower). The
colored followers can be selected (made bold) and the other
followers can be hidden if desired to reduce visual clutter for
larger models.

1) SysML Requirement Diagram. SysML extends UML
with an additional diagram type, the Requirement diagram. It
can be used to specify functional and non-functional
requirements for the model. An example viewed in EA is
shown Figure 13 and in VR in Figure 14. In VR, elements are
labeled on edges to support reading from different angles.
The VR Tablet can provide more details or interaction
capabilities for a selected element, and while support for

modeling capabilities is shown on the interface, these are
currently placeholders and have not yet been fully
implemented in the prototype (create, modify, delete, export).

Figure 12. VR-SysML backplane with inter-diagram followers.

Figure 13. Requirement Diagram in EA.

Figure 14. Requirement Diagram in VR.

2) SysML Use Case Diagram. As a behavior diagram,
SysML includes the Use Case Diagram from UML as shown
from EA in Figure 15 and VR in Figure 16. In order to more
readily recognize and differentiate the diagram type, an oval
shape was used for the use cases. However, the actors utilize
our generic cube concept with notation symbols placed on the
various sides. This provides a flexible mechanism for quickly
supporting various notation element types and tailoring or
extending model element types using any icons or images.

Figure 15. Use Case Diagram in EA.

Figure 16. Use Case Diagram in VR.

3) SysML Activity Diagram. Another dynamic behavior
diagram type that can be used to specify dynamic system
behaviors, such as control flow and object flows, is the
Activity diagram in SysML from EA in Figure 17 and VR in
Figure 18. It is slightly modified from that in UML, adding
additional semantics for Continuous Flow and Probability.

Figure 17. Activity Diagram in EA.

Figure 18. Activity Diagram in VR.

4) SysML Sequence Diagram. Sequence diagrams
(unmodified from UML) provide a further dynamic behavior
diagram, showing interactions via message sequences, from
EA in Figure 19 and VR in Figure 20.

Figure 19. Sequence Diagram in EA.

Figure 20. Sequence Diagram in VR.

5) SysML State Machine Diagram. State machine
diagrams (unmodified from UML) are a dynamic behavior
diagram showing states transitions that occur in response to
events, from EA in Figure 21 and VR in Figure 22.

Figure 21. State Machine Diagram in EA.

Figure 22. State Machine Diagram in VR.

6) SysML Block Definition Diagram (BDD). A BDD is a
static structural diagram, analogous to the UML Class
diagram type with certain modifications, and shows system
components, their contents (as properties, behaviors,
constraints), interfaces, and relationships. See Figure 23 for
an example from EA and Figure 24 for VR. It can be used for
describing the system structure as a hierarchy of relations
between systems and subsystems typically consisting of
“black-box” blocks. As a possible specialization, it can be
useful to explicitly model constraints separately, referred to
as Constraint Block diagrams (see Figure 25 for an EA
example and Figure 26 for VR), which can be referenced by
Parametric diagrams.

Figure 23. Block Definition Diagram (BDD) in EA.

Figure 24. Block Definition Diagram (BDD) in VR

Figure 25. Constraint Block Diagram in EA.

Figure 26. Constraint Block Diagram in VR.

7) SysML Internal Block Diagram (IBD). An IBD is a
static structural diagram that depicts the internal
(encapsulated) composition (structural contents) of a Block
in a BDD, i.e., a “white-box” view. This includes properties,
parts, interfaces, connectors, and ports, and can be used to
depict the flow of inputs and outputs between them. See
Figure 27 for an example in EA and Figure 28 for VR.

Figure 27. IBD in EA.

Figure 28. IBD in VR.

8) SysML Parametric Diagram. A static structural
diagram type, Parametric diagrams (see Figure 29 for EA and
Figure 30 for VR) are a specialization of IBD to model
equations with parameters and can be used to enforce
mathematical rules or constraints defined via Constraint
Blocks.

Figure 29. Constraint Parametric Diagram in EA.

Figure 30. Constraint Parametric Diagram in VR.

9) SysML Package Diagram. A SysML Package diagram
(see Figure 31 for EA and Figure 32 for VR) is further static
structural diagram based on the equivalent UML type (with
minor modifications). Packages provide a general-purpose
mechanism for grouping model elements and diagrams, and
the diagram can be used to show their contents and the
relationship between them.

