
Application Sandboxing for Linux Desktops – A User-Friendly Approach
(Author Copy)

Lukas Brodschelm1, Marcus Gelderie1

1Department of Electrical Engineering and Computer Science, Aalen University of Applied Sciences, Beethoven Str 1,
Aalen, Germany

{Lukas Brodschelm, Marcus Gelderie}@hs-aalen.de

Keywords: Sandbox,Linux,Desktop,User-Friendly,Usability,Security

Abstract: Sandboxes are a proven tool to isolate processes from the overall system. Although desktop computers face
significant risks, there is no widely adopted way to use sandboxes on the Linux desktops, since sandboxing
on desktop PCs is more challenging. We name the specific challenges for the Linux desktop and derive
requirements that we argue are essential for widespread adoption of any sandbox solution. We then introduce
a concept to isolate Linux desktop software using UIDs and GIDs as well as namespace-based sandboxes.
Furthermore, we provide a PoC implementation including sandbox profiles for example applications. Based
on this, we conducted a survey to assess the usability of our sandboxing concept. We report on the results,
analyze the security of our concept, and detail how our sandbox meets the aforementioned requirements.

1 INTRODUCTION

The IT security of individual systems is an important
and active research area. General solutions are diffi-
cult, since the needs of a system depend highly on the
way it is being used. The desktop setting is particu-
larly challenging and users make mistakes. As such,
desktop PCs are a common entry point for malware
into corporate networks (Waterson, 2020). On a desk-
top system, many different applications run within the
context of a single user account: A single vulnerable
program might gain access to all data and processes
that belong to the account. This extends an attacker’s
sphere of influence considerably, once the initial com-
promise has been made.

On Windows, much has been done in the way of
hardening the desktop setting against attacks. Manda-
tory Integrity Control (MIC), Control Flow Guard,
and User Account Control (UAC) – to name only a
few – (Yosifovic et al., 2017). Unlike Windows, the
Linux desktop has to date not seen widespread adop-
tion of a similarly comprehensive desktop hardening
strategy. We hypothesize that, to be adopted a se-
curity feature must meet usability characteristics (cf.
section 3.1).

Our contribution in this paper is a container based
architecture, that separates individual apps users run
on their desktop and respects usability aspects. We
demonstrate the feasibility of this architecture using a

PoC implementation and showcase how it addresses
the issues given in section 3.1. Finally, we evaluate
the usability of our solution with the target user group
in the form of survey. Our approach can serve as the
first step in an incremental strengthening of the stan-
dard Linux desktop.

Related Work: In related work, much research
has been devoted to the development of sandboxes,
specifically those based on containers. We group our
treatment of related work into categories.

Secure Operating Systems: Secure operating sys-
tems that also enforce trust boundaries between appli-
cations, like Cubes, Whonix and SubgraphOS, have
been developed (The Qubes OS Project and others,
2022; ENCRYPTED SUPPORT LP, 2022; Subgraph,
2014). They all use launchers to run applications in
there own isolated environment, enforced either by
virtual machines or container based sandboxes. In
contrast our sandbox provides restricted, but direct ac-
cess to the host file system and user’s home directory.

The Android platform security model (Mayrhofer
et al., 2021; Android Open Source Project, 2021)
follows a different approach where applications are
aware of the sandbox and need to use specific APIs
to request access to resources. Android meets our us-
ability requirments but requires cooperation from ap-
plications. Our solution borrows from the Android
model in that we also run applications with dedicated



user IDs. However we do not require cooperation
from the sandboxed applications.

Containers and Container Based Sandboxes:
Many implementations of sandboxes and containers
exist. Depending on the exact definition of a sandbox,
any container runtime, like runc (Open Container Ini-
tiative , 2022) or Firecracker (Agache et al., 2020)
can be considered a sandbox. However, typically we
mean designs specifically targeting security by this
term. Examples for such systems are Bubblewrap and
Firejail (Containers Community, 2016; Firejail Con-
tributers, 2020). They do not cater to any specific
use-case and instead of enforcing access models the
goal of these sandboxes is to isolate one given appli-
cation. They operate at a lower level than what we
try to achieve with the proposed desktop sandboxing
scheme. Indeed, our design uses Bubblewrap as a
building block. In fact, our sandboxing scheme can
be thought of a way to automatically configure Bub-
blewrap in a desktop session.

