
VR-TestCoverage: Test Coverage Visualization and Immersion in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract—With the increasing pressure to deliver additional
software functionality, software engineers and developers are
often confronted with the dilemma of sufficient software testing.
One aspect to avoid is test redundancy, and measuring test (or
code or statement) coverage can help focus test development on
those areas that are not yet sufficiently tested. As software
projects grow, it can be difficult to visualize both the software
product and the software testing area and their dependencies.
This paper contributes VR-TestCoverage, a Virtual Reality
(VR) solution concept for visualizing and interacting with test
coverage, test results, and test dependency data in VR. Our VR
implementation shows its feasibility. The evaluation results
based on a case study show its support for three testing-related
scenarios.

Keywords – Software test coverage; code coverage; virtual
reality; visualization; software testing.

I. INTRODUCTION
Source code portfolios can grow and become very large

for both open-source projects, government organizations, and
companies, as exemplified with the over 2 billion Lines of
Code (LOC) accessed by 25k developers at Google [1]. There
are estimated to be over 25m professional software developers
worldwide [2] who continue to add source code to private and
public repositories. One quality aspect to consider is how well
this code is tested, and if any changes have been covered by
tests. With large code bases, visualization of test coverage can
provide insights.

Software testing is one important Knowledge Area (KA)
within the Software Engineering Body Of Knowledge
(SWEBOK) [3]. Both the SWEBOK and the international
software testing standard ISO/IEC/IEEE 29119 [4] include
test coverage measures within their test technique
descriptions. Test effectiveness is always a challenging factor
to measure. While test coverage (a.k.a. code coverage, in this
paper we assume statement coverage) as a single factor may
not be strongly correlated with test effectiveness [5], it
nevertheless is still low to moderately correlated, and this can
be helpful and supportive data for the test effort.

Considering the adoption rate of test coverage by software
developers, for an insight into the industrial popularity of test
coverage, of 512 developers randomly surveyed at Google in
a 2019 survey [6], 45% indicated they use it (very) often when
authoring a changelist and 25% sometimes. When reviewing
a changelist, 40% use coverage (very) often and 28%
sometimes. Only 10% of respondents never use coverage,

which conversely means 90% do. So overall, a substantial
number of developers apply code coverage regularly and find
value in it. Voluntary adoption at the project level went from
20% in 2015 to over 90% by 2019. Yet, these relatively high
reported rates in professional private companies may not
correspondingly be found in smaller, less-professional
companies or in voluntary development work, e.g., on open
source projects. For instance, a survey of 102 open source
Android app developers [7] reported that 64% did not use or
did not consider code coverage useful for measuring test case
quality. Some of the reasons mentioned include usability and
the learning curve of available tools as well as the lack of
knowledge of the tools and techniques. While testing has
never typically been the forte of software developers, one
challenge is how to motivate developers to test and measure
test coverage, to leverage the utility and intuitive accessibility
of testing data, to enhance the usability of testing tools and
methods (especially for newcomers).

Virtual Reality (VR) is a mediated visual environment
which is created and then experienced as telepresence by the
perceiver. VR provides an unlimited immersive space for
visualizing and analyzing in a 3D spatial structure viewable
from different perspectives. Via its unique visualization and
immersive capability for digital data, VR can play a part as a
motivational factor for software testing and for depicting and
utilizing test coverage data. By supporting tool-independent
access to coverage data, usability is enhanced, and
accessibility for all stakeholders is supported (including
unfamiliar newcomers). In our view, an immersive VR
experience can be beneficial for software analysis tasks such
as testing coverage analysis. Müller et al. [8] compared VR
vs. 2D for a software analysis task, finding that VR does not
significantly decrease comprehension and analysis time nor
significantly improve correctness (although fewer errors were
made). While interaction time was less efficient, VR
improved the user experience, was more motivating, less
demanding, more inventive/innovative, and more clearly
structured.

As software projects grow in size and complexity, an
immersive digital environment can provide an additional
visualization capability to comprehend and analyze both the
software production code (i.e., test target) and the software
test suite and how they relate, as well as determine areas where
the code coverage achieved by the test suite is below
expectations.

As to our prior work with VR for software engineering,
VR-UML [9] provides VR-based visualization of Unified

Modeling Language (UML) and VR-SysML [10] for System
Modeling Language (SysML) diagrams. VR-Git [11]
provides VR-based visualization for Git repositories. This
paper contributes VR-TestCoverage, a solution concept for
visualizing and interacting with test coverage data in VR. Our
prototype realization shows its feasibility, and a case-based
evaluation provides insights into its capabilities.

