
VR-Git: Git Repository Visualization and Immersion in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract—The increasing demand for software functionality
necessitates an increasing amount of program source code that
is retained and managed in version control systems, such as Git.
As the number, size, and complexity of Git repositories
increases, so does the number of collaborating developers,
maintainers, and other stakeholders over a repository’s lifetime.
In particular, visual limitations of Git tooling hampers
repository comprehension, analysis, and collaboration across
one or multiple repositories with a larger stakeholder spectrum.
This paper contributes VR-Git, a Virtual Reality (VR) solution
concept for visualizing and interacting with Git repositories in
VR. Our prototype realization shows its feasibility, and our
evaluation results based on a case study show its support for
repository comprehension, analysis, and collaboration via
branch, commit, and multi-repository scenarios.

Keywords – Git; virtual reality; visualization; version control
systems; software configuration management.

I. INTRODUCTION
In this digitalization era, the global demand for software

functionality is increasing across all areas of society, and with
it there is a correlating necessity for storing and managing the
large number of underlying program source code files that
represent the instructions inherent in software. Program
source code is typically stored and managed in repositories
within version control systems, currently the most popular
being Git. Since these repositories are often shared, various
cloud-based service providers offer Git functionality,
including GitHub, BitBucket, and GitLab. GitHub reports
over 305m repositories [1] with over 91m users [2]. Even
within a single company, the source code portfolio can
become very large, as exemplified with the over 2bn Lines Of
Code (LOC) accessed by 25k developers at Google [3]. Over
25m professional software developers worldwide [4] continue
to add source code to private and public repositories.

To gain insights into these code repositories, various
command-line, visual tools, and web interfaces are provided.
Yet, repository analysis can be challenging due to the
potentially large number of files involved, and the added
complexity of branches, commits, and users involved over the
history of a repository. Furthermore, the analysis can be
hampered by the limited visual space available for analysis. It
can be especially difficult for those stakeholders unfamiliar
with a repository, or for collaborating with stakeholders who
may not be developers but have a legitimate interest in the
code development. Possible scenarios include someone
transferred to the development team (ramp-up), joining an

open-source code project, quality assurance activities,
forensic or intellectual property analysis, maintenance
activities, defect or resolution tracking, repository fork
analysis, etc.

Virtual Reality (VR) is a mediated visual environment
which is created and then experienced as telepresence by the
perceiver. VR provides an unlimited immersive space for
visualizing and analyzing models and their interrelationships
simultaneously in a 3D spatial structure viewable from
different perspectives. As repository models grow in size and
complexity, an immersive digital environment provides
additional visualization capabilities to comprehend and
analyze code repositories and include and collaborate with a
larger spectrum of stakeholders.

As to our prior work with VR for software engineering,
VR-UML [5] provides VR-based visualization of the Unified
Modeling Language (UML) and VR-SysML [6] for Systems
Modeling Language (SysML) diagrams. This paper
contributes VR-Git, a solution concept for visualizing and
interacting with Git repositories in VR. Our prototype
realization shows its feasibility, and a case-based evaluation
provides insights into its capabilities for repository
comprehension, analysis and collaboration.

The remainder of this paper is structured as follows:
Section 2 discusses related work. In Section 3, the solution
concept is described. Section 4 provides details about the
realization. The evaluation is described in Section 5 and is
followed by a conclusion.

II. RELATED WORK
With regard to VR-based Git visualization, Bjørklund [7]

used a directed acyclic graph visualization in VR using the
Unreal Engine, with a backend using NodeJS, Mongoose, and
ExpressJS, with SQLite used to store data. GitHub Skyline [8]
provides a VR Ready 3D contribution graph as an animated
skyline that can be annotated.

