
A Hybrid Graph Analysis and Machine Learning Approach Towards Automatic
Software Design Pattern Recognition Across Multiple Programming Languages

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract—The volume of program source code created, reused,
and maintained worldwide is rapidly increasing, yet code
comprehension remains a limiting productivity factor. For
developers and maintainers, well known common software
design patterns and the abstractions they offer can help support
program comprehension. However, manual pattern
documentation techniques in code and code-related assets such
as comments, documents, or models are not necessarily
consistent or dependable and are cost-prohibitive. To address
this situation, we propose the Hybrid Design Pattern Detection
(HyDPD), a generalized approach for detecting patterns that is
programming-language-agnostic and combines graph analysis
(GA) and Machine Learning (ML) to automate the detection of
design patterns via source code analysis. Our realization
demonstrates its feasibility. An evaluation compared each
technique and their combination for three common patterns
across a set of 75 single pattern Java and C# public sample
pattern projects. The GA component was also used to detect the
23 Gang of Four design patterns across 258 sample C# and Java
projects as well as in a large Java project. Performance and
scalability were measured. The results show the advantages and
potential of a hybrid approach for combining GA with artificial
neural networks (ANN) for automated design pattern detection,
providing compensating advantages such as reduced false
negatives and improved F1 scores.

Keywords—software design pattern detection; machine
learning; artificial neural networks; graph analysis; software
engineering.

I. INTRODUCTION
This paper extends our previous work on automatic design

pattern detection (DPD) [1].
A major digitalization transformation is underway

throughout industry and society [2], dependent on increasing
amounts of software to drive it. For instance, Google is said to
have at least 2bn lines of code (LOC) accessed by over 25K
developers [3], and GitHub currently reports over 200m
repositories and 73m developers [4]. It has been estimated that
worldwide well over a trillion LOC exist [5] with 111b lines
of new software code created annually [6]. This is exacerbated
by a limited supply of programmers and high employee
turnover rates for software companies, e.g., 1.1 years at
Google [7]. Furthermore, the high degree of utilization in live
business operations creates additional time pressure and stress
for rapid turnaround, development or maintenance cycles, or
deployment times.

The economics of rapidly growing codebases, code
longevity, and high turnover make program development and

maintenance challenging programmers (herewith including
maintainers) especially with regard to fast program
comprehension and understanding of (legacy) codebases.
Given limited resources and such a vast amount of code,
~75% of technical software workers are estimated to be doing
maintenance [8]. Moreover, program comprehension may
consume up to 70% of the software engineering effort [9].
Activities involving program comprehension include
investigating functionality, internal structures, dependencies,
run-time interactions, execution patterns, and program
utilization; adding or modifying functionality; assessing the
design quality; and domain understanding of the system [10].
Code that is not properly understood by programmers impacts
efficiency and reduces quality.

For program comprehension, experts tend to develop
efficiently organized specialized schemas or abstractions that
contribute to efficient problem and system decomposition and
comprehension, and macrostructures (or chunks) and beacons
(or cues) being important elements in cognition mental
models [11]. In the area of software engineering, software
design patterns have been well-documented and popularized,
including the Gang of Four (GoF) [12] and POSA [13]. The
application of abstracted and documented solutions to
recurring software design problems has been a boon to
improving software design quality and efficiency.
Discovering such common macrostructures or associated
pattern terminology in code can serve as beacons to such
abstracted macrostructures and may help identify aspects such
as the author's intention or purpose.

However, the actual detection and post-coding
documentation of these software design patterns remain a
challenge. As design patterns have mostly been described
informally, their implementation can vary widely, depending
on various factors such as the programming language, the
natural language and keywords used, the concrete pattern
structure, the terminology awareness of the programmer, their
experience, and their understanding and (mis)interpretation.
Furthermore, the pattern books referenced above were
published over 25 years ago and not standardized with regular
updates. Pattern variants may occur and patterns may evolve
over time with technology. Additionally, the manual
documentation of software design patterns usage in project
documents such as the architecture specification may not be
dependable due to inconsistencies with the codebase, e.g.,
prescriptive documentation of intentions, adaptations during
development, or maintenance changes. Determining actual
pattern usage can be beneficial for identifying which patterns

are used where and can help avoid unintended pattern
degradation and associated technical debt and quality issues.
However, the investment necessary for manual pattern
extraction, recovery, and archeology is cost prohibitive and
not sustainable due to the high design competency and labor-
intensive code analysis effort required, especially in light of
the aforementioned codebase sizes and high turnover. Prechelt
et al. [14] come to the conclusion that explicit identification
of patterns in code (here via manually place pattern comment
lines) facilitate faster and less error-prone maintenance tasks.

In source code, patterns may not be explicitly mentioned
or commented at all, or they might be or inconsistently or
incorrectly mentioned. Semantic issues due to various natural
languages and naming differences may also cause beacons or
keywords to differ. Since in our context we assume access to
source code, intentional obfuscation via a tool is unlikely, but
unintentional obfuscation is possible. One way to nevertheless
explicitly identify patterns in code would be automated
detection via a tool. Yet automated detection and extraction of
software design patterns from code is not readily available
among popular software development tools. Various research
work has attempted to find automated techniques, yet these
often fail to recognize or address coverage of all of the basic
23 GoF patterns and rather emphasizing certain design
patterns, or were not evaluated on a larger code base. They
conclude by suggesting that a combination of techniques
might be promising research approach.

In our previous work DPDML (Design Pattern Detection
using Machine Learning) [1], we showed the feasibility of our
cross-language approach for DPD by realizing the ML core of
our approach. Our evaluation using 75 unique Java and C#
code projects for training and testing to detect three different
types of GoF patterns (creational, structural, and behavioral)
provided insights into its potential and limitations. It
necessitated finding sufficient training sets (sample projects)
for each pattern, and our realization, while combining metrics
and semantic analysis, relied on a single technique, namely
ML.

This paper contributes our hybrid automated design
pattern detection approach called Hybrid Design Pattern
Detection (HyDPD) supporting multiple programming
languages and amalgamating GA with ML to utilize the
advantages of both techniques while decreasing their
liabilities. Our realization of the solution approach shows its
feasibility. An evaluation compared each technique and their
combination for three common patterns across a set of 75
single-pattern Java and C# public sample pattern projects.
Furthermore, to provide insights into its potential and
limitations, the GA component was applied on 23 GoF design
patterns across 258 sample C# and Java projects, as well as a
larger Java project (JUnit).

The structure of this paper is as follows: the following
section discusses related work. Section 3 describes our
solution approach. In Section 4, our realization is presented,
which is followed by our evaluation in Section 5. Thereafter,
a conclusion is provided.

II. RELATED WORK
Various approaches have been used for software design

pattern detection, and they can be categorized based on
different analysis styles, such as structural, behavioral, or
semantic (and some utilizing a combination of styles) [15].
Structural analysis utilizes static DPD based on inter-class
dependencies, data types, and method invocations found in
code. Behavioral analysis extracts behavior via static and/or
dynamic analysis techniques, since structure alone may not
suffice to differentiate patterns. Semantic analysis utilizes
naming and annotations to distinguish patterns. Another
categorization option is to group by detection methodologies
or techniques (learning-based, graph-based, metric-based,
etc). As a consequence, some work may fall into multiple
categories.

Graph-based approaches include: Yu et al. [16] that
reverse engineer code to UML class diagrams and from XMI
parse and analyze sub-patterns with class-relationship
directed graphs. Mayvan and Rasoolzadegan [17] use a UML
semantic graph. Bernardi et al. [18] apply a DSL-driven graph
matching approach. DesPaD [19] extract the abstract syntax
tree from the code, create a single large graph model of a
project, and then apply an isomorphic sub-graph search
method using the Subdue tool. Further isomorphic subgraph
approaches include Pande et al. [20] and Pradhan et al. [21],
both of which begin with UML class diagrams.

Learning-based approaches map the DPD problem to a
learning problem, and can involve classification, decision
trees, feature maps or vectors, Artificial Neural Networks
(ANNs), Convolutional Neural Networks (CNNs), Support
Vector Machines (SVMs), etc. Examples include Alhusain et
al. [22], Zanoni et al. [23], Galli et al. [24], Ferenc et al. [25],
Uchiyama et al. [26][27], and Dwivedi et al. [28]. Thaller et
al. [29] describe a micro-structure-based structural analysis
approach based on feature maps. Chihada et al. [30] convert
code to class diagrams, which are then transformed to graphs,
and have experts create feature vectors for each role based on
object-oriented metrics and then apply ML.

Additional approaches include: reasoning-based
approaches such as Wang et al. [31] that is based on matrices.
Examples of fuzzy logic approaches include Alhusain et al.
[32] and Hussain et al. [33]. Examples of rule-based
approaches include Sempatrec [34] and FiG [35], which uses
an ontology representation. Metric-based approaches include
MAPeD [36], PTIDEJ [37], Uchiyama et al. [26][27], and
Dwivedi et al. [28]. Fontana et al. [38] analyze microstructures
based on an abstract syntax tree. An example semantic-
analysis style approach is Issaoui et al. [39]. DP-Miner [40]
uses a matrix-based approach based on UML for structural,
behavioral, and semantic analysis.