The remainder of this paper is structured as follows:
Section 2 discusses related work. In Section 3, the solution
concept is described. Section 4 provides details about the
realization. The evaluation is described in Section 5 and is
followed by a conclusion.

II. RELATED WORK
Our search found no other VR work directly addressing

test coverage (or code coverage). VR-related work regarding
software analysis includes VR City [12], which applies a 3D
city metaphor. While it briefly mentions that its work might
be used for test coverage, it shows no actual results in this
regard and in this regard only a trace mode visualization is
depicted.

Non-VR work on code coverage includes Dreef et al. [13],
which applies a global overview test-matrix visualization.
Rahmani et al. [14] incorporates JaCoCo to process coverage
metrics and TRGeneration to visualize a control flow graph
and assist the tester in determining the test input requirements
to increase coverage. VIRTuM [15] is an IntelliJ JetBrains
plugin that provides static and dynamic test-related metrics.
Alemerien and Magel [16] list various coverage tools they
assess in their study, determining that there is a wide range of
differences in how the metrics are calculated. Open Code
Coverage Framework (OCCF) [17] proposes a framework to
unify code coverage across many programming languages.

In contrast, our solution is VR-based and not Integrated
Development Environment (IDE)-specific, thus it can be
flexibly used independently of any IDEs and tools (as long as
any tool-generated coverage report is converted into the
required import format). Rather than focusing on source code
and control flow details, it provides an overall high-level
coverage view of production code to help focus testing efforts
on areas that are insufficiently tested.

III. SOLUTION CONCEPT
In Figure 1, the VR-TestCoverage solution concept is

shown relative to our other VR solutions in the software
engineering area. VR-TestCoverage utilizes our generalized
VR Modeling Framework (VR-MF) (detailed in [18]). VR-
MF provides a VR-based domain-independent hypermodeling
framework addressing four aspects requiring special attention
when modeling in VR: visualization, navigation, interaction,
and data retrieval. Our VR-based solutions specific to
Software Engineering (SE) include VR-TestCoverage (the
focus of this paper) and the aforementioned VR-Git [11], VR-
UML [9] and VR-SysML [10]. Since Enterprise Architecture
(EA) can encompass SE models, development, and test
aspects and thus be applicable for collaboration in VR, our
other VR modeling solutions in the EA area include VR-EA
[18], which visualizes EA ArchiMate models in VR; VR-
ProcessMine [19] supports process mining and analysis in

VR; and VR-BPMN [20] visualizes Business Process
Modeling Notation (BPMN) models in VR. VR-EAT [1]
integrates the EA Tool (EAT) Atlas to provide dynamically-
generated EA diagrams in VR, while VR-EA+TCK [1]
integrates Knowledge Management Systems (KMS) and/or
Enterprise Content Management Systems (ECMS).

Figure 1. Conceptual map of our various VR solution concepts.

A. Visualization in VR
A plane is used to group the production code (test suite

target) as well as the test suite. A tree map using a step
pyramid paradigm (or mountain range) is used to stack
containers (i.e., groups, collections, folders, directories,
packages) in the third dimension (height) on the plane.

One visualization challenge we faced was that we initially
thought we could depict the test target code by simply
overlaying a layer on the production code and indicating
which test “covered” what production code. However, once
we completed the dependency analysis of large projects, we
found an n-m relation between tests and the test targets, while
one test may have a focus, it nevertheless may indirectly
invoke many other dependent portions of the target. Thus, we
chose to keep the visual depiction of the test suite separated
from the test target (since it can have its own hierarchical
organization), yet to use the same visualization paradigm to
depict “containers” or collections as packages or folders.
However, to retain the intuitive paradigm of “coverage,” we
elected to place the test suite visualization directly above the
test target. That way, dependencies can be followed from top
to bottom, and the test target should not depend on any test
code. Since the most concrete tests are typically the smallest
(greatest depth, leaves rather than containers), the test suite
uses the opposite of height, rather depth, to bring these closer
to the target. Dependencies are then shown as lines between
the test and test target, analogous to puppet strings.

B. Navigation in VR
The space that can be traversed in VR can become quite

large, whereas the physical space of the VR user may be
constrained, e.g., to a desk. Thus, the left controller was used
for controlling flight (moving the VR camera), while the right
controller was used for interaction.

C. Interaction in VR
Since interaction in VR is not yet standardized, in our

concept, user-element interaction is supported primarily
through VR controllers and a VR-Tablet. The VR-Tablet is
used to provide context-specific detailed element information.
It includes a virtual keyboard for text entry via laser pointer
key selection.