For non-VR based Git visualization, RepoVis [9] provides
a comprehensive visual overview and search facilities using a
2D JavaScript-based web application and Ruby-based
backend with a CouchDB. Githru [10] utilizes graph
reconstruction, clustering, and context-preserving squash
merge to abstract a large-scale commit graph, providing an
interactive summary view of the development history. VisGi
[11] utilizes tagging to aggregate commits for a coarse group
graph, and Sunburst Tree Layout diagrams to visualize group
contents. It is interesting to note that the paper states “showing
all groups at once overloads the available display space,

making any two-dimensional visualization cluttered and
uninformative. The use of an interactive model is important
for clean and focused visualizations.” UrbanIt [12] utilizes an
iPad to support mobile Git visualization aspects, such as an
evolution view. Besides the web-based visualization
interfaces of Git cloud providers, various desktop Git tools,
such as Sourcetree and Gitkracken, provide typical 2D branch
visualizations.

In contrast, VR-Git maps familiar 2D visual Git constructs
and commit content to VR to make its usage relatively
intuitive without training. In contrast to other approaches that
apply clustering, aggregating, merging, metrics, or data
analytics, our concept preserves the chronological sequence of
commits and retains their content details in support of
practical analysis for Software Engineering (SE) tasks. To
reduce visual clutter, detailed informational aspects of an
element of interest can be obtained via the VR-Tablet. By not
storing the data in a database, it avoids issues regarding
storage format, transformation, and synchronization.

III. SOLUTION CONCEPT
Our VR-Git solution concept is shown relative to our other

VR solutions in Figure 1. VR-Git is based on our generalized
VR Modeling Framework (VR-MF) (detailed in [13]). VR-
MF provides a VR-based domain-independent hypermodeling
framework addressing four aspects requiring special attention
when modeling in VR: visualization, navigation, interaction,
and data retrieval. Our VR-SE area includes VR-Git and the
aforementioned VR-UML [5] and VR-SysML [6]. Since
Enterprise Architecture (EA) can encompass SE models and
development and be applicable for collaboration in VR. Our
other VR modeling solutions in the EA area include: VR-EA
[13] for visualizing EA ArchiMate models; VR-ProcessMine
[14] for process mining and analysis; and VR-BPMN [15] for
Business Process Modeling Notation (BPMN) models. VR-
EAT [16] integrates the EA Tool (EAT) Atlas to provide
dynamically-generated EA diagrams, while VR-EA+TCK
[17] integrates Knowledge Management Systems (KMS)
and/or Enterprise Content Management Systems (ECMS).

Figure 1. Conceptual map of our various VR solution concepts.

In support of our view that an immersive VR experience
can be beneficial for a software analysis, Müller et al. [18]
compared VR vs. 2D for a software analysis task, finding that
VR does not significantly decrease comprehension and
analysis time nor significantly improve correctness (although
fewer errors were made). While interaction time was less
efficient, VR improved the user experience, was more

motivating, less demanding, more inventive/innovative, and
more clearly structured.

A. Visualization in VR
A hyperplane is used to intuitively represent and group the

commits related to a repository. Each commit is then
represented by a vertical commit plane. These commit planes
are then sequenced chronologically on the hyperplane as a set
of planes. Since VR space is unlimited, we can thus convey
the sequence of all commits in the repository. Each 2D plane
then represents each file involved in that commit as a tile.
These are then colored to be able to quickly determine what
occurred. Green indicates a file was added, red a file removed,
and blue that a file was modified. On the left side of the
hyperplane, a transparent branch plane (branch perspective)
perpendicular to the hyperplane and the commit planes depicts
branches as an acyclic colored graph to indicate which branch
is involved with a commit. This allows the user to travel down
that side to follow a branch, see to which branch any commit
is related, and to readily detect merges. In accordance, the
commit planes are also slightly offset in height since they dock
to a branch, thus “deeper” or “higher” commits indicate how
close or far they were relatively from the main branch. Via the
anchor, commit planes can be manually collapsed (hidden),
expanded, or moved to, for example, compare one commit
with another side-by-side. In order to view the contents of a
file, when a file tile is selected, a content plane (i.e., code
view) extends above the commit plane to display the file
contents.