Figure 31. Package Diagram in EA.

Figure 32. Package Diagram in VR.

10) Multi- and Heterogeneous Model Depiction in VR.
VR’s unlimited virtual space provides the potential to view,
compare, and analyze multiple SysML (left and center
models in Figure 33) or heterogeneous models side-by-side,
exemplified with an ArchiMate enterprise architecture model
on the right in Figure 33. For SysE, this immersive approach
also has the potential to support interdisciplinary
collaboration between specialization experts for complex
systems.

Figure 33. Multiple and heterogeneous side-by-side models in VR.

B. Traceability Scenario: Requirements and Tests
To evaluate the traceability scenario, an example project

is used, consisting of a various source and test files with a
SysML requirements diagram in EA (see Figure 34). As can
be seen in the diagram, use cases related to requirements via
satisfy, and further child requirements via derived relations,
and test cases having a verify relation to the requirements.

Figure 34. Example requirements diagram in EA.

Output of the code analysis tool is shown in Figure 35. A
separate JSON file (not shown) with this information is
generated for VR to process the information for visualization.
The output shows the scanned use cases, derived
requirements, test cases, test files, and implementation source
files, and their relations.

The visualization of the traceability layers (Figure 36) and
relations backplane (Figure 37) are shown in VR. Use cases
(biege) are the most abstract at the top (Figure 38), with satisfy
relations following requirements. The number of requirements
layers (dark grey) (Figure 39) are variable, depending on the
depth of derivation hierarchy, in this case two additional
layers. The test cases layer (Figure 40) is shown in (blue) and
offset to the right of the stack. File trees for the
implementation and the tests (shifted to the right) are depicted
on the lowest purple planes as seen in Figure 41.

Figure 35. Code analyzer output.

Figure 36. Annotated traceability layers and relations backplane in VR
(without element selected).

Figure 37. Traceability relations on backplane.

Figure 38. Use case layer.

Figure 39. Requirements layers (one element selected showing direct
spotlight relations).

Figure 40. Test cases layer (one element selected).

Figure 41. Test files layer showing tree (faintly in grey) of folders and files
(with one element selected).

Requirements elements are colored on the edges (see
Figure 42): the left side for implementation status and the right
side for test case implementation status. The status is colored
in three segments: red indicates the percentage of a (product
or test) implementation missing, green the percentage
completed, and yellow partial fulfillment. Thus, from the
perspective of one side of all layers one can get a quick
impression of the overall requirements implementation status
or from the right side the test implementation status on a per-
layer basis.

Figure 42. Use case layer.

The requirements layer shows a total fulfillment degree on
the diagram edges: left for implementations and right for test
cases. For example, in Figure 43 on that requirements layer
three requirements are unimplemented while one is, so on the
left edge 25% is shown for green and 75% in red, while in
Figure 44 since three out of four requirements have tests, on
the right edge red shows 25% and green shows 75%. This
might be the case if the test team is ready with tests before the
implementation has made progress, e.g., as with Acceptance
Test-Driven Development (ATDD).

Figure 43. Requirements layer left side (implementation fulfillment).

Figure 44. Requirements layer right side (test fulfillment).

Figure 45. Selected requirement highlights the verifying test cases.

Figure 45 shows the traceability between a requirement to
its associated verification test cases.

As to the VR-Tablet, additional detailed information about
an object is shown. In Figure 46 for the selected requirement
ID 126 the name (Requirement D) is shown, the number of
test files (1) that exist, the test cases covered (2), and that no
implementation was found. Also note no downward trace to
the left towards the implementation is shown, only to the right
towards tests. In contrast, Figure 47 shows test files and
implementations exist for ID 125 (with downward traces in
both directions), which is why both its edges are green, while
Figure 48 shows a requirement with neither tests nor
implementation.

Figure 46. VR-Tablet shows detailed information about selected object.

Figure 47. VR-Tablet shows detailed information about selected object.

Figure 48. VR-Tablet shows detailed information about selected object.

To determine use case satisfaction, the VR-Tablet
indicates if a selected use case is satisfied (Figure 49) or not
(Figure 50).

Figure 49. VR-Tablet shows selected use case satisfied since requirement
implemented.

