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Abstract: Seccomp is an integral part of Linux sandboxes, but intimate knowledge of the required syscalls of a program
are required. We present a fuzzer-based dynamic approach to auto-generate seccomp filters that permit only
the required syscalls. In our model, a syscall is required, if any execution path leads to its invocation. Our
implementation combines a symbolic execution step and a custom mutator to take command line flags into
account and achieve a large coverage of the SUT. We provide an evaluation of our tool on popular command
line tools and find up to 100% of the system calls found through manual analysis.

1 INTRODUCTION

Sandboxing is an integral part of many modern se-
curity concepts, especially when third-party software
of unknown quality is involved. As such, sandboxes
can help mitigating supply chain risks to some extent.
Sandboxes leverage mechanisms provided by the OS
to implement their functionality. Seccomp1 is an ex-
ample of such a facility in the Linux kernel. It is a
common component of many Linux-based sandboxes,
such as Bubblewrap2 or Firejail3 and many container
runtimes, such as LXC4 or runc5. Using Seccomp,
a sandbox can define filters that the kernel consults
to disallow specific syscalls for a process and its off-
spring. However, definition of clear seccomp rules is
challenging. When software is pulled in through the
supply chain, intimate knowledge of that software is
rare and usually unwanted, because it would defeat
the purpose of outsourcing development in the first
place. Writing a secure yet functional filter is there-
fore far from trivial.

Common strategies like over-approximations and
manual test-driven seccomp filter generation neglect

aThis work was supported in part by a grant from the
Kessler + Co Foundation (Stiftung KESSLER+CO für Bil-
dung und Kultur).

1https://www.kernel.org/doc/html/v5.16/userspace-api/
seccomp filter.html

2https://github.com/containers/bubblewrap
3https://github.com/netblue30/firejail
4https://github.com/lxc/lxc
5https://github.com/opencontainers/runc/

the least privilege principle or do not scale. Therefore
we propose a novel approach to automatically gener-
ate seccomp filters in this paper. We propose to use
fuzzers in order to trigger syscalls inside a program.
Specifically, we provide an architecture and proof-of-
concept implementation of a system that automati-
cally provokes and identifies syscalls within a system
under test (SUT) and creates a seccomp filter for that
SUT which only allows precisely those syscalls that
were observed. We demonstrate the effectiveness of
this approach by generating filters for some common-
place software. Finally, we reflect critically on the sit-
uations in which a fuzzer-based filter generation can
be of value. Our tool is available on GitLab6.

1.1 Related Work

Auto-generation of seccomp filters from source code
has been studied before, e.g. (Canella et al., 2021).
Their solution is primarily based on static analysis
with an optional dynamic component. However, this
dynamic component serves to augment static analy-
sis, particularly if the SUT forks and executes further
binaries. Other approaches to automatic generation
of filters exist (DeMarinis et al., 2020; Ghavamnia
et al., 2020). All these approaches are entirely or pre-
dominantly based on static analysis. As such, they
suffer drawbacks common to static analysis, such as
scalability and dependency management. In partic-
ular, static approaches often fail to find system calls

6https://gitlab.com/iot-aalen/fuzz-seccomp-filter

https://www.kernel.org/doc/html/v5.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v5.16/userspace-api/seccomp_filter.html
https://gitlab.com/iot-aalen/fuzz-seccomp-filter


(syscalls) that are made through dynamic dependen-
cies, such as libc, which is, arguably the common
case.

By contrast, (Lopes et al., 2020) approaches the
problem of syscall detection from a dynamic perspec-
tive. The authors leverage unit tests and fuzzing com-
bined with dynamic syscall detection. Their focus
is on integration with a CI pipeline and on detecting
syscalls within the narrow parameters of deployment.
As such, they assume that test coverage will usually
cover all syscalls and use fuzzing only as a fallback.
The fuzzing solution outlined in (Lopes et al., 2020)
is therefore not very sophisticated. By contrast, our
proposed system combines symbolic execution and
fuzzing. It analyzes the binary to detect CLI flags and
involves these findings in the fuzzing process to de-
termine all possible syscalls.