In scientific research container based sandboxes
have studied extensively (Bélair et al., 2019; Khal-
imov et al., 2019; Anjali et al., 2020; Agache et al.,
2020). The aim of the research is diverse and cov-
ers aspects like kernel interactions, shielding the host
from the workloads and deployment aspects. But in
all these works, the focus is not on desktop systems.
An exception are container based sandboxes for new
application domains, such as malware analysis (Khal-
imov et al., 2019). Here, the focus is on running
suspected-malicious binaries, where near total isola-
tion, erring on the side of caution, is paramount. A
multipurpose concept is TxBox, it relies on monitor-
ing and reverting changes to the kernel state through
system calls from sandboxed applications (Jana et al.,
2011). TxBox requires a modified kernel, which is
difficult to align with our goal of supporting arbitrary
Linux distributions (section 3.2).

Software distribution and deployment also lever-
ages container sandboxes. Examples are Flatpak and
Snapd (Flatpak Team, 2018; Canonical Ltd., 2022).
Both use container technologies to run the shipped
applications within a dedicated file system. When
configured right, they are secure but different to our
approach they ship entrie or partial root-file-systems
for the applications and they are bound to a package
manager. Furthermore administrative privileges are
required to modify the configuration, which is con-
trary to our goals.

2 PRELIMINARIES

Linux Namespaces (NS) are kernel features provid-
ing isolated abstraction layers for system resources
(Linux Manpage Team, 2021). There are eight types
of NS, but we only mention user namespaces (user
NS) in this paper, which provide isolation of UIDs,
GIDs, and other security-related attributes such as ca-
pabilities. Our treatment of namespaces glosses over
several details, but is sufficient to follow the remain-
der of this paper.

When a process with UID u creates a user NS, that
NS is owned by u. This means that any process with
UID u holds all capabilities inside the NS. Once in-
side the NS, such a process holds CAP SETUID can al-
ter its UID to any one of the UIDs mapped inside the
NS. The UID mapping is a translation of UIDs inside
to UIDs outside (host UIDs). In the simplest case, it
translates UID 0 to UID u and no other UIDs exist
inside the NS. This is called a trivial map. For a non-
trivial map to be defined, a privileged process outside
must define the map. The setuid binary newuidmap
can be used to do this as an unprivileged user while
restricting the user to a permitted range of host UIDs.

On the Linux desktop, applications are typically
launched via a menu item or a launcher tool (such
as rofi, dmenu or the like). All these tools support
using desktop entries to launch applications. Desk-
top entries are configuration files that provide infor-
mation on how to start applications (CLI arguments,
environment variables etc). Most desktop environ-
ments support desktop entries (Brown et al., 2020)
and provide them for most graphical user interface
software. It is possible to shadow system-wide desk-
top entries by providing a file of the same name in-
side a location in the user’s home directory (usually
˜/.local/share/applications).

Access control systems enforce trust boundaries
and defines rules for data flow between them. There
are many different ways of approaching access con-
trol models known from standard literature (Ander-
son, 2020). Two that have traditionally been very
popular are the hierarchical model, which dates back
to (Bell, 1975; Biba, 1975) and is the basis of Mi-
crosoft’s “Mandatory Integrity Control”. Another
is the type enforcement (TE) model (Badger et al.,
1996), which is successfully deployed on many sys-
tems in the form of SELinux.

In the hierarchical access control model resources
and applications are assigned levels from “untrusted”
to “trusted” and only processes in levels that are at
least as high as the one of a resources may access
them. In the type enforcement mode, one instead as-
signs types to resources and domains to processes. A



policy then specifies, which types may be accessed by
a domain, and how one domain may transition into
another domain (such as by executing another pro-
gram).

A type may contain many resources but a resource
is associated with exactly one type. A domain may
access many types – a one to many association. The
communication between applications, and which ap-
plication is allowed to launch other applications, is
defined by a domain to domain relation.