The DPD styles and methodologies used are quite
fractured and none has reached a mature and high-quality
result with an accessible and executable implementation that
we could evaluate. We are not aware of any approach yet that
can automatically and reliably detect all 23 GoF design
patterns. Most have some limitation or drawback, and the
success rate reported among the approaches varies
tremendously. Thus, further investigation and research in this

area is essential to enhancing the knowledge surrounding this
area. In contrast to the aforementioned work, our HyDPD
solution offers a hybrid code-centric approach combining
various promising structural, behavioral, and semantic
analysis techniques to leverage the strengths of each. In
contrast to others, it supports multiple popular programming
languages. With HyDPD we show the advantages of
combining GA, ML, metrics, and semantic analysis.

III. SOLUTION
Of all available artifacts for DPD, source code represents

the reality rather than the intention, and should be readily
available, whereas other pattern information (binaries may not
build, and runtime instrumentation, UML models, or
documentation may not exist). Furthermore, as UML
diagrams can be generated by tools from the source code, the
underlying data they utilize is also available in the source
code. As shown in Figure 1, our solution approach thus begins
with source code as the input and is based on the following
principles:

Figure 1. The HyDPD solution concept.

Programming language-independent: since patterns are
independent of programming language, our solution abstracts
the source code by converting it into an abstracted common
format for further processing. For this, our realization
currently utilizes srcML [41], which provides an XML-based
format, currently supporting C, C++, Java, and C#. If other
abstract syntax formats are standardized and available for
analysis in a common format, these also can be considered.

Semantic analysis: common pattern signal words in the
source code can be used as an indicator or hint for specific
pattern usage. Additional natural languages can be supported
to detect usage of pattern names or their constituent
components in case they were coded in other languages. Our
realization supports German, Russian, and French.

Static code metrics extraction: various static code metrics
are utilized to detect and differentiate design patterns. The
value ranges of metrics are normalized to a scale of 0-1 for
utilization with an ANN.

ML model: in utilizing ML to analyze sample data, a
model can learn how to classify new unknown data, in our
case to differentiate design patterns. Our realization may
apply or combine any ML model that suits the situation.
Currently, an ANN is used because we were interested in
investigating its performance, and intend in future work to
detect a wide pattern scope, pattern variants, and new patterns.
From our standpoint, alternative non-ML methods such as
creating a rule-based system by hand would require labor and
expertise as the number of patterns increases and new
undiscovered patterns should be detected. With an appropriate
ML model, these should be learned automatically and be more
readily detected. Challenges include appropriate slicing of the
codebase for appropriate metrics and pattern comparison, and

finding suitable and large enough training datasets for each
pattern.

Graph-based structural analysis: the XML-based code
representation is converted to a BSON (Binary JSON) format
and stored in a graph database to support graph-based
structural analysis. In contrast to ML, the advantages include
the ability to apply graph queries across an entire codebase
and not requiring any training data. Liabilities include the
need for hand-crafted detection queries that are not too
specific (thus overlooking many with only slight variations)
nor too general or ambiguous to be of practical use
(identifying too many false positives).

The underlying hypothesis driving our HyDPD
investigation is that amalgamating additional data and metrics
in combination with various analysis techniques such as graph
and ML models results in better classification accuracy
compared to any single technique or metric alone. From a
practicality standpoint, our approach could reduce the labor
involved in detecting and documenting patterns compared to
finding potential patterns manually by perusing code and
accurately classifying them (e.g., for assessing or modernizing
an unfamiliar legacy system), and can assist developers,
maintainers, or experts involved in various software
archeology activities.

IV. REALIZATION
The realization of the HyDPD approach consists of two

main components: HyDPD-ML that applies the ML technique
and HyDPD-GA that applies the GA technique. Python was
used to implement the prototype due to its versatility and large
selection of available libraries, while a Jupyter Notebook was
used for the DPD user interface.

A. HyDPD-ML
Python was used to implement the prototype due to its

versatility and the available libraries to support the
implementation of ANNs. TensorFlow was chosen along with
Keras as a top-layer API.

For ML, a sufficient dataset of different and realistic
projects was needed to support supervised learning. While
certain pattern examples in code can readily be found, finding
a larger set of different ones in different project settings and
programming languages turns out to encounter various
practical challenges and is labor intensive. Due to resource
and time constraints, our ML realization thus initially focused
on having the network learn to detect one pattern out of each
of three main pattern categories: from the structural category
- Adapter; from the creational patterns -Factory; and from the
behavioral patterns - Observer. Future work will expand the
pattern scope.

Metric-based matching: The ElementTree parser was used
to traverse srcML and count the specific XML-tags. The
metric values were not separated by roles or classes, but are
merged and evaluated as a whole. The metrics used were
inspired by Uchiyama et al. [26] and are shown in Table I.

TABLE I. OVERVIEW OF METRICS

Abbreviation Description
NOC Number of classes
NOF Number of fields
NOSF Number of static fields
NOM Number of methods
NOSM Number of static methods
NOI Number of interfaces
NOAI Number of abstract interfaces

TABLE II. SIGNAL WORDS FOR DESIGN PATTERNS

Pattern Signal Words
Adapter Adapter adaptee target adapt
Factory Factory create implements type
Observer observer state update notify

Semantic-based matching: An obvious approach to pattern

detection is naming. If a developer already used common
design pattern terminology in the code, then this should be
utilized as a pattern detection indicator. For our signal word
detection, we translated the signal words to German, French,
and Russian to improve results for non-English code.

Semantic variations: To determine if other signal words
beyond the design pattern name were used in
implementations, we analyzed several examples of
implemented design patterns. 12 additional signal words were
selected, four for each pattern as shown in Table II.

Internationalization: To test internationalization, the
Python library translate was used to translate the signal words
to German, French, and Russian. Rather than extending the
list of metrics passed to the ANN, a match with a translated
word is counted in the same input parameter as the original
English words. Applying Natural Language Processing (NLP)
to reduce words by stemming or creating lemmas to compare
to a defined word list would also be possible, and may
improve or deteriorate the results, if for instance the input
array contained further zeros when no signal words were
found.

ANN: Based on our realization scope, since the input array
is not multidimensional, deep neural networks (DNNs) with
additional layers would not necessarily yield improved
results. We thus chose to realize an Artificial Neural Network
(ANN) with one input layer, two hidden layers, and one output
layer as shown in Figure 2. We created the network with the
Keras API with the TensorFlow Python library.

The input layer size matches the data points, and as there
are 7 metrics and 12 semantic match values, this makes 19
input values total. The input model structure is a numpy array
as follows:
[NOC, NOF, NOSF, NOM, NOSM, NOI, NOAI, ASW1,
ASW2, ASW3, ASW4, FSW1, FSW2, FSW3, FSW4,

OSW1, OSW2, OSW3, OSW4]
The first 7 values correspond to Table I while the rest

indicate the number of signal word matches from Table II.
SW=Signal Word, A=Adapter, F=Façade, and O=Observer,
1-4 implies the corresponding table column. Only 7 metric
values are utilized when no signal words exist.

Figure 2. ANN model overview created with Keras.

The first hidden layer is a dense layer (with each neuron
fully connected to the neurons in the prior layer) consisting of
32 neurons. The activation function was a rectified linear unit
(ReLU). The second layer is a dense layer with 16 neurons.
This conforms with the general guideline to gradually
decrease the neurons as one approaches the output layer. The
output layer consists of three neurons to match the three
design patterns that should be detected. The "Softmax"
activation method is used, which is often used in classification
problems and supports identifying the confidence of the
network in its decision. The "Adam" algorithm is a universal
optimizer that is recommended in a wide assortment of papers
and guides. As no specialized optimizer was needed, "Adam"
with its default values was chosen as defined in [42]. No
regularization was applied in each layer. Adam automatically
adjusts and optimizes the learning rate. Sparse categorical
cross entropy was applied as the loss function for this multi-
class classification task.

The size of the ANN should fit the size of the problem.
Small adjustments to the ANN structure showed no significant
performance impact, whereas significantly increasing the
neuron count or layer count negatively impacted results. With
two hidden layers and 48 neurons, the first layer contains 640
parameters, the second layer 528, and the output layer 51,
resulting in 1219 parameters that are adjusted during training.

The network is trained in epochs, wherein the complete
training set is sent through the network with weights adjusted.
As the weights and metrics change per epoch, an early-
stopping callback stops the training if the accuracy of the
network decreases over more than 10 epochs, saving the
network that had the best accuracy. A validation dataset is
typically used during training to monitor results on unlearned
data after each epoch, but as our training set was limited, we
used a prepared testing dataset with known labels.

1) Training Datasets

As to possible design pattern training sets, the Pattern-like
Micro-Architecture Repository (P-MARt) includes a
collection of microstructures found in different repositories
such as Jhotdraw and JUnit. However, because these patterns
are intertwined with each other, they do not provide isolated
example specimens for training the ANN. The Perceptrons

Reuse Repositories could theoretically provide many
instances of design patterns for a training dataset, but no
results were provided on the website during the timeframe of
our realization, and while the source code analyzer is free, the
servers could not be reached.