B. Navigation in VR
One navigation challenge arising from the immersion VR

offers is supporting intuitive spatial navigation while reducing
potential VR sickness symptoms. Thus, we incorporate two
navigation modes in our solution concept: the default uses
gliding controls for fly-through VR, while teleporting
instantly places the camera at a selected position either via the
VR controls or by selection of a commit in our VR-Tablet.
While teleporting is potentially disconcerting, it may reduce
the likelihood of VR sickness induced by fly-through for those
prone to it.

C. Interaction in VR
As VR interaction has not yet become standardized, in our

concept we support user-element interaction primarily
through VR controllers and a VR-Tablet. The VR-Tablet is
used to provide detailed context-specific element information
based on VR object selection, menu, scrolling, field inputs,
and other inputs. It includes a virtual keyboard for text entry
via laser pointer key selection. As another VR interaction
element, we provide the aforementioned corner anchor sphere
affordance, that supports moving, collapsing / hiding, or
expanding / displaying hyperplanes or commit planes.

IV. REALIZATION
The logical architecture for our VR-Git prototype

realization is shown in Figure 2. Basic visualization,
navigation, and interaction functionality in our VR prototype
is implemented with Unity 2020.3 and the OpenVR XR

VR-SysML
SysML

Enterprise
Models

Enterprise
Views
ATLAS

Blueprints

Archimate
Data Retrieval

Naviga@on

Visualiza@on

Interac@on

KMS ECMS

VR-EAT VR-EA
VR-MF VR-EA+TCK

VR-BPMN
BPMN

Git
VR-Git
VR-SE

UML
VR-UML

VR-ProcessMine

Plugin 1.1.4, shown in the Unity block (top left, blue). Scripts
utilize Libgit2Sharp [19] to access the Git commit history of
one or more repositories from within Unity. To avoid
redundancy, only realization aspects not explicitly mentioned
in the evaluation are described in this section.

Figure 2. VR-Git logical architecture.

An anchor (ball) is placed on one corner of a hyperplane
and is an affordance in order to move or expand/collapse an
entire hyperplane (see Figure 3). The anchors are also placed
at the left bottom corner of all commit planes and colored and
aligned with the branch with which they are associated.

Figure 3. Hyperplane anchor for a repository.

Projects can be selected via the VR-Tablet and provide a
teleporting capability to the hyperplane, as shown in Figure 4.

Figure 4. Project list in VR-Tablet.

Figure 5. Git commit messages in VR-Tablet.

Figure 5 shows a list of Git commit messages including
their commit ID (Secure Hash Algorithm 1 (SHA-1)) and the
date and timestamp in the VR-Tablet. This can also be used to
teleport to a specific commit plane.

V. EVALUATION
The evaluation of our solution concept is based on the

design science method and principles [20], in particular, a
viable artifact, problem relevance, and design evaluation
(utility, quality, efficacy). We use a case study based on
common Git repository comprehension and analysis
scenarios: branch analysis, commit analysis, and multi-
repository analysis. Various Git repositories were used to
evaluate the prototype.

A. Branch Analysis Scenario
To support branch analysis, at the front of the hyperplane

oriented to the left side, an invisible branch graph plane is
rendered perpendicular to the hyperplane and a color-coded
list of all the branches can be seen next to the first commit
plane (see Figure 6). These colored labels can be used for
orientation. By selecting a branch label, the user can be
teleported to the first commit of that branch. The branches
could also be referenced in the VR-Tablet in case one forgets,
and can be used for teleporting as well. We chose to repeat the
branch labels throughout the graph to reduce the textual visual
clutter.

Figure 6. VR-Git branch overview.

The branch perspective of the hyperplane (its left side)
shows a contiguous color-coded graph of the branches as
shown in Figure 7, with commit plane heights offset based on
the branch to which they are associated. This can provide a
quick visual cue as to how relatively close or far the commit
is from the main branch. Figure 8 shows a merge of two
branches.

Figure 7. VR-Git branch tree graph.

3D Environment

Laser Pointer
via Controller

Selec5on
Menu

Structure
Visualiza5on

3D Object
Selec5on

ScriptsAssets

Unity Git

Libgit2Sharp Repository

Repository

Repository

Figure 8. Branch merge.