Figure 50. VR-Tablet shows selected use case unsatisfied since requirement
not fulfilled.

When viewing test files, the VR-Tablet indicates the
number of test targets that exists (the target can be found by
following the trace), and if the test passed (Figure 51) or failed
(Figure 52).

Figure 51. VR-Tablet shows associated test implementation name as
test_example1.py with a single test target.

Figure 52. VR-Tablet showing test case status Failed as “True” and this test
case having no associated test target information.

C. Discussion
The case-based evaluation of VR-SyML showed its ability

to depict the various SysML diagram types in VR.
Furthermore, the backplane supports the ability to quickly find
the same elements across the various diagram types. As
systems grow in complexity, these permits one to quickly find
an element of interest in its various contexts. VR-SysML
enables an immersive experience in the model, with the
unlimited VR space supporting for larger models, multiple
diagrams, prior or legacy model versions for comparison, and
even heterogenous models displayed simultaneously.

Our traceability evaluation showed the code analyzer was
able to automatically scan source code, test files and SysML
diagram files and automatically ascertain traceability relevant
information. The evaluation showed the ability of VR to
provide an intuitive way to simply portray (via layers, the
backplane, spotlights, and the VR-Tablet) the relevant
artifacts and trace the relations between requirements, tests,
and implementation to support V&V activities. This allows
independent stakeholders who may not be system experts to
evaluate the implementation and testing fulfillment without
being inundated with perhaps irrelevant details in typical
developer documentation.

VI. CONCLUSION
VR-SysML+Traceability contributes a VR-based solution

concept for visualizing and interacting with SysML while
adding automated requirements traceability and test tracing
capabilities to support SW V&V. An immersive SysML
model experience is provided for visually depicting and
navigating SysML diagrams of models in VR. The solution
concept was described, a VR prototype realized, while an
evaluation using case studies showed its capabilities. Using
VR hyperplanes, SysML diagrams are enhanced with 3D
depth, color, and automatically-generated inter-diagram
element followers based on our back-plane concept.
Interaction is supported via a virtual tablet and keyboard. The
unlimited space in VR facilitates the depiction and visual
navigation of large models, while relations within and
between elements, diagrams, and models can be analyzed.
Furthermore, additional related (SysML or non-SysML)
models can be visualized and analyzed simultaneously in VR,
benefiting complex systems-of-systems architectures or
collaboration. The sensory immersion of VR can support task
focus during model comprehension and increase modeling
enjoyment, while limiting the visual distractions that typical
2D display surroundings incur. The semi-automated
traceability capability enhances the V&V opportunities by
creating a simple and intuitive way to navigate and readily
determine the degree of implementation and test progress and
requirement fulfillment, even for quality assurance personnel
who are not deeply acquainted with the project.

Future work includes support for creating models directly
in VR, integrating further SysML tooling and simulation
capabilities, supporting tighter and more comprehensive
model verification and validation within the SysML diagrams,
and conducting a comprehensive empirical study to evaluate

usability with various stakeholder groups in collaborative
situations.

ACKNOWLEDGMENT
The author would like to thank Shadrach Arulrajah, Marie

Bähre, and Christian Greiner for their assistance with the
design, implementation, figures, and evaluation.

REFERENCES
[1] R. Oberhauser, “VR-SysML: SysML Model Visualization and

Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[2] OMG, “OMG Systems Modeling Language Version 1.6”,
Object Management Group, 2019.

[3] R. Oberhauser, R., “VR-UML: The unified modeling language
in virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design (BMSD 2021), Springer, Cham, 2021, pp. 40-58.

[4] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Shishkov, B. (ed.) BMSD 2019.
LNBIP, vol. 356, Springer, Cham, 2019, pp. 170–187.

[5] C. Nigischer and D. Gerhard, “Lightweight visualization of
SysML models in PDM systems,” DS 87-3 Proc.eedings of the
21st International Conf. on Engineering Design (ICED 17) Vol
3: Product, Services and Systems Design, 2017, pp. 61-70.

[6] I. Barosan, A. Basmenj, S. Chouhan, D. Manrique,
“Development of a Virtual Simulation Environment and a
Digital Twin of an Autonomous Driving Truck for a
Distribution Center,” Software Architecture (ECSA 2020).
CCIS, vol 1269, Springer, Cham, 2020, pp. 542–557.