We did manage to find training data as detailed in the next
section. Since our initial intent for HyDPD was a much
broader scope for data pattern mining, and because we
expected a large supply of sample data, we focused on an
ANN realization. We were also interested in determining if we
could train an ANN to detect these patterns with relatively few
samples. However, due to unexpected additional resource and
time constraints involved in finding pattern samples manually,
we had to reduce the number of design patterns involved, and
could not compare the ANN with alternative classification
schemes such as Naïve Bayes, Decision Tree, Logistic
Regression, and SVMs, but intend to in future work.

B. HyDPD-GA
For the GA realization, the srcML is converted to BSON

and stored in MongoDB. A Neo4j Cypher procedure is then
used to import the BSON from MongoDB into the Neo4j
database. OPTIONAL MATCH is used to permit variations of
patterns to be in the result set, while missing entities are
notated with None. The result set is provided as a
Dataframe structure. Figure 3 shows the Python classes
used for the implementation. Not all methods in the Python
project are depicted in the diagram. Some methods have been
defined in the scope of view of the class methods. They are
only used within the framework of the respective method and
serve to improve the readability of the code. For example, the
method resolve_names in the ResolveJsonTypes
class contains another 24 methods.

The FileStorage class is required to create the folders
in advance in which the intermediate results of program
execution are stored. All classes other than DPDetector use
the Settings class to query the values of the current
configuration parameters (e.B. Uniform Resource Locator
(URL) of the MongoDB). The SrcmlDriver class is used
to convert the code project into the srcML XML
representation. The SrcmlJsonConverterMulti class
is used to detect whether the specified code project was
written in Java or C#. Depending on this, either the class
SrcmlJsonConverterForCSharp or
SrcmlJsonConverterForJava is used to convert the
XML representation of the project to JSON. Both classes
inherit from the abstract class SrcmlJsonConverter,
which contains shared functionality. In addition, the
SrcmlJsonConverter class interacts with the
ResolveJsonTypes, which undertakes part of the
conversion process. In addition, all classes (except
ResolveJsonTypes) use the SrcmlUtil class, which
supports parsing the XML representation of the project. The
TypesNeo class interacts with the TypesMongo class to
import a specific project from MongoDB into the Neo4j
database. The DPDetector class uses the TypesNeo class
when executing the DPD queries on the Neo4j database.

Figure 3. HyDPD-GA Python classes (partial view).

For each parsed class, the full class name, available
imported entities, and inheritance from other classes and
interfaces are extracted. A flag indicates whether the
respective class is abstract. For each attribute, the type, name,
and two flags are used for indicating a static attribute or if it
involves a collection. The parsed class contains a collection of
methods with their implementation, abstract methods,
constructors, and getter/setter methods taken into account. For
each method, the following data is extracted:

- method name;
- static flag;
- abstract flag;
- constructor flag;
- return type;
- flag whether the method is accessible outside its class;
- method arguments;
- declared variables including name, type, and collection

flag;
- type assigned when a variable was initialized; and
- names of other methods called from this method.
After all relevant information has been extracted and

stored in the form of the JSON object in the types attribute,
the second stage of processing takes place. This consists in
resolving the name via all possible types and methods. For
this, the static class ResolveJsonTypes or its method
resolve_names is utilized. All possible types refers to the

inherited classes, class attributes, method variables, method
arguments, and the type a method returns. Resolving methods
considers the methods that are called as well as the methods
that are used for initialization, and is based on the imported
entities, the attributes and methods of existing and inherited
classes, and the local variables. Moreover, the relationship of
overriding a parent method via a method in the class being
analyzed is included. In addition, the attributes and methods
of the parent class are added to the inheriting class.

The method is then executed transform_types to
convert the obtained JSON format to the mongoDB BSON
format. The result is returned by the convertToJson
method in the SrcmlJsonConterverMulti class. To
store the BSON object in MongoDB, a new object of the
TypesMongo class is instantiated. It then calls the method
transformed_types and passes the BSON object as
input to that method. Finally, the code project is saved in
BSON format in MongoDB.

The class DPDetector performs pattern recognition.
The method dpd_on_one_testcase in this class
removes any preexisting Neo4j entities and searches for a
single pattern in the specified project. It instantiates a new
object of the class TypesNeo, importing the corresponding
collection from MongoDB into the Neo4j database using a
Cypher query. The detect_pattern method uses a
Cypher query to search for a designated design pattern. If
matches with the query exist, the result records are grouped
by the main participant of the pattern, and the correctness of
the match is calculated as a proportion of the matching nodes
relative to the total number of nodes searched for (e.g., 0.70
would indicate a 70% query match). The resulting records are
then returned as a DataFrame.

An example Cypher query for the Chain of Responsibility
(CoR) pattern is shown in Figure 4. First, the type handler
is defined that has two methods: handle_op and set_op.
The set_op has at least one argument of type handler.
Furthermore, two types c_handler and c_handler2
that inherit from the handler are defined. In addition, both
classes must have a handler attribute and a method that
overrides the parent class's method.

There should also be a client type with a method
client_op. The client_op method should call either
handle_op or c_handle_op. In the following, negative
conditions are defined that further refine the query and
distinguish it from other patterns. The client type cannot
inherit from the handler type. The type
clientc_handler and c_handler2 must not have a
collection of the type handler.

The Cypher query for each pattern was tuned as follows:
For each pattern, a test dataset of at least six Java and C#
examples from an internet search of GitHub and other sources
was used to tune the Cypher query in such a way that it detects
the expected pattern (true positives or TPs). In case it did not,
the code was analyzed to determine the underlying cause and,
if possible, the query or, if appropriate due to a faulty
implementation of the pattern, the code adjusted until it is
detected. If not, the underlying cause was identified; reasons

included for instance 1) a non-compliant application of the
pattern that violate core structural rules of the pattern
(intentionally or unintentionally due to an author's
misunderstanding), 2) referencing external classes (missing)
that were not contained in the source code and required to
fulfill the pattern, 3) the use of functional programming
constructs.

Figure 4. Cypher query for the Chain of Responsibility pattern.

Thereafter, each query was executed on all 22 other
patterns to determine what should not belong to the query
result with regard to FPs. If a positive in an unexpected pattern
was detected, it was analyzed to determine if 1) the query must
be further tuned, 2) something in the target code example is
inappropriate (abstract method, a participant is not allowed in
an inheritance hierarchy, optional pattern elements), etc.

An example excerpt from the result output of a Jupyter
Notebook is shown in Figure 5.

Figure 5. Example Jupyter Notebook result output excerpt.

C. HyDPD
To enhance DPD, the HyDPD realization combines both

HyDPD-ML and HyDPD-GA components, with each
component supplying a probability P as shown in (1) about
the likelihood of a certain pattern being detected, where w is
the weighting. w is currently equal and set to 0.5 until further
empirical insights are gathered as to which approach is
typically more accurate.

 R = wML *RML + wGA *RGA (1)

Weight Tailoring: The weightings can be tailored across
all patterns or on a per pattern basis, for instance based on
empirical accuracy rates if one technique is determined to
have better accuracy for a specific design pattern.

V. EVALUATION
Since the primary contribution in this paper is the new GA

component and its hybrid combination with ML, this
evaluation focused primarily on investigating the potential of
GA and its utilization in combination with ML. Our research
questions (RQs) are adjusted to the limitations of our
available datasets and time and resources.

The first three RQs utilize three common GoF patterns for
analyzing and comparing the HyDPD components and the
hybrid approach, since HyDPD-ML requires larger pattern-
specific datasets for training:
RQ1. How does HyDPD-ML perform against three common

GoF patterns?
RQ2. How does HyDPD-GA perform against three common

GoF patterns, and how does it compare with HyDPD-
ML?

RQ3. How does the hybrid HyDPD perform against three
common GoF patterns, and how does it compare with
HyDPD-ML and HyDPD-GA?

The next four RQs focus on analyzing HyDPD-GA's
capabilities:
RQ4. Can HyDPD-GA detect more abstract architectural

patterns, in particular the Model-View-Controller
(MVC) pattern?

RQ5. How does HyDPD-GA perform against the 23 GoF
patterns and in comparison to related work?

RQ6. How does HyDPD-GA and HyDPD-ML perform
against a large project in comparison to related work?

RQ7. What performance latency and scalability can one
expect with using HyDPD-GA and how does it
compare with HyDPD-ML?

The evaluation consisted of seven parts, each addressing a
research question: A) HyDPD-ML with three common design
patterns, B) HyDPD-GA with three common design patterns,
C) hybrid HyDPD with the same patterns, D) HyDPD-GA to
probe its ability with an architecture pattern: MVC, E)
HyDPD-GA across all 23 GoF patterns, and F) HyDPD-GA
performance latency and scalability

The software configuration used in the evaluation
consisted of srcML v1.0, Python 3.8, MongoDB v4, and
Neo4j 4.2. Python libraries included: simplejson 3.17.4,
pymongo 3.12.0, neo4j 4.2.0, tensorflow 2.6.0, googletrans

3.1.0a0, scikit-learn 0.24.2, keras 2.6.0, beautifulsoup4 4.9.3,
numpy 1.19.5, matplotlib 3.4.3, conda 4.10.3, dpd 0.0.1,
dpdml 0.0.1, scipy 1.7.1, pip 21.2.4, pandas 1.3.2, jupyter-
client 6.1.12, jupyter-core 4.7.1, jupyter-server 1.10.2. The
hardware configuration consisted of a PC with an i5-
10210U@1.6GHz CPU, 8GB RAM, 1TB SSD running W10
Home. Docker v20.10.8 was used to containerize the services:
jupyter-notebook, neo4j, mongo, and mongo-gui.