3 SANDBOXING ON DESKTOP
SYSTEMS

Sandboxes can be used in many different scenarios
and as such will serve different needs in different de-
ployment scenarios. We focus on desktop use cases,
where one or many users interact with a personal
computer or laptop via a graphical user interface. In
these situations, it is difficult to predict the software
that is installed or the precise configuration in which
the system is used. While true on desktop systems
in general, this observation is particularly relevant to
the GNU/Linux ecosystem with its variety of distri-
butions and desktop environments.

3.1 Observations

We highlight the main aspects of the Linux desktop
(or desktop systems in general) that are, in our view,
relevant to designing a user-friendly, yet reasonably
secure sandboxing solution for the desktop:

Choice of Software: Linux users expect to be
able to install software of their choice and work with
that software. This is true for the Linux distribution it
self, but also for installed software.

Unknown Workflow: Users are unlikely to ac-
cept security mechanisms that require them to change
their workflow, but users work in different ways. This
manifests in different folder layouts, different interac-
tions between tools, and so forth.

Out of the box Functionality: Most users expect,
that software on their system works out of the box in
most cases. They usually do not want to make manual
configurations to obtain basic functionality. This is
true, in particular, for security measures.

Multi-User Systems: Desktop systems are occa-
sionally used by multiple users (such as in an office
setting or at home). A sandboxing solution must sup-
port this use-case and uphold the separation between
accounts.

Rootless: Sometimes, users do not have adminis-
trative rights on their machine (e.g. when computers

are part of a laboratory setup or when they are cen-
trally managed by an organization’s IT department).

3.2 Requirements

From these observations, we derive the following us-
ability requirements that a sandbox must meet in or-
der to be accepted by the user. The sandbox must be:
R1 Able to support any application in principle.
R2 Able to Co-exist and even interact with unsand-

boxed applications.
R3 Amendable to support new applications and self-

developed software in particular.
R4 Provided as an additional application, that can be

installed using the package manager of any stan-
dard Linux distributions.

R5 Customizable to accommodate user’s preferred
workflow.

R6 Configurable. This must be easy and not require
administrative privileges.

R7 Provided with predefined profiles for most com-
mon applications.

R8 Able to support multi-user environments.
R9 Transparent as possible to users and once config-

ured not require their attention.
In addition to the requirements above, the soft-

ware must be secure in the following threat model:
Threat Model. We assume that an adversary has full
control of a process P on the desktop system. This
means that the adversary can execute arbitrary code
within the context of that process, read all of that pro-
cess’s memory and access any system resource that
process can access.

Note that in the traditional Linux security model,
if an adversary has full control over a process run-
ning as some user, the adversary has full control over
the entire desktop session of that user: All files are
accessible, and all processes can be signaled. Permis-
sion to trace processes is typically restricted by the
Yama LSM, but this need not be the case and usually
permits tracing of descendent processes. We aim to
strengthen security in that the adversary is restricted
to only those parts of the session that the benign code
within that process would have legitimately had ac-
cess to.

4 SANDBOXING CONCEPT

In this section we outline the access control model
we use for our proposed sandboxing solution and de-



scribe how we implement that model for any recent
Linux kernel (i.e. one that supports required functions
for unprivileged user NS).

Note that these models are usually seen in the con-
text of mandatory access control, but we are not build-
ing a MAC system in the traditional sense. Instead,
we devise a policy that is built on these models and
which can be enforced using discretionary access con-
trol in conjunction with standard Linux sandboxing
software.

An issue with poorly protected, application-
specific resources (e.g. config-files), which exists for
the hierarchical access control model, can be solved in
the TE model by introducing an application-specific
type for every application and granting only the cor-
responding domain access to it. Futher, the TE model
promises to be more suitable for our purposes and we
choose to base our sandbox policy on it.

The TE model knows domains and types, as-
sociated with processes and resources, respectively.
Those model concepts must be represented in prac-
tice by using the features provided by an unpatched
Linux kernel. In the following, we outline how TE
can be realized using namespaces to assign UIDs to
domains and GIDs to types. We also detail how a
container based sandbox can enforce a policy defined
in this way. The resulting model is visualized in fig. 1.