As a reference, in Figure 9 we see the terminal output in
Git. In comparison, VR-Git provides equivalent branch
information, providing the labels and also using different
branch colors and spatial offsetting to indicate which branch a
commit relates to. To reduce visual clutter, commit messages
are not shown on the planes, but rather the VR-Tablet (Figure
5) includes the commit messages, timestamp, and commit ID
(SHA). Note that the commit ID is also shown at the top of
each commit plane to both differentiate and identify them.

Figure 9. Example Git log terminal output

B. Commit Analysis Scenario
Git commits are a snapshot of a repository. In a typical

commit analysis, a stakeholder is interested in what changed
with a commit, i.e., what files were added, deleted, or
modified. To readily indicate this, as shown in Figure 10, tiles
labeled with the file pathname are placed on the commit plane
to represent changed files, with colors of green representing
files added, blue changed, and red for deleted. In addition, the
number of lines of text are shown at the bottom or a tile, with
positive numbers in green indicating the number of lines
added, and negative red values below it for the lines removed.

Figure 11 shows how commits that affect a large number
of files can be readily determined. This can be helpful in
analysis to quickly hone in on commit with the greatest
impacts.

Figure 12 depicts how VR can visually scale with commits
affecting a very large number of files. As we see, there is no
issue displaying the data, and VR navigation and the VR-
Tablet can be used to analyze the commit further.

Figure 10. Commit files added (green), changed (blue), deleted (red);
number of lines affected indicated in each tile at the bottom.

Figure 11. VR-Git showing commits affecting a large number of files.

Figure 12. VR-Git commit visual scaling example for a very large file set.

Figure 13. Code View: collapsed and scrollable (left) and expanded (right).

By selecting a specific tile (file), a file contents plane (i.e.,
code view), shown in Figure 13, pops up above the plane
displaying the contents of that file for that commit. Since file
contents can be too lengthy and wide for practical depiction in
our VR-Tablet, we chose to display the plane above the
commit plane, providing a clear association. The contents are
initially scrollable, and can be expanded with the plus icon to
show the entire file contents if desired. Since VR is not
limited, one can navigate by moving the VR camera to any
part of the code plane to see the code there.

C. Multi-Repository Analysis Scenario
To support multiple repository analysis, hyperplanes are

used to represent each separate repository. Via the anchors,
these can be placed where appropriate for the user. Figure 14
shows how branch and commit comparisons can be made
from the branch perspective, with visual cues being offered by
the tiles. Here, one can see how the branches developed with
their commits.

On the other hand, Figure 15 shows a larger visual
depiction of three repositories and readily indicates which
ones involved more commits, and via the extended commit
planes where large commits were involved.

D. Discussion
In summary, the evaluation showed that these primary

comprehension and analysis scenarios were supported by the
solution concept and our prototype. Branch comprehension
and analysis were supported via the branch plane. Commit
comprehension and analysis were supported via the commit
planes, which readily showed the number of files involved in
a commit (based on the number of tiles) and via their color if
they were added, removed, or changed. The metrics in each
tile show the number of lines affected. Multi-repository
analysis showed the potential of VR to display and compare
multiple repositories, where the limitless space can be used to
readily focus and hone-in on the areas of interest or
differences between repositories. This type of visual,
immersive multi-repository analysis could support fork
analysis, intellectual property analysis and tracking, forensic
analysis, etc.

VI. CONCLUSION
VR-Git contributes an immersive software repository

experience for visually depicting and navigating repositories
in VR. It provides a convenient way for stakeholders who may
not be developers yet have a legitimate interest in the code
development to collaborate. This can further the onboarding
of maintenance or quality assurance personnel. The solution
concept was described and a VR prototype demonstrated its
feasibility. Based on our VR hyperplane principle,
repositories are enhanced with 3D depth and color. Interaction
is supported via a virtual tablet and keyboard. The unlimited
space in VR facilitates the depiction and visual navigation of
large repositories, while relations within and between
artifacts, groups, and versions can be analyzed. Furthermore,
in VR additional related repositories or models can be
visualized and analyzed simultaneously and benefit more
complex collaboration and comprehension. The sensory

immersion of VR can support task focus during
comprehension and increase enjoyment, while limiting the
visual distractions that typical 2D display surroundings incur.
The solution concept was evaluated with our prototype using
a case study based on typical Git comprehension and analysis
scenarios: branch analysis, commit analysis, and multi-
repository analysis. The results indicate that VR-Git can
support these analysis scenarios and thus provide an
immersive collaborative environment to involve and include
a larger stakeholder spectrum in understanding Git repository
development.