2 PRELIMINARIES

AFL++ (Fioraldi et al., 2020) offers different cus-
tom mutator hooks to replace or complement its in-
tegrated methods. We briefly mention the hooks rel-
evant to this paper. In the init method of AFL++,
the Custom Mutator itself is initialized, as well as the
PRNG used for fuzzing. With the fuzz hook the ini-
tial fuzzing procedure is determined. This method
is called until the threshold fuzz count is reached.
Non-deterministic tweaks can be defined within the
havoc mutation method. Lastly, the result of all per-
formed steps is handed over to post process – for
example to restore a valid file format.

In AFL the fuzzing strategies for mutating a given
input based on different patterns are called tweaks.
In the havoc mutation cycle these tweaks are stacked
when all deterministic strategies are already used. For
example these tweaks could be block duplications or
deletions. 7

3 GENERATING FILTERS WITH
FUZZING

3.1 Problem Statement

Our goal is to generate a seccomp BPF filter that
permits only those syscalls that are absolutely nec-
essary for the given program to function correctly.
More specifically, we aim to identify all syscalls that
the program might execute along any of its execution

7https://lcamtuf.blogspot.com/2014/08/
binary-fuzzing-strategies-what-works.html

paths. Formally, given a program P, we say that a
syscall is required by P if there exists an input I and an
execution of P on I that witnesses this syscall. The set
of all syscalls required by a program is denoted by SP.
Note that SP is an over approximation of the syscalls
that are actually performed by P during any of its ex-
ecutions. For instance, if SP is a program that option-
ally connects to a Unix domain socket, the socket()
syscall is present in SP, but may never be per called in
practice if P is not configured in this way.

The set SP depends on the input given to P. In
practice, this input consists of command-line argu-
ments, environment variables, standard input, input
read from files (in particular config files), and IPC. In
the present paper, we restrict ourselves to standard in-
put and command-line arguments. We assume that we
have access to the source code of P.

Our goal is to automatically generate an approx-
imation A of SP, such that A ⊆ SP and, ideally, E =
SP \A = /0. The size of the set difference E serves as
quality criterion. Note that since we require A ⊆ SP
we cannot allow the detection of false positives. False
negatives are allowed. Quality is measured in the
number of false negatives, with lower numbers being
better.

3.2 Architecture and Overview

To find syscalls in a given program, we fuzz the target
in order to find new execution paths and thereby trig-
ger new syscalls. Secondly, we need to detect those
syscalls, and, finally, generate the corresponding sec-
comp filter.

To perform these tasks, we use AFL++ (Fioraldi
et al., 2020) as fuzzer for the target. We implement
a Custom Mutator to fuzz commandline arguments
separately. This way, branches will be reached more
reliably in a reasonably amount of time. Secondly,
we rely on the seccomp library 8 to log used syscalls.
Furthermore, it enables us to crash the program for
untracked syscalls, which is a detectable behavioural
change for AFL++. These test cases will be saved
as crashing input. Seccomp filters are added prior
to fuzzing by a dedicated wrapper program which
then proceeds to exec the SUT. Lastly, the Linux au-
dit framework (Zeng et al., 2015) was used to check
if found syscalls were originating in the SUT or the
wrapper with its AFL++ specific instrumentation.

The high level architecture of components is dis-
played in figure 1. The colour coding shows the ex-
isting components in red, our developed components
in green as well as a pre-evaluation step in blue. In

8https://github.com/seccomp/libseccomp
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Figure 1: High level Architecture

the following we give a brief description of the over-
all architecture. Further below we explain the more
involved steps, such as custom mutation, in greater
detail.

The detection engine performs the following steps
as shown in figure fig. 1). Sometimes a step is
repeated multiple times, as indicated. In the pre-
evaluation phase the symbolic execution engine deter-
mines valid CLI flags and a syscall baseline is created
by executing the SUT with the found CLI flags.

In the main cycle the CLI flags and stdin are stored
in binary format in corpus files and mutated. They
are then handed over to a Seccomp Wrapper, which
retrieves the CLI flags from stdin to create a corre-
sponding argv. Further, it removes CLI flags and
then hands over stdin to the SUT. It also invokes the
SUT after establishing seccomp rules to terminate on
undiscovered syscalls. AFL++ halts on each crash,
because its likely indicative of a new syscall being
found. The list of found syscalls is then updated ac-
cordingly and fuzzing resumed at the crashing queue
entry. Lastly, after a configurable time has elapsed
without detecting a new syscall the fuzzing process is
not restarted and the seccomp filter is output.