On common Linux desktops all processes of an
account run with the same privileges. But to imple-
ment TE, it is necessary to enforce trust boundaries
between them. Therefore we execute every applica-
tion with its own unique UID and thereby think of
UIDs as domains.

The concept of a type labels resources (files, in
particular) is characterised by a many to many rela-
tion to domains and by a many to one relation to re-
sources. Since on Unix, famously, everything is a file,
we may think of resources as files (so file does not
mean “regular file” in this paper, but may be a block
device, socket etc.). As a consequence GIDs are a
suitable representation of types. A file has exactly one
GID but many files can have the same GID, and a pro-
cesses can be a member of several GIDs. Membership
of a process in a group can be thought of as a domain
having access to a type.

On Linux the association between UID and GIDs
is usually part of the account. However, creating an
account for every required UID is not appropriate in
our case, since creating or modifying accounts re-
quires elevated privileges (cf. requirement R6). In-
stead of using accounts we define the relations be-
tween UID and GIDs in a user-editable configuration
file. Besides the UID to GIDs relation, the mapping of
executables to UIDs, as well as the relation between

GIDs and paths is defined in this file.
Defining path permissions in a configuration file

rather than on the directory or file itself is clearer.
Unfortunately, it is not possible to apply those per-
missions to common Linux file systems in real-time
without intercepting file system access or conflicting
with the classic Linux file system and its access con-
trol. Therefore a software is required, which corrects
the file system permissions on demand. In the PoC
such a script is provided, it traverses the directories
recursive and corrects files UID / GID and permis-
sions. Further it it applies the SETGID bit, and an
access control list rule to directories, to change the
default file owner and mode declarations. This is not
a security but a usability feature.

Until this point not required is the file owner, this
is used to ensure that unsandboxed processes continue
to have access to user files in the usual way. The file
owner property is set to the UID of the user account.
In a sense, processes running with this UID are more
privileged than the other UIDs in the system. This is
done to support requirement R2.

On Linux, processes require CAP SETUID/
CAP SETGID to change UID and GIDs. Assigning
these capabilities to any process in the user’s session
would mean that we weaken security compared to
the classical Linux desktop setup. Instead, we use
bubblewrap to run applications in user NS and create
UID/GID mappings, using the setuid application
newuidmap, to implement a container based sand-
box that does not require elevated privileges to be
executed. Note that the user account’s UID owns the
new user NS and has full capabilities inside. As a
result, it can assume any UID/GID inside, as long as
it is mapped. This gives another reason to think of
the user account’s UID as privileged. A side effect
of using bubblewrap and user NS is that we need
to define bind mounts, since a mount NS is always
unshared. Our PoC does not use the mount NS for
isolation and simply provides the entire root file
system to the sandbox.

Besides implementing enforcement of domain-
type relations, we also must specify domain-domain
relations, which dictate which other domains a given
domain might start. On Linux there is no suitable re-
lation between UIDs that governs this kind of access:
Setuid binaries allow transitioning to other domains,
but they are set globally and affect every account and
they will also not launch a new user NS.

We chose to enforce this relation using a user-
space service, which runs with the permissions of the
user’s primary UID. We assume the administrator de-
fined a UID range for this user in /etc/subuid (and
likewise for GIDs) when creating the account. Then



Namespace

Namespace

Application 1

Unsandboxed
Applications

Launcher

File

UID: 1000

UID: 100001

GID: 100111

GID: 100222

GID: 100111 UID: 1000

GID: 100222 UID: 1000
UID: 100002

GID: 100222

File

File

Application 2
launch


UID: 100002

GID: 100222

Launch Request

IPC: Application 2

launch

accesses

accesses

Client

Configuration:


- Application 2:

   - UID: 100002

   - Groups: [Download]

- Download:

   - GID: 100222


Documents

Downloads

Figure 1: Sandbox Design

our service can define UID mappings via newuidmap
and run applications in their correct domains. A pro-
cess that wants to start another process then launches
a client binary, which communicates with the service
via an D-Bus IPC interface and requests the launch.
To enable this the D-Bus session bus is available to
all sandboxed applications. Upon receiving a launch
request, the service will look up the permissions of
the requesting UID in a configuration file and decide
whether or not to launch the requested application
with its configured privileges. It is important that no
other UID than the user’s primary one is capable of
changing the configuration.