Dirty datasets: While it would be feasible to only involve
both pure training and pure test datasets (manually removing
or fixing all incorrectly implemented or mislabeled projects)
and thus boost the accuracy numbers, we instead chose to
include the real-world datasets as they were labeled by the
authors of the projects we found, even though the authors may
have incorrectly implemented or labeled the patterns. Thus,
we intentionally include real-world impurity and our
calculated accuracies reflect this, rather than achieving the
100% accuracy possible had we manually precleaned training
and test datasets.

A. HyDPD-ML Evaluation (Three Patterns)
To address RQ1 and serve as a basis for comparison, the

HyDPD-ML evaluation consisted of three steps: 1) dataset
acquisition, 2) supervised training, and 3) testing.

1) Dataset Acquisition
It remains a challenge to procure sufficient code projects

with implemented pattern datasets in different programming
languages and various patterns for both training and testing an
ANN. Due to resource constraints, we thus focused on three
common patterns from each of the major pattern categories:
from the creational patterns, Factory; from the structural
category, Adapter; and from the behavioral patterns,
Observer. We then found 25 unique single-pattern code
projects per pattern small single-pattern code projects from
public repositories, 49 in Java and 26 in C# (mostly from
github and the rest from pattern book sites, MSDN, etc.),
evenly distributed into as shown in Figure 6. They were
specifically labeled as examples of these patterns and
manually verified. These popular programming languages are
supported by srcML, and the mix of languages permits us to
demonstrate the programming language independent
principle. Language inequalities between available pattern
examples is likely attributable to the popularity and longevity
of a language and interest in patterns in that community.

Training data: Applying hold-out validation, of the 75
projects available, we selected 60 (20 per pattern category) for
training the ANN, with between 60-75% of the code projects
being in Java (green) and the remainder in C# (blue) as shown
in the upper section of Figure 6.

Test data: The remaining 15 projects of the 75 total (five
per pattern category with three in Java and two in C#) were
used for the test dataset. In order to test whether signal word
pattern matching significantly impacts the ANN results, these
projects were duplicated and their signal words removed or
renamed, resulting in six Java (orange) and four C# (purple)
projects per pattern/category as shown in the lower section of
Figure 6. This resulted in 10 test projects per pattern or 30 total
test projects.

Figure 6. Pattern-specific datasets in columns with programming language
specific training sets on the top rows and test sets on the bottom.

2) Supervised Training
As shown in Figure 7, during training the accuracy

improves from 47% to 95% in the first seven epochs,
thereafter fluctuating between 85-95% with a peak of 96.7%
in the 27th epoch. The network loss metrics are shown in
Figure 7. The loss value drops from an initial 1.0841 to 0.2816
in epoch 17 before small fluctuations begin, with the trend
continuing downward. The loss value of 0.1995 in epoch 27
is an adequate prerequisite for detecting patterns in unknown
code projects, and we saw little value in increasing the training
epochs. The early stopping callback was not triggered since
the overall accuracy of the network is still increasing despite
the fluctuations, indicating a positive learning behavior and
implying that with the given data points, it is finding structures
and values that allow it to differentiate the three design
patterns from each other. We thus chose to stop the training at
30 epochs, which took 2-45 seconds depending on the
underlying hardware environment (any Graphical Processing
Unit (GPU) with CUDA support will improve processing
times).

Figure 7. Network accuracy and loss over 30 epochs of training.

Considering that the worst case of random guessing would
result in an accuracy of 33%, the accuracy result of 97% is
significantly better and shows the potential of the approach.

The training results show that not only is the ANN
learning to differentiate the patterns, its confidence for these
determinations increases during the training. By epoch 27
with an accuracy of 96.7% and a loss of 0.1995, only two out
of the 60 total training projects spread evenly across the three
design patterns are incorrectly classified.

3) Testing
For the test dataset, 15 unique code projects were selected

(five unique projects per pattern), and these were then
duplicated and their signal words removed, resulting in 30
code projects. By removing the signal words, we can
determine the degree of dependence of the network on these
signal words.

During testing, the reported accuracy dropped to 83.3%,
meaning 25 of the 30 patterns were correctly identified.
Furthermore, the loss went to 0.4060, meaning a loss in
confidence of its determination. A deterioration in these
values is to be expected when working with unfamiliar data.

The resulting confusion matrix is shown in Table III,
showing that the network was able to use its learned
knowledge in training to correctly classify a majority of
unknown projects (25 out of the 30 test projects). The
precision column indicates how many of the predicted labels
are correct, while the recall row indicates how many true
labels were predicted correctly. Fewer false positives (FPs)
improve the precision, while fewer false negatives (FNs)
improve the recall value. All the code projects predicted to be
Factory were correct (a precision of 100%), while the
remaining 30% of the Factory pattern projects were
incorrectly classified as another pattern, resulting in a recall of
0.70. This indicates that the Factory is more easily confused
with the other patterns, a possible explanation being that the
metrics we used may better differentiate more involved (i.e.,
more complex) patterns. The other patterns had less precision
(0.81 or 0.75), but a better recall of 0.90. The overall accuracy
is 88.9% with an F1 score of 0.83. In one Observer testcase,
HyDPD-ML was evenly split with Factory Method (0.46 vs.
0.46) and thus categorized as a FP.

As to the influence of signal words, our hypothesis that
signal words would improve the results proved hitherto
unfounded. The classification precision was not affected by
signal words, with 12 projects with signal words and 13
without being correctly classified. Additional test runs
showed similar results (+/- one project).

TABLE III. CONFUSION MATRIX: ML TEST 10 PROJECTS PER PATTERN

Predicted
Labels

True Labels Accur. Precision Recall F1 Score
Factory Adapter Observer

Factory 7 0 0 90.0% 1.00 0.70 0.82
Adapter 1 9 1 90.0% 0.81 0.90 0.86
Observer 2 1 9 86.7% 0.75 0.90 0.82
Overall 88.9% 0.83 0.83 0.83

Accur. = Accuracy

TABLE IV. CONFUSION MATRIX: ML CROSS-TESTING 90 PROJECTS

Predicted
Labels

True Labels Accur. Precision Recall F1 Score
Factory Adapter Observer

Factory 24 0 1 92.2% 0.96 0.80 0.87
Adapter 0 24 0 93.3% 1.00 0.80 0.89
Observer 6 6 29 85.6% 0.71 0.97 0.82
Overall 90.7% 0.87 0.86 0.86

Accur. = Accuracy

Since HyDPD-GA requires no training set, and we will be
comparing HyDPD-ML with HyDPD-GA and the
combination as HyDPD, it is pragmatic to utilize the entire

dataset of 90 projects for our testing. Hence, we also applied
ML across the entire dataset (including the training set) to
serve as a reference for comparison and to ensure that DPD
did not get worse when the training set is also used for testing.
This result, which includes the training dataset, is shown in
Table IV, showing that overall accuracy increased to 90.3%,
with precision and recall increasing to 0.86 with an overall F1
score of 0.86.

B. HyDPD-GA Evaluation (Three GoF patterns)
To answer RQ2 and to be able to compare HyDPD-GA

with HyDPD-ML for the three GoF patterns, we utilized the
entire ML dataset (both the training and test data) as the test
dataset at 30 test projects per pattern and 90 total. The results
are shown in Table V-VII below, where for this section we are
focused on the columns HyDPD-GA and its comparison to
HyDPD-ML (the column HyDPD will be discussed in the
following section). The Testcase ID is unique only within a
specific pattern (for internal tracking), so the ID may reoccur
within another pattern and refers to a different test case.

TABLE V. DPD COMPARISON: FACTORY PATTERN

Testcase HyDPD-ML HyDPD-GA HyDPD
1 1.00 0.00 0.50
10 1.00 0.70 0.86
11 1.00 0.70 0.86
12 1.00 1.00 1.00
13 0.98 0.70 0.85
14cs 1.00 1.00 1.00
15cs 1.00 1.00 1.00
16cs 1.00 1.00 1.00
17cs 0.99 0.00 0.49
18 1.00 1.00 1.00
19cs 1.00 1.00 1.00
2 1.00 1.00 1.00
20 0.99 1.00 1.00
21 1.00 0.70 0.86
22 0.04 1.00 0.52
23 0.98 1.00 0.99
24cs 0.99 1.00 0.99
25cs 1.00 1.00 1.00
26 0.02 0.70 0.37
27 0.03 1.00 0.51
28 0.02 1.00 0.51
29cs 0.03 1.00 0.51
3 1.00 0.70 0.86
30cs 0.05 1.00 0.53
4 0.99 0.70 0.85
5 1.00 0.70 0.86
6 0.67 0.70 0.69
7 1.00 0.70 0.86
8 0.86 0.70 0.78
9 0.99 0.70 0.85
FN* 6 2 2

*False Negatives marked in bold above

In applying GA to the test datasets, certain testcases
returned less than the ideal value of 1.0 (e.g., 0.75 would
indicate a partial match and 0 no match). Since GA works
differently than ML and can identify a specific node involved
in a pattern, we can utilize the results to analyze the cause. A
manual analysis found the following explanations for the

discrepancies (non 1.0 values) in the HyDPD-GA column in
Tables V-VII:

TABLE VI. DPD COMPARISON: ADAPTER PATTERN

Testcase HyDPD-ML HyDPD-GA HyDPD
1 0.06 0.75 0.40
10 1.00 1.00 0.87
11 1.00 1.00 1.00
12 1.00 1.00 1.00
13cs 1.00 1.00 1.00
14cs 1.00 1.00 1.00
15cs 1.00 0.75 0.87
16cs 1.00 1.00 1.00
17cs 1.00 1.00 1.00
18cs 1.00 0.75 0.87
19cs 1.00 1.00 1.00
2 1.00 0.00 0.50
20cs 1.00 1.00 1.00
21cs 1.00 1.00 1.00
22cs 0.89 1.00 0.95
23 1.00 1.00 1.00
24 1.00 1.00 1.00
25 0.71 1.00 0.86
26cs 0.07 1.00 0.54
27cs 0.04 1.00 0.52
28 0.05 1.00 0.52
29 0.06 1.00 0.53
3 1.00 1.00 1.00
30 0.04 1.00 0.52
4 0.64 0.00 0.32
5 1.00 1.00 1.00
6 1.00 1.00 1.00
7 1.00 0.00 0.50
8 1.00 1.00 1.00
9 1.00 1.00 1.00
FN* 6 3 2

* False Negatives marked in bold above

Factory pattern: 1) missing either an abstract Factory, an
abstract Factory Method, or both, 2) using Builder and
functional programming, 3) Factory Method does not return a
Product (offers a getter call to retrieve it).

Adapter pattern: 1) client missing or call of target method
missing, i.e., code just shows a possible implementation
without invoking the pattern 2) Adaptee calls the Adapter's
method – but an Adaptee should not have to know about the
adaptation (GA returns 0) 3) two different methods are used,
one method overrides the target method and another method
calls the Adaptee's method, 4) the Adapter does not actually
call the Adaptee (GA returns 0).

Observer pattern: 1) missing abstract Subject or abstract
methods for notification, 2) missing methods to add or remove
Observers from the internal list, 3) an external iterator, events,
or delegation was used (GA returns 0).

The results show no overlap of FNs occurred across all 90
test cases - an indication of how each component differs and
how they can be used together to complement one another.
HyDPD-GA performed as good or better than HyDPD-ML for
each pattern with the exception of the Observer pattern with 2
FNs (False Negatives) versus 1 FN for HyDPD-ML.

Table VIII shows the result for cross-testing the three
patterns across the 90 test cases resulting in 270 tests in total
(TN = true negative). HyDPD-GA had a total of 7 FNs and 1

FP across the testcases, which compares well against the 13
FNs and 13 FPs for HyDPD-ML. Overall HyDPD-GA shows
as good or better recall, precision, accuracy, and F1 scores than
HyDPD-ML, with the exception of the single FP for the
Adapter pattern resulting in 96.4% vs. 100% precision, and
the additional FN in the Observer pattern resulting in a recall
of 93.3% vs. 96.7%.

TABLE VII. DPD COMPARISON: OBSERVER PATTERN

Testcase HyDPD-ML HyDPD-GA HyDPD
1 1.00 0.70 0.85
10 1.00 1.00 1.00
11 1.00 1.00 1.00
12 1.00 1.00 1.00
13cs 0.99 0.00 0.49
14cs 1.00 1.00 1.00
15cs 1.00 1.00 1.00
16cs 1.00 1.00 1.00
17 1.00 0.70 0.85
18cs 1.00 0.00 0.50
19cs 1.00 1.00 1.00
2 1.00 1.00 1.00
20cs 1.00 1.00 1.00
21cs 1.00 1.00 1.00
22cs 0.95 1.00 0.97
23 1.00 1.00 1.00
24 0.95 1.00 0.97
25 1.00 1.00 1.00
26cs 0.91 1.00 0.95
27cs 0.95 1.00 0.97
28 0.94 1.00 0.97
29 0.95 1.00 0.97
3 0.46 0.70 0.58
30 0.94 1.00 0.97
4 1.00 1.00 1.00
5 1.00 0.70 0.85
6 1.00 1.00 1.00
7 1.00 1.00 1.00
8 1.00 1.00 1.00
9 1.00 0.70 0.85
FN* 1 2 1

* False Negatives marked in bold above

C. HyDPD Evaluation (Three GoF Patterns)
To answer RQ3, for all three patterns corresponding to

Table V through Table VII, the hybrid probability (1) was
calculated from the HyDPD-ML and HyDPD-GA results,
with the result shown in column HyDPD. Across all three
patterns, every single FN from either of the techniques was
compensated by a partial or full detection by the other
technique, with 0.32 for Adapter testcase 4 being the lowest
combined score. the combination often compensates for a FN
from another component as can be seen in the tables with the
bold FNs. Furthermore, in practical use perhaps a threshold
such as 0.3 instead of 0.5 could be used to trigger detection.

Thus, the resulting combination as HyDPD provides a
recall as good or better than any single component. Thus,
HyDPD improves DPD by compensating for a FN of any
isolated HyDPD-ML or HyDPD-GA value, since one may not
detect a pattern that the other component can. While this may
result in more FPs, we are of the opinion that the benefits of
automation improve efficiency sufficiently that one would

rather manually quickly verify a detection as false (FP) rather
than misleading FNs. Thus, we prefer to minimize the miss
rate or false negative rate (FNR).

TABLE VIII. 270 CROSS-TEST DPD SUMMARY

Component Result Factory Adapter Observer Total
HyDPD-ML FP 0 0 12 13

FN 6 6 1 13
TP 24 24 29 77
TN 60 60 48 167
Recall 80.0% 80.0% 96.7% 85.6%
Precision 100.0% 100.0% 70.7% 85.6%
Accuracy 93.3% 93.3% 85.6% 90.4%
F1 Score 88.9% 88.9% 81.7% 85.6%

HyDPD-GA FP 0 1 0 1
FN 2 3 2 7
TP 28 27 28 83
TN 60 59 60 179
Recall 93.3% 90.0% 93.3% 92.2%
Precision 100.0% 96.4% 100.0% 98.8%
Accuracy 97.8% 95.6% 97.8% 97.0%
F1 Score 96.6% 93.1% 96.6% 95.4%

HyDPD FP 0 1 0 1
FN 2 2 1 5
TP 28 28 29 85
TN 60 59 60 179
Recall 93.3% 93.3% 96.7% 94.4%
Precision 100.0% 96.6% 100.0% 98.8%
Accuracy 97.8% 96.7% 98.9% 97.8%
F1 Score 96.6% 94.9% 98.3% 96.6%

HyDPD results in Table VIII show improved results, with

only 5 FNs and 1 FP out of the 270 test cases, resulting in
94.4% recall, 98.8% precision, 97.8% accuracy, and an F1
score of 96.6%. In all cases, HyDPD provided as good or
better results than either HyDPD-ML or HyDPD-GA alone.

D. HyDPD-GA Evaluation (MVC Architectural Pattern)
With regard to RQ4, 20 MVC test pattern examples (16 in

Java and 4 in C#) were acquired and HyDPD-GA applied. The
results were 16 TPs, 4 FNs, and 10 FPs. Recall is 0.80,
precision 0.62, accuracy 0.53, with an F1 score of 0.70. The
FNs were due to alternative implementations that deviated
from the formal pattern expectation, while the high number of
FPs was due to keeping the Cypher query abstract in order to
maximize DPD given the numerous possibilities the
architectural pattern could be implemented. We are of the
opinion that we would rather verify a positive and determine
a FP than miss a DPD due to a FN. Thus, we prefer to
minimize the miss rate or FNR. Despite the worse results in
comparison to the three GoF patterns, we believe HyDPD-GA
to be a potentially promising technique for architectural
pattern detection as well, and intend to investigate this further
in future work.

E. Evaluation of HyDPD-GA with all GoF Patterns
RQ5 focuses on the 23 GoF patterns. Due to resource and

time constraints, it was not feasible to train and evaluate the
HyDPD-ML component (both alone and in conjunction with
GA) against all remaining 20 GoF patterns at 25 sample
projects per pattern, which would require the manual
acquisition of an additional 500 code project samples. As

HyDPD-GA performed well with relatively good accuracy for
the three patterns evaluated previously in sections B and C,
and since it requires no training sets, our GoF evaluation only
utilized HyDPD-GA. For the remaining 20 GoF patterns, from
GitHub and further sources we acquired at least 6 pattern
examples (3 in Java und 3 in C#) per GoF design pattern as a
test dataset.

1) Testdata
The Cypher query for each pattern was applied to its own

pattern test data and tuned as described in the previous section
IV.B to maximize its TP and TN. Then the queries were
applied to the entire GoF pattern test set consisting of 258
tests. The cross-testing resulted in 5934 tests being executed.
A result of 1 was treated as positive, 0 negative, and in-
between values manually analyzed. Table IX shows the GoF
DPD results, where X stands for Cross-pattern detection and
indicates the number of unexpected detections of that pattern
in a different pattern test set. These deviations were then
manually analyzed to determine if that pattern did indeed
occur in the other test set or if it was a FP, shown in the
corresponding column.

TABLE IX. HYDPD-GA GOF DPD.