[7] A. Mahboob, S. Husung, C. Weber, A. Liebal, and H. Krömker,
“SYSML behaviour models for description of Virtual Reality
environments for early evaluation of a product,” In DS 92:
Proc. 15th Int’l Design Conf. (DESIGN), 2018, pp. 2903-2912.

[8] M. Ozkaya, “Are the UML modelling tools powerful enough
for practitioners? A literature review,” IET Software, vol. 13,
2019, pp. 338-354. https://doi.org/10.1049/iet-sen.2018.5409

[9] M. Ozkaya and F. Erata, “A survey on the practical use of UML
for different software architecture viewpoints,” Information
and Software Technology, Vol. 121, 106275, 2020.

[10] P. McIntosh, “X3D-UML: user-centered design,
implementation and evaluation of 3D UML using X3D,” Ph.D.
dissertation, RMIT University, 2009.

[11] A. Krolovitsch and L. Nilsson, “3D Visualization for Model
Comprehension: A Case Study Conducted at Ericsson AB,”
University of Gothenburg, Sweden, 2009.

[12] C.S.C. Rodrigues, C.M. Werner, and L. Landau, “VisAr3D: an
innovative 3D visualization of UML models,” In 2016
IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), IEEE, 2016, pp. 451-460.

[13] Y. Li and W. Maalej, “Which Traceability Visualization Is
Suitable in This Context? A Comparative Study,” In: Regnell,
B., Damian, D. (eds) Requirements Engineering: Foundation
for Software Quality (REFSQ 2012), LNCS, vol 7195.

Springer, Berlin, Heidelberg, 2012.
https://doi.org/10.1007/978-3-642-28714-5_17

[14] Z. S. H. Abad, M. Noaeen and G. Ruhe, "Requirements
Engineering Visualization: A Systematic Literature Review,"
2016 IEEE 24th International Requirements Engineering
Conference (RE), Beijing, China, 2016, pp. 6-15, doi:
10.1109/RE.2016.61

[15] A.A. Madaki and W.M.N.W. Zainon, “A Review on Tools and
Techniques for Visualizing Software Requirement
Traceability,” In: Mahyuddin, N.M., Mat Noor, N.R., Mat
Sakim, H.A. (eds) Proceedings of the 11th International
Conference on Robotics, Vision, Signal Processing and Power
Applications, Lecture Notes in Electrical Engineering, vol 829,
Springer, Singapore, 2022. https://doi.org/10.1007/978-981-
16-8129-5_7.

[16] J. Vincur, P. Navrat, and I. Polasek, “VR City: Software
analysis in virtual reality environment,” In 2017 IEEE
international conference on software quality, reliability and
security companion (QRS-C), IEEE, 2017, pp. 509-516.

[17] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, "How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations," In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36.

[18] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) BMSD 2018. LNBIP, vol. 319, Springer, Cham, 2018,
pp. 83–97. https://doi.org/10.1007/978-3-319-94214-8_6

[19] R. Oberhauser, “VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality,” International
Conference on Information, Process, and Knowledge
Management (eKNOW 2022), IARIA, 2022, pp. 29-36.

[20] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Shishkov B. (eds) Business Modeling and
Software Design. BMSD 2020. LNBIP, vol 391, Springer,
Cham, 2020, pp. 221-239. doi: 10.1007/978-3-030-52306-
0_14

[21] R. Oberhauser, M. Baehre, and P. Sousa, “VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality,” In: Shishkov, B. (eds) Business Modeling
and Software Design. BMSD 2022. LNBIP, vol 453, pp. 122-
140. Springer, Cham. doi:10.1007/978-3-031-11510-3_8

[22] R. Oberhauser, "VR-TestCoverage: Test Coverage
Visualization and Immersion in Virtual Reality," The
Fourteenth International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2022), IARIA,
2022, pp. 1-6.

[23] R. Oberhauser, “VR-Git: Git Repository Visualization and
Immersion in Virtual Reality,” The Seventeenth International
Conference on Software Engineering Advances (ICSEA 2022),
IARIA, 2022. To be published.

[24] E.M. Reingold and J.S. Tilford, “Tidier drawings of trees,”
IEEE Transactions on software Engineering, (2), 1981, pp.223-
228.

[25] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105.