VR-SysML
SysML

Enterprise
Models

Enterprise
Views
ATLAS

Blueprints

Archimate
Data Retrieval

Naviga@on

Visualiza@on

Interac@on

KMS ECMS
VR-EAT VR-EA

VR-MF VR-EA+TCK

VR-BPMN
BPMN

VR-TestCoverage

VR-SE

UML
VR-UML

VR-ProcessMine

VR-Git

IV. REALIZATION
To avoid redundancy, only realization aspects not

explicitly mentioned in the evaluation section are described in
this section. While the VR-TestCoverage solution concept is
generic, for the realization of a prototype we focused on the
.NET platform. The logical architecture for our VR-
TestCoverage prototype realization is shown in Figure 2.
Basic visualization, navigation, and interaction functionality
in our VR prototype is implemented with Unity 2021.1 and
the OpenVR XR Plugin 1.1.4, shown in the Unity block (top
left, blue). The JSONUtility library is used for JSON
processing.

Figure 2. VR-TestCoverage logical architecture.

Figure 3. DotCover coverage report snippet for the Geocoding.net project.

As a test coverage tool, we utilized JetBrains dotCover.
This Microsoft Visual Studio plugin is a .NET Unit test runner
and code coverage tool that can generate a statement coverage
report in JSON, XML, etc. (see Figure 3). While it is a static
analysis tool, it can also import coverage reports. A challenge
we faced is that among the coverage tools we considered, they
only report on dependencies between test targets, and do not
explicitly indicate or name direct dependencies to the
invoking test.

For determining C# code dependencies, Visual Studio
2022 Enterprise Edition (EE) provides a Code Map that is
stored as a Directed Graph Markup Language (DGML) file.
We then convert its XML-like format to JSON (see Figure 4).
The dependency report is then partitioned into a node report
and a link report. Only direct dependencies between test and
test target are considered, otherwise the dependency structure
could readily become very complex with large sets of
intermediate nodes and their interdependencies.

Figure 4. Code Map snippet (in JSON) for the Geocoding.net project for
determining dependencies.

Tests in the test suite (and their containers) are colored
based on the test result status: green for successful, red for
failed, and yellow for other (such as ignored). Coverage of the
test targets is shown as a bar on all four sides and on the
elevation, with the blue area visually indicating the percentage
of coverage, and black used for the rest. The coverage
percentage is also shown numerically.

V. EVALUATION
To evaluate our prototype realization of our solution

concept, we use a case study based on three scenarios: test
coverage, test results, and test dependencies. Geocoding.net
was used as an example C# project for demonstration
purposes. However, any C# project could be used by the
prototype, and currently any coverage tool could be used by
mapping and transforming the report format to the DotCover
JSON format.

A. Test Coverage Scenario
Testers focused on test coverage are typically concerned

about the overall coverage (e.g., to compare its level against
some high-level test goal), while also concerned about

3D Environment

Laser Pointer
via Controller

Selec5on
Menu

Structure
Visualiza5on

3D Object
Selec5on

ScriptsAssets

Unity

Visual Studio

dotCover
plugin

Code Map
extensionDGML

VS Project

Test Code

Code

Report

assessing details and risks as to which areas were not covered
by tests.

Visualization of the System Under Test (SUT) or test
target is shown on a plane, with the coverage percentages for
a container (folder, directory, package) shown on each side
(see Figure 5). A top-level container is used to represent the
overall project. The test suite is projected above this onto a
separate plane and upside-down.

Figure 5. VR-TestCoverage: test target and code coverage on bottom, test
suite and test results visible on top, the VR-Tablet on the right, and
dependencies drawn as magenta lines.

The test coverage of the test targets is indicated via a bar
on all four sides so that from any perspective the coverage is
visually indicated (see Figure 6). A bar graph is used on all
sides, with blue visually indicating the percentage of coverage
and black used for the rest (the exact coverage percentage is
also shown numerically). A stepped pyramid paradigm is used
to portray the granularity, with the highest cubes having the
finest granularity or depth, and the lowest being the least
granular. For instance, a user can quickly hone in on overall
areas with little to no blue, meaning that coverage there was
scarce, and one can quickly find and focus on details (without
losing the overview) by focusing on the higher elevations.

Figure 6. VR-TestCoverage showing stepped pyramid with highest points
being finest granularity.

Selecting a test target element causes all other target
elements and unassociated dependency links to become
transparent, while details from the coverage report can be
inspected in the VR-Tablet.