In order to launch an application after validation,
the service runs a helper script in the namespaces us-
ing bubblewrap. After the namespaces are unshared
the execution is blocked by bubblewrap, and config-
ures the service uses newuidmap to setup UID and
GID mappings. Once the mappings are setup the
helper script in the sandbox change its UID and GIDs
to the configured ones and executes the target appli-
cation.

When using UIDs and GIDs to identify types and
domains, the UID/GID range assigned to a user’s ac-
count must be carefully chosen. For distinct users,
these ranges must be disjoint. Moreover, no two ap-
plications must share the same host UID. To ensure
this the presented PoC assigns a global UID to every
domain d, and a global GID to every type t. The ac-
tual ID u is computed by combining the global ID,
called the offset, with a user specific base UID to
avoid ID collisions: u = base+offset(d)

A similar equation holds for the GIDs g corre-
sponding to types. This method has the advantage
that data can be transferred between systems as long
as the user base is identical. A typical value for the
user base would be 100000, which means that the

UID/GID range [100000,100999] might be a good
UID/GID range for this user.

In order to add an application to the sandbox sys-
tem an user might add an entry containing its per-
missions and an unused offset by hand or install an
application profile. The profile may be provided by
a package maintainer and consists of the applications
permissions (using file paths and global offsets). Whit
the installer, that is part of our PoC it can be merged
with the current config, but on conflict no user config-
uration is over written.

5 EVALUATION

To evaluate the requirements from section 3.2, we
conducted a usability survey on the prototype and pro-
vide an analysis of the access control model and our
prototype.

5.1 Theoretical Analysis

All requirements except requirement R9 and parts of
requirement R6 may be verified by analysing the ac-
cess control model and the PoC implementation.

Requirement R1: Support any application Our
sandbox does not expect applications’ cooperation,
but can interfere with the way it expects to access
files, IPC, or other processes. If an application re-
quires access to a resource, that access can be granted
by adjusting group membership appropriately. This is
obvious for files but for IPC the situation is more com-
plex. For example during development, some work
was required to enable sound of sandboxed applica-
tions via PulseAudio. We allow D-Bus communica-



tion, but other IPC can be challenging, we believe that
it affects very few applications.

There is a large group of tools that are challenging
to sandbox in our model: Command line tools and
terminal emulators. For command-line tools it is dif-
ficult to wrap them because they are not launched via
desktop files. For terminal emulators, it is possible
to provide a profile, but it is very difficult to restrict
access in a meaningful way.

Requirement R2: Co-exist with unsandboxed ap-
plications Our sandbox does not conflict with un-
sandboxed applications, since the sandbox access
model maintains file ownership of the primary UID
of the user and only group ownership is changed for
access control. Unsandboxed applications have full
access to all of user-session’s resources, just as they
do on traditional Linux desktop environments.

Requirement R3: Support new applications
Given our analysis of requirement R1 it only remains
to discuss that adding new software will not pose lo-
gistical issues arising from collisions in the UIDs as-
signed to individual applications.

We first note that our sandbox assigns global
unique UIDs but running out of UIDs seems unlikely.
If users install software outside the package manager,
there is a risk that the UID u manually chosen for such
an app will collide with a packaged app that is later in-
stalled: u = UserBase+Offset(Firefox), resulting in
a security breach. This can be avoided, by specifying
a range of private offsets (much like private IPv4 net-
work ranges) that is forbidden to be used by packaged
software.

Requirement R4: Installable as additional pack-
age The prototype can be packaged like any other
application and installed on standard Linux distribu-
tions. Our PoC comes with a Debian package that can
be used to install it on systems using dpkg. However,
it does not depend on any distribution-specific con-
tent – only Python 3, Bubblewrap, subuidmap, and
D-Bus. Additionally, the way we use Bubblwrap in
conjunction with NS requires support for unprivileged
user NS. However, unprivileged unsharing of user NS
is enabled on recent kernels in popular distributions
today (e.g. Debian, Ubuntu, Arch Linux).