 TC FN X FP TP TN A P R F1
Abstract Factory 6 0 1 0 7 251 1.00 1.00 1.00 1.00
Builder 9 0 2 2 9 247 0.99 0.82 1.00 0.90
Factory Method 40 2 26 2 62 192 0.98 0.97 0.97 0.97
Prototype 12 1 0 0 11 246 1.00 1.00 0.92 0.96
Singleton 8 0 0 0 8 250 1.00 1.00 1.00 1.00
Adapter 33 3 15 15 30 210 0.93 0.67 0.91 0.77
Bridge 7 0 1 0 8 250 1.00 1.00 1.00 1.00
Composite 10 0 10 0 20 238 1.00 1.00 1.00 1.00
Decorator 14 0 6 6 14 238 0.98 0.70 1.00 0.82
Façade 6 1 1 1 5 251 0.99 0.83 0.83 0.83
Flyweight 14 1 0 0 13 244 1.00 1.00 0.93 0.96
Proxy 6 1 6 6 5 246 0.97 0.45 0.83 0.59
CoR 6 0 0 0 6 252 1.00 1.00 1.00 1.00
Command 6 0 1 0 7 251 1.00 1.00 1.00 1.00
Interpreter 6 1 3 3 5 249 0.98 0.63 0.83 0.71
Iterator 6 1 0 0 5 252 1.00 1.00 0.83 0.91
Mediator 6 1 0 0 5 252 1.00 1.00 0.83 0.91
Memento 6 0 0 0 6 252 1.00 1.00 1.00 1.00
Observer 30 3 3 3 27 225 0.98 0.90 0.90 0.90
State 7 0 5 5 7 246 0.98 0.58 1.00 0.74
Strategy 6 1 6 3 8 246 0.98 0.73 0.89 0.80
Template Method 7 0 5 0 12 246 1.00 1.00 1.00 1.00
Visitor 7 1 0 0 6 251 1.00 1.00 0.86 0.92
Total 258 17 91 46 286 5585 0.99 0.86 0.94 0.90

X = Cross-pattern detection; A=Accuracy; P=Precision; R=Recall

A brief explanation of the FNs and FPs in Table IX:
Builder: FPs were detected in Memento, whereby an

Originator instantiates the Memento object based on its own
state, resulting in similar behavior.

Factory, Adapter, and Observer: the FNs are described
above in Section B. One FP each in Composite and Façade.

Prototype: FN: a clone method calls a Dictionary object,
resulting in an incomplete graph mapping.

Decorator: FPs: the DPD confusion occurs since
Decorator, Adapter, Proxy, Interpreter, and State have
structural similarities and primarily behavioral differences or
differences of intent. Also, the main participant inherits

functionalities from an abstract interface and has a reference
to an object with this interface.

Façade: FN: the Cypher query required that the Façade
class use at least 3 independent classes, but the test case uses
an inheritance hierarchy, an atypical realization of the pattern.

Flyweight: FN: missing abstract Flyweight class.
Proxy: FN: the Proxy class inherits the Service, a non-

compliant pattern. FPs: see Decorator explanation.
Interpreter: FN: Interpreter method does not use the

Context object for accumulating results. FPs: see Decorator
explanation.

Iterator: FN: an external class was used as an abstract
iterator; thus the overwriting of the abstract method could not
be detected.

Mediator: FN: using functional programming; separating
Listener and Handler classes rather than a common class for
both purposes.

State: FPs: see Decorator explanation.
Strategy: FN: the client does not create specific strategies

and does not define which strategy to use; decision made in
the Context class, which does not reflect the classic pattern
definition.

Visitor: FN: The Visitor methods, which apply different
logic depending on the type of argument, are missing; there is
only one method with the type of the parent class. This
violates the pattern definition.

To summarize, out of 258 testcases there were 286 TPs,
17 FNs, 46 FPs, and 5585 TNs, resulting in 0.99 accuracy,
0.86 precision, 0.94 recall, and an F1 score of 0.90. We believe
this rate to be relatively good for application on this real-world
sampling. 91 cross detections triggered a manual analysis with
half of them being FPs. Due to their similarities, certain
patterns remain challenging to differentiate based only on GA.
Note that, despite being labeled as such on the internet, a
number of the FNs were non-compliant or atypical
implementations, affecting the accuracy rate. While these
could have been culled beforehand, we wanted to utilize a
dataset with real-world labeling. Having a larger benchmark
dataset prepared or approved by experts in the future would
be helpful for tuning. We note that the four lowest F1 scores
are for Proxy, Interpreter, State, and Adapter.

F. HyDPD-GA Evaluation (JUnit)
To evaluate DPD for a larger project, for RQ6 we

analyzed the latest version of JUnit source code version 5.8.
The 1170 Java source files contained 83595 NCLOC (non-
commented LOC) out of 143440 total lines. Since we do not
presume to be familiar with the architecture of JUnit, we used
a manual case-independent partial keyword search that
included all the signal words used to train HyDPD-ML as well
as certain other terms the GoF book contains with that pattern,
including "also known as" or component or method names.

The results for the three GoF patterns to compare HyDPD-
GA and HyDPD-ML are shown in Table X. Since the term
"factorymethod" was found 137 times in 21 files, the range of
HyDPD-GA and HyDPD-ML results seem probable. As
adapter-related terms also occur relatively frequently, the
range of results for HyDPD-GA and HyDPD-ML also seem
probable. For Observer, since HyDPD-ML had the worst F1

score with a precision of only 70.7%, in our opinion the high
number of 689 hits are unlikely related to an actual
implementation of the pattern and we would tend to see the
HyDPD-GA results as more likely. If proved empirically true
by further large project testing, one could, for example, tailor
the HyDPD weightings of (1) for the Observer pattern more
heavily towards HyDPD-GA.

TABLE X. DPD COMPARISON FOR JUNIT (THREE GOF PATTERNS)

Pattern HyDPD-GA
Hits [p<1]

HyDPD-ML
Hits

Lexical Search
Keyword* Hits(Files)

[raw]**
Factory
Method

33
[24@0.71]

150 factory 972(185)
create 1099(202)

implements 417(267)
type 3455(367)

factorymethod 137(21)
Adapter 102

[13@0.75]
15 adapter 88(23)

adaptee 8(3)
target 538(145)
adapt 100(24)

wrapper 307(27)
Observer 0 689 observer 0

state 204(39)
update 0 [6(3)]
notify 17(7)

publish 222(58)
subscribe 0
subject 0
attach 0 [3(2)]
detach 0
register 706(109)

unregister 14(4)
deregister 0

setstate 0
getstate 0

* partial any case code search; ML signal words in italics **[raw] values revised where obvious

For small results where it was obvious, raw values
sometimes were adjusted if the search result context made it
clear the pattern was not involved, e.g., the use of the word
outside of a pattern context in a comment or in error handling
code for a different purpose. This was in no way a systematic
analysis of each search result.

HyDPD-GA was used for checking all 23 GoF patterns
and provided various pattern detections that lexical analysis
also found indicators for. Table XI compares our results with
those of other work we found that published GoF DPD for
JUnit, which utilized much older versions of JUnit.
Nevertheless, we can compare the reported results by GoF
pattern to see the relative extent of detection for such a project.
Additionally, we performed a lexical search of JUnit v5.8 to
determine if the pattern name as a keyword indicates possible
usage, and this was marked next to our HyDPD-GA numerical
result. While related work used only older JUnit versions, in
comparison it does not seem to be completely off track in the
detections, except for the high number of Adapter detections.
As an explanation, for the three GoF patterns, HyDPD-GA
had its lowest DPD scores for the Adapter and for all GoF its
precision was 0.67 with an F1 score of 0.77. Thus, the Adapter
pattern is possibly confused and not necessarily as high, yet
the lexical results in Table X may make the higher number
possible relative to what related work had found.

TABLE XI. FULL GOF DPD COMPARISON FOR JUNIT

 H
yD

PD
-G

A

 D
w

iv
ed

i [
28

]

M
ay

va
n

[1
7]

O
ru

c
[1

9]

 Y
u

[1
6]

nr
p

[3
4]

Se
m

pa
tr

ec
 [4

3]

SS
A

 [4
4]

Year 2022 2018 2017 2016 2015 2014 2014 2006

Version v5.8 -
v3.8,
v4.1 v3.8 v4.1 v3.8 v3.7 v3.7

Abstract
Factory 0* 6 0 0 0 0 na

Builder 11* 0
Factory
Method 33* 1 2 0 0 0

Prototype 1 0
Singleton 7* 0 0 4 0 0 0 0
Adapter 102* 11 4 9 6 1 6
Bridge 3* 9 2 4 0
Composite 0* 1 1 2 0 1 1 1
Decorator 1* 1 1 1 2 1 1 1
Façade ** 0
Flyweight 1 0
Proxy 1* 0
CoR 0* 0
Command 3* 0
Interpreter 3 0
Iterator 8* 0
Mediator 1 0
Memento 0 0
Observer 0 3 1 3 1 1
State 0* 3 0 3 4 3
Strategy 0* 0
Template
Method 8* 38 1 12 22 1 1 1 1

Visitor 0* 0 0 0 0 0
*Manual lexical search indicates possible usage (may just use/extend Java API) **Memory issue

The results indicate that HyDPD-GA can be utilized on a
larger project and potentially find or detect patterns. As the
HyDPD-GA accuracy rates for GoF as shown in Section E
above were relatively good, we expect the results for JUnit to
be comparable. However, we note the issues mentioned in that
previous section, where similar patterns that are mostly
differentiated by intention can result in a different labeling to
a similar pattern (e.g., Decorator, Adapter, Proxy, Interpreter,
and State being similar in structure), being thus more easily
confused and having lower F1 scores. Detection would require
a more in-depth analysis to determine if there are issues.