3.3 Implementation

Pre-Evaluation: First an analysis step is performed
to gather arguments of the SUT. This step utilizes the
found strings in the binary as well as the symbolic
execution engine KLEE (Rizzi et al., 2016) to gener-
ate a list of valid CLI flags, which is referred to as
Argument Evaluation. Afterwards the binary is just
executed with the gathered CLI flags and the same
techniques later on mentioned, like establishing sec-
comp filters with a wrapper, are applied. Thereby a
first syscall baseline is gathered.

Lastly, the first flag, which does not crash the bi-
nary, is used as the initial test corpus. During fuzzing,
AFL++ actually fuzzes a wrapper, described below,
that is responsible for loading seccomp filters, hand-
ing over the input test corpus, and invoking the SUT
with the right CLI flags.

Seccomp Wrapper: Originally AFL++ is not
structure-aware and furthermore only fuzzes standard
input or file inputs. To deal with that challenge the ar-
gument fuzzer inline header9, provided by AFL, was
adjusted to only read the first 1kByte of standard input
(instead of everything) and assign them as argument
vector. The rest is treated as standard input. Corpus
files follow this format: The first kByte represents the
argument vector, the rest is treated as standard input
and would correspond to a traditional corpus file.

Another task for the seccomp wrapper is to load
the list of syscalls detected so far and parse it to
generate the seccomp filter before invoking the SUT.
To pass the binary check at the beginning of the
fuzzing process, a few syscalls must be allowed man-
ually. These syscalls are shmat and shmctl, which
are needed for AFL to exchange coverage informa-
tion and execve to invoke the SUT itself.

AFL++ Custom Mutator and Post Processing:
Although the schedule, trimming cycle and overall
structure of AFL++ are not changed, a custom mu-
tator was added to take the list of arguments from
the symbolic execution into account and to avoid
wasting cycles on unlikely CLI flags (non-printable
characters, for instance). The mutator itself is di-
vided into a fuzz method, which serves as the ini-
tial step, the havoc method of AFL++, which is used
periodically, but not always, and the post process
method, which is always called after all mutations
have been performed. The fuzz method probabilis-
tically chooses works in one of two ways: It either
randomly chooses an argument vector from the list
of valid CLI flag combinations (e.g. -f --verbose),
or generates valid-looking CLI flags from a random
number generator (e.g. --dsfY -T). When the havoc
mutation is performed, the entire corpus file, includ-
ing the vector contained in the first 1K, undergoes the
stacked tweaks mutations (e.g. bitflips), which are less
suitable for CLI flags. We therefore set a boolean flag
in the custom havoc method. This flag is evaluated in
the post process hook. If set, this hook will choose
a random argument vector from the valid list of CLI
flags. However, if the flag is unset post process

9https://github.com/google/AFL/blob/master/
experimental/argv fuzzing/argv-fuzz-inl.h
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does not alter its input. This is done to avoid un-
wanted changes to the output of the fuzz method,
which is the only way to detect new CLI flags after
the symbolic execution step at the beginning.

Fuzzing Process and Crash Analysis: The fuzzing
and analysis procedure is displayed in figure 2.
AFL++ first checks whether there already is an out-
put directory and, in that case, resumes the fuzzing
process, which is possible because the queue of in-
put corpora is the only state saved by the tool (Böhme
et al., 2019). At that stage AFL++ is also instructed to
bench the binary until the first unique crash happens.

It will then hand the generated test cases over to
the seccomp wrapper, which is going to execute the
SUT as mentioned. Every time the fuzzing process
is interrupted it is checked if the stop was because
fuzzing time has elapsed. In the event of an actual
crash, the input corpus is minimized with afl-tmin.
This step is not necessary, but it helps significantly to
reproduce the test case for manual analysis purposes.

Then, an Audisp plugin is activated that logs sec-
comp messages to another file, guaranteeing that our
tool does not have to parse the complete audit log file
each time. We assume that the system does not pro-
duce any seccomp messages resulting from other bi-
naries in that time frame.

Afterwards, the test case is executed once again
and, as the seccomp messages are parsed, the not yet
tracked syscall will be appended to the list of neces-
sary syscalls. Another valid option at that point is a
crash due to a bug. For return values other than bad
syscall analysis is skipped. Before restarting AFL++
the Audisp Plugin is terminated to minimize perfor-
mance overhead. This cycle is repeated until it is de-
tected that fuzzing was interrupted by a timeout rec-
ognizable by an empty crash folder of AFL++, which
leads to the final seccomp filter generation process.