Future work includes support for directly invoking and
utilizing Git within VR, including further visual constructs,
integrating additional informational and tooling capabilities,
and conducting a comprehensive empirical study.

ACKNOWLEDGMENT
The authors would like to thank Jason Farkas and Marie

Bähre for their assistance with the design, implementation,
and evaluation.

REFERENCES
[1] GitHub repositories [Online]. Available from:

https://web.archive.org/web/20220509204719/https://github.c
om/search 2022.07.25

[2] GitHub users [Online]. Available from:
https://web.archive.org/web/20220529205506/https://github.c
om/search 2022.07.25

[3] C. Metz, “Google Is 2 Billion Lines of Code—And It’s All in
One Place,” 2015. [Online]. Available from:
http://www.wired.com/2015/09/ google-2-billion-lines-
codeand-one-place/ 2022.07.25

[4] Evans Data Corporation. [Online]. Available from:
https://evansdata.com/press/viewRelease.php?pressID=293
2022.07.25

[5] R. Oberhauser, “VR-UML: The unified modeling language in
virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design, Springer, Cham, 2021, pp. 40-58.

[6] R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[7] H. Bjørklund, “Visualisation of Git in Virtual Reality,”
Master's thesis, NTNU, 2017.

[8] GitHub Skyline [Online]. Available from:
https://skyline.github.com 2022.07.25

[9] J. Feiner and K. Andrews, “Repovis: Visual overviews and
full-text search in software repositories,” In: 2018 IEEE
Working Conference on Software Visualization (VISSOFT),
IEEE, 2018, pp. 1-11.

[10] Y. Kim et al., “Githru: Visual analytics for understanding
software development history through git metadata analysis,”
IEEE Transactions on Visualization and Computer Graphics,
27(2), IEEE, 2020, pp.656-666.

[11] S. Elsen, “VisGi: Visualizing git branches,” In 2013 First IEEE
Working Conference on Software Visualization, IEEE, 2013,
pp. 1-4.

[12] A. Ciani, R. Minelli, A. Mocci, and M. Lanza, “UrbanIt:
Visualizing repositories everywhere,” In 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2015, pp. 324-326.

[13] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Shishkov, B. (ed.) BMSD 2019.
LNBIP, vol. 356, Springer, Cham, 2019, pp. 170–187.

[14] R. Oberhauser, “VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality,” The Fourteenth
International Conference on Information, Process, and
Knowledge Management (eKNOW 2022), IARIA, 2022, pp.
29-36.

[15] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) BMSD 2018. LNBIP, vol. 319, Springer, Cham, 2018,
pp. 83–97. https://doi.org/10.1007/978-3-319-94214-8_6

[16] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Shishkov B. (eds) Business Modeling and
Software Design. BMSD 2020. LNBIP, vol 391, Springer,

Cham, 2020, pp. 221-239. https://doi.org/10.1007/978-3-030-
52306-0_14

[17] R. Oberhauser, M. Baehre, and P. Sousa, “VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality,” In: Shishkov, B. (eds) Business Modeling
and Software Design. BMSD 2022. Lecture Notes in Business
Information Processing, vol 453, pp. 122-140. Springer, Cham.
https://doi.org/10.1007/978-3-031-11510-3_8

[18] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, "How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations," In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36

[19] Libgit2Sharp. [Online]. Available from:
https://github.com/libgit2/libgit2sharp 2022.07.25

[20] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105

Figure 14. Dual repository comparison with a branch focus.

Figure 15. Multiple repositories from a wide perspective.