Figure 7. VR-Tablet showing report details for the selected element (non-
selected elements become transparent).

B. Test Results Scenario
If tests have been run, besides coverage, a tester is also

typically interested in the test results and overall pass (or
success) rate.

We visualize the test suite as a tree map of all tests using a
step pyramid for the third dimension to indicate granularity
via depth. Analogously to how coverage was shown as a
colored bar on all four sides of a container, on the test suite
green is proportionally shown for success rate and red for
failure (yellow for other), with its numerical value also given
(see Figure 8).

Figure 8. Test suite overview; bar indicates pass percentage for a collection
(green for pass, red for failed).

Figure 9 provides a closeup, showing how test case and
unit test information is provided, showing the test cases
(lowest and closest to the test target), the test unit (showing
name and percentage), and a test container (folder or
directory). The VR-Tablet permits one to inspect the test
results for a selected test.

Figure 9. Test suite success shown by test case, test unit, and test container
(folder or directory).

C. Test Dependency Scenario
One scenario that is often unavailable for testers is a

dependency view, with which they can view which tests are
directly invoking or reaching which target code. Typically, by
convention tests are named in such a way to express the test
target, yet the dependencies could nevertheless differ from
what one might expect. This is especially true if the test suite
consists not only of unit tests but also integration or system
tests. By eliminating the guess work, dependencies could be
used to determine which tests are primarily reaching a target,
and then focus on extending that test in order to increase the
target coverage. One challenge is that there is not necessarily
a 1-1 match of a test to its test target, thus dependency links
provide a way to visualize these hitherto hidden dependencies.

As was shown in Figure 7, VR-TestCoverage depicts the
test dependencies of a selected target as a magenta line. When
followed, the associated test cases can be seen in the test suite
(Figure 10) and can be followed to the most granular level of
the test case (Figure 11). Unassociated tests are then not
opaque.

Figure 10. Links followed to dependent test cases.

Figure 11. Bottom view showing dependent test cases and pass rate.

As shown in Figure 12, the VR-Tablet can be used to
inspect test report details about a selected test object, here
showing the test method
(CanCompareForEqualityWithNormalizedUnits), test data

input values (miles: 1, kilometers: 1.609344), and test status
(success).

Figure 12. VR-Tablet showing test case details.

These links can be followed to the test target plane to
determine what a selected test is directly reaching (Figure 13).

Figure 13. Dependent target areas remain opaque when a test element is
selected.

Figure 14. All test dependencies shown (by toggling selection).

By unselecting a test element, all dependencies are shown
again with all test elements opaque, as can be seen in Figure
14. Thus, one can follow overall groups or determine that
certain tests are perhaps prepared and not (as yet) linked or
related to the test target, since no dependencies to the target
are shown. This could occur if tests are written before the
production code has been implemented, which can be
expected, for instance when applying test-driven techniques.
Alternatively, this could be an indicator of a test suite and test
target mismatch, perhaps if the production code was
significantly changed without making associated changes to
the test suite.

VI. CONCLUSION
VR-TestCoverage contributes an immersive test coverage

experience for visually depicting and navigating both tests and
test targets in VR. Our solution concept visualizes the system
under test (production code or test target) on a plane using a
tree map with a step pyramid paradigm. The test suite is
analogously depicted above it and the dependency links
shown. Although the solution concept is generalized, to
demonstrate its feasibility, we implemented the VR prototype
with .NET technologies. The solution concept was then
evaluated using our prototype based on a case study involving
three scenarios: test coverage, test results, and test
dependencies. The evaluation results showed that all three
scenarios are supported by our solution concept and its
realization. Immersion provides a different experience for the
user in how to experience such coverage metrics and reports,
and can enhance and provide a motivational aspect to the
testing process in general. For the dilemma of sufficient
testing, the insights from VR-TestCoverage can help
developers determine areas that have been neglected in
testing, or at least to be aware of those areas if they are
intentionally out of scope for testing at the timepoint.

Future work includes evaluation with various code
projects, supporting various snapshots and coverage
difference / variance analysis, supporting a generic coverage
report format, support for directly invoking and changing tests
within VR, supporting additional programming languages and
tool reports, including additional visual constructs, integrating
additional metric and tooling capabilities, and conducting a
comprehensive empirical study.

ACKNOWLEDGMENT
The authors would like to thank Lukas Tobias Westhäußer

for his assistance with the design, implementation, and
evaluation.