Finally, we have to verify whether a syscall origi-
nates from the wrapper or the SUT itself. Therefore,
we once again execute the binary in standalone mode
whenever a new syscall has been found. In this way,
we can check if the syscall originated in the wrapper
or the binary and a syscall bitmask delta is created
accordingly. This delta is subtracted in the last step,
“Final Seccomp Filter Generation”.

Final Seccomp Filter Generation: In this final
step, syscalls that were only necessary for the
Seccomp-Wrapper, like shared memory operations
for AFL++, have to be removed. Since this delta bit
vector was created during fuzzing, it is just removed
from the complete list of syscalls.
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Figure 2: Fuzzing Process in Detail

4 DESIGN TRADE-OFFS

When designing our tool and the crash analysis cy-
cle above, we had to make different trade-offs that we
explain in this subsection. Some of them may be over-
come in future work.

The BENCH UNTIL CRASH cycle was introduced
because we experienced instabilities with Audisp plu-
gins. We tried different approaches like monitoring
every syscall with syscall audit filters instead of us-
ing seccomp filter, but the queue to such a plugin
was not capable of handling the number of events.
This is why we decided to analyze after each crash
via BENCH UNTIL CRASH. If it is possible to over-
come these issues, it is not necessary to fuzz in
BENCH UNTIL CRASH mode.

The invocation of afl-tmin to minimize test
cases after each crash in the analysis phase is not nec-
essary for the program behaviour. Furthermore, this
adds additional executions of the SUT and therefore
lowers the performance. However, we relied on it to
debug, and manually analyze the resulting filters. It
may be useful to add an option to disable this behav-
ior.

The seccomp pre-evaluation step just resembles a
trade-off between increased initial time overhead and
reduced fuzzing time, which also could be skipped.

The system assumes that every bad syscall return
value is indicative of a new syscall being found, but
neglects the problem of nested seccomp filters. How-
ever, some programs, like file, also use seccomp
sandboxes and therefore rely on seccomp filters. In
that case, fuzzing may stop due to crashes caused by
the nested seccomp filter. This situation is detected
during the analysis phase, but it still lowers the per-
formance due to unnecessary executions.



5 EVALUATION

In the evaluation section we compare the syscalls that
our fuzzing based tool find with the list of syscalls
we discovered by manually testing different program
behaviours and recording them with strace. Bina-
ries, which are suitable test candidates, should rely
on different sets of syscalls as their argument vector
changes. However, this requirement is not easy to ful-
fill, since most of the coreutils rely on a consistent set
throughout the execution of different paths with only
small changes to them. The binaries ls, file and
diff have varying syscalls depending on their set of
CLI flags. Therefore, they make for a good bench-
mark to evaluate our tool on. The configured fuzzing
time was three minutes in every case to be able to
compare the different approaches. However, the real
fuzzing time differs because the timeout is reset after
each crash and AFL is restarted in these cases.

As shown in table 2, 3 and 4, ls from the coreutils,
diff from diffutils and file are candidates, which
satisfy this requirement and at the same time have a
variety of different syscalls. The table of diff was
shortened and all baseline syscalls produced without
argument flags were removed to improve clarity. Fur-
thermore, file is especially interesting, since it uti-
lizes seccomp filters itself as default configuration and
on the other hand relies on different combination of
arguments to reach certain syscalls like vfork.

In our evaluation, the AFL specific instrumen-
tation was responsible for the syscalls shmat and
shmctl being added to the list of necessary syscalls,
but were subtracted in the policy finalization step.

The fuzzing time, covered paths and identified
CLI flags are listed in table 1. The result looks
promising for ls. AFL reached 394 different paths
in three minutes of fuzzing time and covered thereby
all the manually identified syscalls (see table 2). Be-
cause ls displays the most trivial test case and does
not call any corner case syscall like execve the ac-
cording table is not shown here. The tested version of
ls was 9.0.36. Our tool was also able to find all man-
ually identified system calls for file (see table 3) in
60m. The tested version of file was 5.39.