Requirement R5: Customizable Our sandbox is
customizable via its configuration files. The labeling
of files and directories can be changed according to
the user’s preference. Files and directories can then
be relabeled automatically using the provided tools.

Customization includes both the ability to change a
file or directory’s type, as well as the types of any ap-
plication. Moreover, those changes are not undone on
update. There is some overhead if the package main-
tainer alters the applications initial configuration file
and those changes are ported to the user’s local copy.

Requirements R6 and R8: Multi-user and easy
customization The configuration of the sandbox is
defined for every user on a system in a user-specific,
human readable configuration file that is owned by
the primary UID of the user’s account. Users may
edit this configuration file without root privileges to
make smaller modifications or change the entire ac-
cess model. As mentioned, the question whether con-
figuration is “easy” is best answered using an survey
and this is done further below.

The precondition for the way we launch applica-
tions with UIDs different from the user’s own primary
UID is that the user may set up UID mappings in the
new user NS. Since we use the newuidmap family of
tools for this purpose, a valid range for the user needs
to be written to /etc/subuid. This is the only con-
figuration step that requires administrative privileges,
but can be done when the user’s account is created. If
those ranges are set up without overlap, the sandbox
may be used for multiple users without risk of weak-
ening the isolation between those accounts.

Requirement R7: Sandbox must provide profiles
for standard applications While our PoC cannot
provide profiles for every “common” application for
obvious reasons, we demonstrated that providing such
a profile is a simple task for any user with at least
moderate knowledge: A new permission file need
only describe the application offset (cf. section 4) and
required group memberships. The PoC already in-
cludes a number of groups for common tasks, e.g. of-
fice applications. Those files can be merged using the
installer provided with the PoC.

5.2 Survey

We conducted a survey to investigate whether require-
ments R6 and R9 are fulfilled: if the sandbox, once
configured, is transparent to the user and whether it
is easy to customize. The test environment was pro-
vided in the form of a virtual machine configured with
the PoC. Participants are required to perform certain
tasks on the system, and answer questions about their
interaction with the sandboxed applications. The sur-
vey was conducted with students in computer science
or electrical engineering at a college of higher educa-



tion in Germany. The questionnaire and manual were
provided in German.

The questionnaire consists of pairs of a task to
be performed, followed by questions about the task.
With every task description, a short sandbox manual
is provided. Furthermore the questionnaire contains
free text fields, so that subjects can provide additional
comments. The tasks the subjects had to perform are:

1. Starting the Firefox web browser and visiting an
arbitrary website.

2. Downloading a PDF file with Firefox, opening it
with the Okular PDF viewer and saving it in folder
“Documents”.

3. Creating a text file in “Documents” with the text
editor Geany and reopening it with VSCode.

4. Adding a new folder to the users home directory
and grant access to it to both Geany and VSCode.

Results: 22 students took part in the survey, but not
every question was answered by every student.

During the first task, we expect subjects not to no-
tice the sandbox. 95% of the test users respond that
they would use the sandbox for this scenario. All sub-
jects did not notice the sandbox.

For the second task, 60% of the users had to inter-
act with the sandbox, which was expected due to Fire-
fox internals. 42.66% of the users that had to interact
with the sandbox reported difficulties but 76.19% of
all users would use the sandbox for this scenario.

The third task was not expected to lead to any is-
sues. Although 40% of the users experienced unex-
pected errors at this point 68.42 % of the subjects re-
sponded they would use the software for this scenario.
We can trace it back to permission issues of VSCode
with access to tmpfs and a bug in our PoC.

With the fourth task, we checked if subjects are
able to customize the policies. 68.4% percent of
the subjects claimed to succeed. Since 57.9% of the
subjects had problems with the documentation, more
comprehensive documentation is desirable.