G. HyDPD Performance Evaluation
DPD performance was measured as depicted in Table XII

for small projects (50 to 400 LOC from the test data sets) as
well as for JUnit 5.8 (to exemplify a large project). The values
are depicted on a log scale in Figure 8. The differences in
latency are due to the varying number of positive (required)
elements (nodes and relations) that need to be matched in a
Cypher query while ensuring that negative unwanted elements
are not in the structure. The queries thus vary in complexity
and in turn affect latency. For instance, Interpreter has many
conditions as well as negative conditions, whereas Singleton
requires one class as a participant and has no negative
conditions. The effects become more noticeable when
analyzing larger projects.

TABLE XII. HYDPD-GA LATENCY

Pattern Small project average
(seconds)

JUnit 5.8
(seconds)

Abstract Factory 0.04 0.09
Builder 0.02 9.77
Factory Method 0.02 0.10
Prototype 0.02 0.21
Singleton 0.02 0.05
Adapter 0.04 183.71
Bridge 0.04 0.26
Composite 0.02 0.04
Decorator 0.02 23.81
Façade 0.02 error
Flyweight 0.02 1.41
Proxy 0.03 0.14
CoR 0.08 1.90
Command 0.03 12.60
Interpreter 0.02 692.98
Iterator 0.02 0.23
Mediator 0.02 0.07
Memento 0.03 1.59
Observer 0.03 3.23
State 0.02 3.01
Strategy 0.05 58.34
Template Method 0.02 0.21
Visitor 0.02 0.31
Total 0.63 994.06
Average 0.03 43.22

Figure 8. HyDPD-GA per-pattern latency: small project average vs. JUnit
(log scale).

The total processing time needed for conversion, import,
and DPD was measured as depicted in Table XIII. As one
might expect for larger code bases, preparation processing
time plays a more significant role, notably vector conversion
for HyDPD-ML and Neo4j import for HyDPD-GA. During
DPD execution, however, HyDPD-ML is not significantly
impacted in contrast to HyDPD-GA.

To address performance for larger projects, one
workaround might be to apply HyDPD-GA selectively for
only certain pattern searches, or to apply HyDPD-ML initially
since it executes much more quickly, and then selectively
apply HyDPD-GA to certain patterns or only to certain
modules to confirm those that HyDPD-ML detected.

TABLE XIII. TOTAL PROCESSING LATENCY

Process step Small project
average (sec.)

JUnit 5.8
(sec.)

 ML GA ML GA
scrML conversion 0.11 0.10 29.2 29.24
Training 5.90 5.90
Vector conversion 16.75 22385.25
MongoDB import 0.01 1.91
Neo4j import 0.08 948.48
Total preparation 22.74 0.19 22420.36 979.62
DPD execution 0.01 0.63 0.11 994.06
Total 22.75 0.82 22420.47 1973.69

H. Evaluation Discussion
The discussion of the evaluation results follows the RQs:
RQ1: HyDPD-ML did demonstrate its feasibility,

showing practical DPD results in cross-testing three common
GoF patterns, with overall 90.7% accuracy, 87% precision,
86% recall, and an F1 score of 0.86.
RQ2: HyDPD-GA showed its feasibility, and performed

relatively well against the three common GoF patterns,
finding fewer but different overall fewer FNs and FPs than
HyDPD-ML. Overall HyDPD-GA shows as good or better
recall, precision, accuracy, and F1 scores than HyDPD-ML,
with the exception of the single FP for the Adapter pattern
resulting in 96.4% vs. 100% precision, and the additional FN
in the Observer pattern resulting in a recall of 93.3% vs.
96.7%.
RQ3: For the three common GoF patterns, the hybrid

HyDPD demonstrated its feasibility, performing well with
results of 94.4% recall, 98.8% precision, 97.8% accuracy, and
an F1 score of 96.6%. In all cases, HyDPD provided as good
or better results than either HyDPD-ML or HyDPD-GA alone.
RQ4: While HyDPD-GA can be useful for detecting more

abstract architectural patterns, these are more challenging for
GA to reliably detect due to their more abstract nature,
enabling various implementation strategies. Testing the MVC
pattern resulted in 0.80 recall, 0.62 precision, 0.53 accuracy,
and an F1 score of 0.70.
RQ5: For checking HyDPD-GA against all 23 GoF

patterns, cross-testing our 258 GoF testcases resulted in 5934
tests. It performed well, providing 0.99 accuracy, 0.86
precision, 0.94 recall, and an F1 score of 0.90. It thus appears
to provide quite useable results by itself. This could be
especially suitable when larger datasets necessary for training
(which HyDPD-ML would require) are unavailable.
RQ6: Based on the relatively large project JUnit (83K

NCLOC), when comparing HyDPD-GA to HyDPD-ML for
the three GoF patterns, a range difference in hits was
observed, which correlates with our previous analysis that
FNs of one component are often compensated as TPs by the
other, or in other words, one DPD technique is better than
another in certain circumstances. A lexical analysis of the
code provided insights into the likelihood of the pattern usage,
and the low precision of 70.7% for HyDPD-ML for the
Observer pattern and the lack of clear lexical evidence would
indicate it has a high FP rate for this pattern. HyDPD-GA
performed relatively well. HyDPD-GA was used for checking
all 23 GoF patterns and provided various pattern detections

that lexical analysis also found indicators for. While related
work used only older JUnit versions, in comparison it does not
seem to be completely off track in the detections, except for
the high number of Adapter detections. As an explanation, for
the three GoF patterns, HyDPD-GA had its lowest DPD
scores for the Adapter and for all GoF its precision was 0.67
with an F1 score of 0.77. Thus, the Adapter pattern is possibly
confused and not necessarily as high, yet the lexical results in
Table X may make the higher number possible relative to
what related work had found.
RQ7: HyDPD-GA performance latency and scalability

showed that for simpler queries its DPD performance in
relative magnitude is on par with HyDPD-ML (for JUnit 5.8
a few seconds or less), but that particular patterns (in particular
Builder, Adapter, Decorator, Command, Interpreter, Façade,
Strategy) do require much longer query times. Preparation
processing time plays a significant role before DPD can be
executed, especially vector conversion for HyDPD-ML and
Neo4j import for HyDPD-GA.

To summarize the evaluation, HyDPD has shown that it is
viable for DPD for multiple programming languages. While
combining the different strengths of HyDPD-ML and
HyDPD-GA, HyDPD can also compensate for certain
weaknesses of the other and improves the overall DPD
capability (e.g., fewer FNs and improved F1 score) while
allowing for tailoring in weighting. More abstract
architectural patterns such as MVC, while more challenging
due to their abstract nature, can also be detected. For situations
where insufficient training data is available for HyDPD-ML,
HyDPD-GA can also be used alone and showed relatively
good DPD results. Additionally, if performance and
scalability are a primary factor, one alone can be chosen to
lessen the impact on preparation or execution.

VI. CONCLUSION
This paper presented our HyDPD solution, a hybrid

approach for generalized DPD utilizing graph analysis (GA)
and Machine Learning (ML) and programming-language-
agnostic approach to automate the detection of design patterns
via source code analysis. Its realization demonstrates its
feasibility, using srcML as a common markup language to
support multiple programming languages, and its generalized
approach works for many different patterns. The HyDPD-ML
component was realized with TensorFlow using static code
metrics and semantic analysis, while the HyDPD-GA
component uses Cypher queries on the graph database Neo4j.

The evaluation compared each component and their
combination for three common patterns across a set of 75
single pattern Java and C# public sample pattern projects.
HyDPD-GA was also used to detect the 23 Gang of Four
design patterns across 258 sample C# and Java projects as well
as in a larger Java project JUnit. By applying the hybrid,
HyDPD can compensate for certain weaknesses of the other
component and improves the overall DPD capability (e.g.,
fewer FNs and improved F1 score) while allowing for per-
pattern or per-technique tailoring in probability weighting.
More abstract architectural patterns such as MVC, while more
challenging due to their abstract nature, were also detected.
While HyDPD-ML requires sufficient initial training data for

a pattern, HyDPD-GA can also be used alone without training
and showed relatively good DPD results. Performance and
scalability measurements showed the differences between
components, which can be considered as to which technique
to apply, with HyDPD-GA showing high performance-
sensitivity for certain patterns due to the large number of
matching and negative conditions that must be met.

Future work will investigate the inclusion of additional
pattern properties and key differentiators to improve the
results even further. This includes analyzing the network
classification errors in more detail to further optimize the
network accuracy, adding support for the remaining GoF
patterns, utilizing semantic analysis with NLP capabilities on
the code for additional natural languages, supporting
additional programming languages such as C++. Also, we
intend to evaluate pattern detection when they are intertwined
with other patterns and address accuracy, performance, and
scalability on large code bases. We will also investigate the
detection of additional design and architectural patterns and
implementation variants and integration with maintainer and
developer tooling. Furthermore, to address the risk of
overfitting, we intend to apply cross-validation and consider
alternative classification schemes. Thereafter, we intend to do
a comprehensive empirical industrial case study.