For diff we observed less than 100% coverage,
but still all except for two of the manually found
syscalls were identified (see table 4). The syscalls
stat and lstat were not found. diff has many
CLI flags, and a three minute timeout might not be
enough to find the necessary combination to trigger
the syscall. On the other hand, it is also possible that
stat was never seen because diff is never executed
without arguments during fuzzing. The tested version
of diff was 3.7.

Table 1: Overview Evaluation Statistics

Covered Fuzzing Found
SUT Paths Time CLI Flags
ls 394 3min 111
file 157 60min 63
diff 490 4min 23s 177

Table 2: Evaluation with ls

required*

read, write, close, lseek, mmap, mprotect, munmap,
brk, rt sigaction, rt sigprocmask, ioctl, pread64, ac-
cess, socket, connect, uname, getcwd, readlink, capget,
statfs, prctl, arch prctl, getxattr, lgetxattr, futex, get-
dents64,set tid address, exit group, openat, newfstatat,
set robust list, prlimit64, statx
not found
-

6 DISCUSSION

The good detection rate for ls is not surprising due to
the independence of argument vectors and the missing
necessity of providing a valid file path. It can also be
executed without any CLI flags and it will still return
successfully. In contrast, diff and file rely on a
more complex syntax, which expects two files in most
cases for diff or argument dependencies in case of
file.

Although our tool found 100% of the manually
identified syscalls in file, it poses a unique challenge
for our tool. This is because fuzzing aborts any time
-p, --preserve-date, -z, -Z, --uncompress, or
--uncompress-noreport is used. The process will
crash because of nested seccomp filters, even though
all used syscalls already have been tracked and no
new insights are generated. This is the reason for the
comparatively long fuzzing time this case.

In general, AFL++ only uses one core per fuzzing
instance. In our tool, the performance could be
increased significantly by implementing parallelized
fuzzing. Furthermore, the problems of nested sec-
comp filters lead to a significant impact on perfor-
mance. But overall, the quality of the generated sec-
comp filters can be described as good, because they
are able to cover all high frequency paths and their
needed syscalls as well as nearly all low frequency
paths.



Table 3: Evaluation with file

required*

read, write, close, stat, fstat, lstat, lseek, mmap, mpro-
tect, munmap, brk, ioctl, pread64, access, mremap,
prctl, arch prctl, getdents64, exit group, openat, newf-
statat, utimensat, seccomp, pipe, rt sigaction, vfork, ex-
ecve, wait4, dup2
not found
-

Table 4: Evaluation with diffutils

required*

access, arch prctl, brk, clone, close, dup2, ex-
ecve, exit group, fnctl, ioctl, lseek, mmap, mpro-
tect, munmap, newfstatat, openat, pipe, pread64, read,
rt sigaction, sigaltstack, wait4, write, stat, lstat
not found
stat, lstat

7 CONCLUSION AND FUTURE
WORK

In this paper we presented a way to find syscalls in
a SUT using fuzzing techniques. To this end, we
utilized seccomp and auditd to monitor the program
while executing it repeatedly with different inputs
using AFL. We considered command line flags and
fuzzed them separately from additional input to in-
crease coverage using a custom mutator. Our tests
with ls and file have shown that we find most
syscalls in a reasonable amount of time, even if
they are hidden behind different command line flags.
However, some problems exist: If the SUT itself uses
seccomp filters (e.g. file), the nested filter may
cause crashes which are difficult to distinguish from
newfound syscalls. Similarly, complex requirements,
such as flags that require compressed files as input,
cannot easily be treated with our approach.

In the future, working on these issues would be
the next step. Combinatory command line flags can
already be mitigated by a longer amount of testing.
However a smarter setup for specific formats, such
as the aforementioned compressed file flag, either
requires manual work, or a more sophisticated ap-
proach to the fuzzer. Nested seccomp filters might
be overcome by using other tracing methods. It
might also be possible to resolve this issue using
SECCOMP RET ERRNO to disallow the seccomp syscall
while tricking the SUT into thinking that is has suc-
ceeded.

Currently, our approach requires the source code
to be available and to be compiled with AFL instru-
mentation. An experimental feature of AFL using
QEMU can be used to instrument binaries. The sym-

bolic execution in the beginning relies on the source
code as well. It would be interesting to investigate,
how well the analysis works in black-box settings,
where symbolic execution does not run and a first set
of CLI flags is instead determined using static analy-
sis.
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