Evaluation of the free-text comments showed that
several subjects were confused about the purpose of
the survey and did not necessarily evaluate the usabil-
ity, but rather tried to understand the security bene-
fits of the sandbox. Those subjects reported that they
were not ready to use the sandbox in the future, be-
cause they were not convinced of its benefits. This is
an interesting criticism, but since we did not attempt
to explain those benefits to subjects, it is also not very
surprising. Future evaluations should be constructed
to avoid this misunderstanding by communicating the
intent of the survey more clearly.

5.3 Security Evaluation

We begin by noting that, since the UID ranges as-
signed to distinct users do not overlap, our sandbox
will not be less secure than the traditional Linux desk-
top with respect to file permissions. If access control
checks based on UIDs in IPC frameworks are deac-
tivated, this may weaken the security compared with
the classical desktop setting. However, if access to the
IPC interface can otherwise be restricted (e.g. through
file permissions on AF UNIX sockets), this problem is
mitigated. A generic solution based on a proxy is pos-
sible, but has not been implemented in our PoC. Nev-
ertheless, the security of a system running our sand-
box can be considered at least as high as that of a stan-
dard Linux desktop.

If an attacker A controls a process P, our sandbox
ensures that A cannot access any file that P could not
already have accessed. Recall that file access includes
IPC access where the IPC interface is represented as
a file (e.g. an AF UNIX socket). This is also true for
child-processes launched by P. It is possible for A to
launch applications in other sandboxes through their
desktop file by invoking the launcher via its D-Bus in-
terface. Again, this does not enable A to do anything
that was not explicitly permitted for P. There are still
two primary sources for security breaches in this sce-
nario: First, A has access to a resource, such as IPC,
that can be used to influence other processes. Second,
A may exploit programming errors (e.g. command in-
jection) in other applications. As dangerous as this
situation is, we consider it out of scope, because there
is nothing the sandbox can do to mitigate it.

Xorg is a well-known display server used to dis-
play the UIs of applications. Applications use it via
a socket that is widely accessible. Xorg does not
support the concept of trust boundaries or window
ownership on a single Xorg desktop, which means
that applications can access other X applications. To
deal with this either the Xorg successor Wayland or
a multi-instance desktop implementation like Xpra
might be used (Antoine Martin and others, 2021). We
designed a concept, where every sandboxed applica-
tion starts its own Xpra instance and a client under
the user’s primary UID connects to it. This is not cur-
rently part of the PoC due to time constraints.

Finally, D-Bus access is a potential issue. If
clients may access arbitrary D-Bus Interfaces, this
may allow them to access sensitive material. It is pos-
sible to add D-Bus configuration templates as part of
an application’s profile, which can be used to restrict
that applications access to the session bus. Again, this
is not implemented within our PoC due to time con-
straints.



6 CONCLUSION AND FUTURE
WORK

In this paper we introduced a method, how to use
UIDs, GIDs, and user NS to create a sandbox for
Linux desktops. The proposed sandbox is designed to
meet requirements that we consider to be important
for wide spread adoption. We implemented a proto-
type and performed a usability survey. The results
indicate that an easy to use, transparent sandbox will
likely be adopted, provided users understand the ben-
efits of using the software. Furthermore provided an
analysis of how the sandbox addresses each of the re-
quirements mentioned above, and analyzed its secu-
rity impact on the overall system.

Our research indicates several areas that future re-
search should address. First of all a long term evalu-
ation should be conducted to obtain results about the
applications stability. As mentioned above, the cur-
rent prototype does not support access control for the
D-Bus session bus. A solution to restrict this access,
is a necessary in our opinion. Another challenge for
future work is that Xorg does not separate the graph-
ical user interfaces of the applications. Therefore,
either a multi instance display server like Xpra or a
Wayland-based solution should be added. Third, cur-
rently network access is unrestricted. Isolating net-
work access through network namespaces should be
considered. The challenge here is to strike a balance
between full and no access – many applications use
localhost communication extensively.

REFERENCES

Agache, A., Brooker, M., Iordache, A., Liguori, A., Neuge-
bauer, R., Piwonka, P., and Popa, D.-M. (2020). Fire-
cracker: Lightweight virtualization for serverless ap-
plications. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
419–434, Santa Clara, CA. USENIX Association.