REFERENCES
[1] C. Metz, “Google Is 2 Billion Lines of Code—And It’s All in

One Place,” 2015. [Online]. Available from:
http://www.wired.com/2015/09/ google-2-billion-lines-
codeand-one-place/ 2022.07.25

[2] Evans Data Corporation. [Online]. Available from:
https://evansdata.com/press/viewRelease.php?pressID=293
2022.07.25

[3] “Software Engineering — Guide to the software engineering
body of knowledge (SWEBOK),” ISO/IEC TR 19759:2015,
2015.

[4] "ISO/IEC/IEEE International Standard - Software and systems
engineering--Software testing--Part 4: Test techniques,"
ISO/IEC/IEEE 29119-4:2015, 2015, doi:
10.1109/IEEESTD.2015.7346375

[5] L. Inozemtseva and R. Holmes, “Coverage is not strongly
correlated with test suite effectiveness,” Proc. 36th Int’l Conf.
on Software Eng. (ICSE 2014), ACM, 2014, pp. 435-445.

[6] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code
coverage at Google,” Proc. 2019 27th ACM Joint Meeting on
European Software Engineering Conf. and Symposium on the
Foundations of Software Eng., ACM, 2019, pp. 955-963.

[7] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran, and D.
Poshyvanyk, “How do Developers Test Android
Applications?,” 2017 IEEE International Conference on

Software Maintenance and Evolution (ICSME), 2017, pp. 613-
622, doi: 10.1109/ICSME.2017.47

[8] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, “How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations,” In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36.

[9] R. Oberhauser, “VR-UML: The unified modeling language in
virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design, Springer, Cham, 2021, pp. 40-58.

[10] R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[11] R. Oberhauser, “VR-Git: Git Repository Visualization and
Immersion in Virtual Reality,” The Seventeenth International
Conference on Software Engineering Advances (ICSEA 2022),
IARIA, 2022. To be published.

[12] J. Vincur, P. Navrat, and I. Polasek, “VR City: Software
analysis in virtual reality environment,” In 2017 IEEE
international conference on software quality, reliability and
security companion (QRS-C), IEEE, 2017, pp. 509-516.

[13] K. Dreef, V. K. Palepu, and J. A. Jones, “Global Overviews of
Granular Test Coverage with Matrix Visualizations,” 2021
Working Conference on Software Visualization (VISSOFT),
2021, pp. 44-54, doi: 10.1109/VISSOFT52517.2021.00014

[14] A. Rahmani, J.L. Min, and A. Maspupah, “An evaluation of
code coverage adequacy in automatic testing using control flow
graph visualization,” In 2020 IEEE 10th Symposium on
Computer Applications & Industrial Electronics (ISCAIE),
IEEE, 2020, pp. 239-244.

[15] F. Pecorelli, G. Di Lillo, F. Palomba, and A. De Lucia,
“VITRuM: A plug-in for the visualization of test-related
metrics,” Proc. Int’l Conf. on Adv. Visual Interfaces (AVI ’20),
ACM, 2020, pp. 1-3, doi: 10.1145/3399715.3399954

[16] K. Alemerien and K. Magel, “Examining the effectiveness of
testing coverage tools: An empirical study,” Int’l J of Software
Engineering and its Applications, 8(5), 2014, pp.139-162.

[17] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, and Y.
Fukazawa, "OCCF: A Framework for Developing Test
Coverage Measurement Tools Supporting Multiple
Programming Languages," 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation,
2013, pp. 422-430, doi: 10.1109/ICST.2013.59

[18] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Shishkov, B. (ed.) BMSD 2019.
LNBIP, vol. 356, Springer, Cham, 2019, pp. 170–187.

[19] R. Oberhauser, “VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality,” International
Conference on Information, Process, and Knowledge
Management (eKNOW 2022), IARIA, 2022, pp. 29-36.

[20] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) BMSD 2018. LNBIP, vol. 319, Springer, Cham, 2018,
pp. 83–97. https://doi.org/10.1007/978-3-319-94214-8_6

[21] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Shishkov B. (eds) Business Modeling and
Software Design. BMSD 2020. LNBIP, vol 391, Springer,
Cham, 2020, pp. 221-239. doi: 10.1007/978-3-030-52306-
0_14

[22] R. Oberhauser, M. Baehre, and P. Sousa, “VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality,” In: Shishkov, B. (eds) Business Modeling
and Software Design. BMSD 2022. LNBIP, vol 453, pp. 122-
140. Springer, Cham. doi:10.1007/978-3-031-11510-3_8