ACKNOWLEDGMENT
The author thanks Anna Kazakova, Florian Michel, and

Christian Leistner for their assistance with the design,
implementation, evaluation, and diagrams.

REFERENCES
[1] R. Oberhauser, "A Machine Learning Approach Towards

Automatic Software Design Pattern Recognition Across
Multiple Programming Languages," Proc. of the Fifteenth
International Conference on Software Engineering Advances
(ICSEA 2020), IARIA XPS Press, 2020, pp. 27-32.

[2] M. Muro, S. Liu, J. Whiton, S. Kulkarni, "Digitalization and
the American Workforce," Brookings Institution Metropolitan
Policy Program, 2017. [Online] Available from
https://www.brookings.edu/wp-
content/uploads/2017/11/mpp_2017nov15_digitalization_full
_report.pdf 2022.02.10

[3] C. Metz, "Google Is 2 Billion Lines of Code—And It’s All in
One Place." [Online] Available from
http://www.wired.com/2015/09/google-2-billion-lines-
codeand-one-place/ 2022.02.10

[4] [Online] Available from https://en.wikipedia.org/wiki/GitHub
2022.02.10

[5] G. Booch, "The complexity of programming models," Keynote
talk at AOSD 2005, Chicago, IL, Mar. 14-18, 2005.

[6] [Online] Available from
https://cybersecurityventures.com/application-security-report-
2017/ 2022.02.10

[7] [Online] Available from
https://web.archive.org/web/20210314184254/https://www.pa
yscale.com/data-packages/employee-loyalty/least-loyal-
employees 2022.02.10

[8] C. Jones, "The economics of software maintenance in the
twenty first century". 2006. [Online] Available from
https://web.archive.org/web/20160308070720/http://www.co
mpaid.com/caiinternet/ezine/capersjones-maintenance.pdf
2022.02.10

[9] R. Minelli, A.Mocci, and M. Lanza, "I know what you did last
summer: an investigation of how developers spend their time."
In: Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension (pp. 25-35). IEEE Press, 2015.

[10] M.J. Pacione, M. Roper, and M. Wood, "A novel software
visualisation model to support software comprehension." In:
Proc.. 11th Working Conference on Reverse Engineering. (pp.
70-79). IEEE, 2004.

[11] A. von Mayrhauser and A.M. Vans, "Program comprehension
during software maintenance and evolution," Computer, 28(8),
pp. 44-55, 1995.

[12] E. Gamma, Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-oriented software architecture: a system of
patterns, Vol. 1. John Wiley & Sons, 2008.

[14] L. Prechelt, B. Unger-Lamprecht, M. Philippsen and W. F.
Tichy, "Two controlled experiments assessing the usefulness
of design pattern documentation in program maintenance," in
IEEE Transactions on Software Engineering, vol. 28, no. 6, pp.
595-606, June 2002, doi: 10.1109/TSE.2002.1010061.

[15] M.G. Al-Obeidallah, M. Petridis, and S. Kapetanakis, "A
survey on design pattern detection approaches," International
Journal of Software Engineering (IJSE), 7(3), pp.41-59, 2016.

[16] D. Yu, Y. Zhang, and Z. Chen, "A comprehensive approach to
the recovery of design pattern instances based on sub-patterns
and method signatures," Journal of Systems and Software, vol.
103, pp. 1-16, 2015.

[17] B. Mayvan and A. Rasoolzadegan, "Design pattern detection
based on the graph theory," Knowledge-Based Systems, vol.
120, pp. 211-225, 2017.

[18] M.L. Bernardi, M. Cimitile, and G. Di Lucca, "Design pattern
detection using a DSL‐driven graph matching approach,"
Journal of Software: Evolution and Process, 26(12), pp.1233-
1266, 2014.

[19] M. Oruc, F. Akal, and H. Sever, "Detecting design patterns in
object-oriented design models by using a graph mining
approach," 4th International Conference in Software
Engineering Research and Innovation (CONISOFT 2016), pp.
115-121, IEEE, 2016.

[20] A. Pande, M. Gupta, and A.K.Tripathi, "A new approach for
detecting design patterns by graph decomposition and graph
isomorphism," International Conference on Contemporary
Computing, pp. 108-119, Springer, Berlin, Heidelberg, 2010.

[21] P. Pradhan, A.K. Dwivedi, and S.K. Rath, "Detection of design
pattern using graph isomorphism and normalized cross
correlation," Eighth International Conference on
Contemporary Computing (IC3 2015), pp. 208-213, IEEE,
2015.

[22] S. Alhusain, S. Coupland, R. John, and M. Kavanagh, "Design
pattern recognition by using adaptive neuro fuzzy inference
system," 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, pp. 581-587, IEEE, 2013.

[23] M. Zanoni, F. A. Fontana, and F. Stella, "On applying machine
learning techniques for design pattern detection," J. of Systems
& Software, vol. 103, no. C, pp. 102-117, 2015.

[24] L. Galli, P. Lanzi, and D. Loiacono, "Applying data mining to
extract design patterns from Unreal Tournament levels,"
Computational Intelligence and Games. pp. 1-8, IEEE, 2014.

[25] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, "Design pattern
mining enhanced by machine learning," 21st IEEE Int'l Conf.
on Softw. Maintenance (ICSM'05), IEEE, pp. 295-304, 2005.

[26] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo,
"Design pattern detection using software metrics and machine
learning," First International Workshop on Model-Driven
Software Migration (MDSM 2011), pp. 38-47, 2011.

[27] S. Uchiyama, A. Kubo, H. Washizaki, and Y. Fukazawa,
"Detecting design patterns in object-oriented program source
code by using metrics and machine learning," Journal of
Software Engineering and Applications, 7(12), pp. 983-998,
2014.

[28] A.K., Dwivedi, A. Tirkey, and S.K. Rath, "Software design
pattern mining using classification-based techniques,"
Frontiers of Computer Science, 12(5), pp. 908-922, 2018.

[29] H. Thaller, L. Linsbauer, and A. Egyed, "Feature maps: A
comprehensible software representation for design pattern
detection," IEEE 26th international conference on software
analysis, evolution and reengineering (SANER 2019), pp. 207-
217, IEEE, 2019.

[30] A. Chihada, S. Jalili, S.M.H. Hasheminejad, and M.H.
Zangooei, "Source code and design conformance, design
pattern detection from source code by classification approach,"
Applied Soft Computing, 26, pp. 357-367, 2015.

[31] Y. Wang, H. Guo, H. Liu, and A. Abraham, "A fuzzy matching
approach for design pattern mining," J. Intelligent & Fuzzy
Systems, vol. 23, nos. 2-3, pp. 53-60, 2012.

[32] S. Alhusain, S. Coupland, R. John, and M. Kavanagh,
"Towards machine learning based design pattern recognition,"
In: 2013 13th UK Workshop on Computational Intelligence
(UKCI 2013), pp. 244-251, IEEE, 2013.

[33] S. Hussain, J. Keung, and A.A. Khan, "Software design
patterns classification and selection using text categorization
approach," Applied soft computing, 58, pp.225-244, 2017.

[34] A. Alnusair, T. Zhao, and G. Yan, "Rule-based detection of
design patterns in program code," Int'l J. on Software Tools for
Technology Transfer, vol. 16, no. 3, pp. 315-334, 2014.

[35] M. Lebon and V. Tzerpos, "Fine-grained design pattern
detection," IEEE 36th Annual Computer Software and
Applications Conference, IEEE, pp. 267-272, 2012.

[36] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection
approaches," Innovations in Systems and Software
Engineering, vol. 11, no. 1, pp. 39-53, 2015.

[37] Y. G. Guéhéneuc, J. Y. Guyomarc’h, and H. Sahraoui,
"Improving design-pattern identification: a new approach and
an exploratory study," Software Quality Journal, vol. 18, no. 1,
pp. 145-174, 2010.

[38] F. A. Fontana, S. Maggioni, and C. Raibulet, "Understanding
the relevance of micro-structures for design patterns
detection," Journal of Systems and Software, vol. 84, no. 12,
pp. 2334-2347, 2011.

[39] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection approaches.
Innovations in Systems and Software Engineering," vol. 11, no.
1, pp. 39-53, 2015.

[40] J. Dong, Y. Zhao, and Y. Sun, "A matrix-based approach to
recovering design patterns," IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39,
no. 6, pp. 1271-1282, 2009.

[41] M. Collard, M. Decker, and J. Maletic, "Lightweight
transformation and fact extraction with the srcML toolkit,"
IEEE 11th international working conference on source code
analysis and manipulation, IEEE, 2011, pp. 173-184.

[42] D. Kingma and J. Ba, "Adam: A method for stochastic
optimization," arXiv preprint arXiv:1412.6980, 2014.

[43] G. Rasool and P. Mäder, "Flexible design pattern detection
based on feature types," In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011),
pp. 243-252, IEEE, 2011.

[44] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T:
Halkidis, "Design pattern detection using similarity scoring,"
IEEE transactions on software engineering, 32(11), pp. 896-
909, 2006