Anderson, R. (2020). Security engineering: a guide to
building dependable distributed systems. John Wiley
& Sons.

Android Open Source Project (2021). Android compatibil-
ity definition document. https://source.android.com/
compatibility/cdd.

Anjali, Caraza-Harter, T., and Swift, M. M. (2020). Blend-
ing containers and virtual machines: A study of
firecracker and gvisor. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’20, page
101–113, New York, NY, USA. Association for Com-
puting Machinery.

Antoine Martin and others (2021). Xpra readme.

https://github.com/Xpra-org/xpra/blob/master/
README.md.

Badger, L., Sterne, D. F., Sherman, D. L., Walker, K. M.,
and Haghighat, S. A. (1996). A domain and type
enforcement unix prototype. Computing Systems,
9(1):47–83.

Bélair, M., Laniepce, S., and Menaud, J.-M. (2019). Lever-
aging kernel security mechanisms to improve con-
tainer security: A survey. In Proc. of the 14th Int.
Conf. on Availability, Reliability and Security. ACM.

Bell, D. E. (1975). Secure computer systems: Mathematical
foundations and model. Mitre Corp. Report, pages
74–244.

Biba, K. (1975). Integrity considerations for secure com-
puting systems. Mitre Report MTR-3153, Mitre Cor-
poration, Bedford, MA.

Brown, P., Blandford, J., Taylor, O., Untz, V., Bastian,
W., Lortie, A., Faure, D., and Thompson, W. (2020).
Desktop Entry Specification.

Canonical Ltd. (2022). Snap documentation — snapcraft
documentation. https://snapcraft.io/docs.

Containers Community (2016). Bubblewrap source code.
https://github.com/containers/bubblewrap.

ENCRYPTED SUPPORT LP (2022). Whonix. https:
//www.whonix.org/.

Firejail Contributers (2020). Firejail source code. https:
//github.com/netblue30/firejail.

Flatpak Team (2018). Flatpak’s documentation. https:
//docs.flatpak.org/en/latest/#.

Jana, S., Porter, D. E., and Shmatikov, V. (2011). TxBox:
Building secure, efficient sandboxes with system
transactions. In 2011 IEEE Symposium on Security
and Privacy. IEEE.

Khalimov, A., Benahmed, S., Hussain, R., Kazmi, S. A.,
Oracevic, A., Hussain, F., Ahmad, F., and Kerrache,
C. A. (2019). Container-based sandboxes for malware
analysis: A compromise worth considering. In Pro-
ceedings of the 12th IEEE/ACM International Confer-
ence on Utility and Cloud Computing, UCC’19, page
219–227, New York, NY, USA. Association for Com-
puting Machinery.

Linux Manpage Team (2021). Linux manual page.
Mayrhofer, R., Stoep, J. V., Brubaker, C., and Kralevich, N.

(2021). The android platform security model. ACM
Transactions on Privacy and Security, 24(3):1–35.

Open Container Initiative (2022). Runc source code. https:
//github.com/opencontainers/runc.

Subgraph (2014). Subgraph os. https://subgraph.com/.
The Qubes OS Project and others (2022). Architecture —

qubes os. https://www.qubes-os.org/doc/architecture/.
Waterson, D. (2020). Managing endpoints, the weakest link

in the security chain. Network Security, 2020(8):9–13.
Yosifovic, P., Ionescu, A., Russinovich, M. E., and

Solomon, D. A. (2017). Windows Internals Sev-
enth Edition Part 1: System architecture, processes,
threads, memory management, and more, Seventh
Edition. O’Reilly.

https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd
https://github.com/Xpra-org/xpra/blob/master/README.md
https://github.com/Xpra-org/xpra/blob/master/README.md
https://snapcraft.io/docs
https://github.com/containers/bubblewrap
https://www.whonix.org/
https://www.whonix.org/
https://github.com/netblue30/firejail
https://github.com/netblue30/firejail
https://docs.flatpak.org/en/latest/#
https://docs.flatpak.org/en/latest/#
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://subgraph.com/
https://www.qubes-os.org/doc/architecture/

