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Abstract—The volume of program source code created, reused, 
and maintained worldwide is rapidly increasing, yet code 
comprehension remains a limiting productivity factor. For 
developers and maintainers, well known common software 
design patterns and the abstractions they offer can help support 
program comprehension. However, manual pattern 
documentation techniques in code and code-related assets such 
as comments, documents, or models are not necessarily 
consistent or dependable and are cost-prohibitive. To address 
this situation, we propose the Hybrid Design Pattern Detection 
(HyDPD), a generalized approach for detecting patterns that is 
programming-language-agnostic and combines graph analysis 
(GA) and Machine Learning (ML) to automate the detection of 
design patterns via source code analysis. Our realization 
demonstrates its feasibility. An evaluation compared each 
technique and their combination for three common patterns 
across a set of 75 single pattern Java and C# public sample 
pattern projects. The GA component was also used to detect the 
23 Gang of Four design patterns across 258 sample C# and Java 
projects as well as in a large Java project. Performance and 
scalability were measured. The results show the advantages and 
potential of a hybrid approach for combining GA with artificial 
neural networks (ANN) for automated design pattern detection, 
providing compensating advantages such as reduced false 
negatives and improved F1 scores. 

Keywords—software design pattern detection; machine 
learning; artificial neural networks; graph analysis; software 
engineering. 

I. INTRODUCTION 
This paper extends our previous work on automatic design 

pattern detection (DPD) [1].  
A major digitalization transformation is underway 

throughout industry and society [2], dependent on increasing 
amounts of software to drive it. For instance, Google is said to 
have at least 2bn lines of code (LOC) accessed by over 25K 
developers [3], and GitHub currently reports over 200m 
repositories and 73m developers [4]. It has been estimated that 
worldwide well over a trillion LOC exist [5] with 111b lines 
of new software code created annually [6]. This is exacerbated 
by a limited supply of programmers and high employee 
turnover rates for software companies, e.g., 1.1 years at 
Google [7]. Furthermore, the high degree of utilization in live 
business operations creates additional time pressure and stress 
for rapid turnaround, development or maintenance cycles, or 
deployment times.  

The economics of rapidly growing codebases, code 
longevity, and high turnover make program development and 

maintenance challenging programmers (herewith including 
maintainers) especially with regard to fast program 
comprehension and understanding of (legacy) codebases. 
Given limited resources and such a vast amount of code, 
~75% of technical software workers are estimated to be doing 
maintenance [8]. Moreover, program comprehension may 
consume up to 70% of the software engineering effort [9]. 
Activities involving program comprehension include 
investigating functionality, internal structures, dependencies, 
run-time interactions, execution patterns, and program 
utilization; adding or modifying functionality; assessing the 
design quality; and domain understanding of the system [10]. 
Code that is not properly understood by programmers impacts 
efficiency and reduces quality.  

For program comprehension, experts tend to develop 
efficiently organized specialized schemas or abstractions that 
contribute to efficient problem and system decomposition and 
comprehension, and macrostructures (or chunks) and beacons 
(or cues) being important elements in cognition mental 
models [11]. In the area of software engineering, software 
design patterns have been well-documented and popularized, 
including the Gang of Four (GoF) [12] and POSA [13]. The 
application of abstracted and documented solutions to 
recurring software design problems has been a boon to 
improving software design quality and efficiency. 
Discovering such common macrostructures or associated 
pattern terminology in code can serve as beacons to such 
abstracted macrostructures and may help identify aspects such 
as the author's intention or purpose.  

However, the actual detection and post-coding 
documentation of these software design patterns remain a 
challenge. As design patterns have mostly been described 
informally, their implementation can vary widely, depending 
on various factors such as the programming language, the 
natural language and keywords used, the concrete pattern 
structure, the terminology awareness of the programmer, their 
experience, and their understanding and (mis)interpretation. 
Furthermore, the pattern books referenced above were 
published over 25 years ago and not standardized with regular 
updates. Pattern variants may occur and patterns may evolve 
over time with technology. Additionally, the manual 
documentation of software design patterns usage in project 
documents such as the architecture specification may not be 
dependable due to inconsistencies with the codebase, e.g., 
prescriptive documentation of intentions, adaptations during 
development, or maintenance changes. Determining actual 
pattern usage can be beneficial for identifying which patterns 



are used where and can help avoid unintended pattern 
degradation and associated technical debt and quality issues. 
However, the investment necessary for manual pattern 
extraction, recovery, and archeology is cost prohibitive and 
not sustainable due to the high design competency and labor-
intensive code analysis effort required, especially in light of 
the aforementioned codebase sizes and high turnover. Prechelt 
et al. [14] come to the conclusion that explicit identification 
of patterns in code (here via manually place pattern comment 
lines) facilitate faster and less error-prone maintenance tasks. 

In source code, patterns may not be explicitly mentioned 
or commented at all, or they might be or inconsistently or 
incorrectly mentioned. Semantic issues due to various natural 
languages and naming differences may also cause beacons or 
keywords to differ. Since in our context we assume access to 
source code, intentional obfuscation via a tool is unlikely, but 
unintentional obfuscation is possible. One way to nevertheless 
explicitly identify patterns in code would be automated 
detection via a tool. Yet automated detection and extraction of 
software design patterns from code is not readily available 
among popular software development tools. Various research 
work has attempted to find automated techniques, yet these 
often fail to recognize or address coverage of all of the basic 
23 GoF patterns and rather emphasizing certain design 
patterns, or were not evaluated on a larger code base. They 
conclude by suggesting that a combination of techniques 
might be promising research approach.   

In our previous work DPDML (Design Pattern Detection 
using Machine Learning) [1], we showed the feasibility of our 
cross-language approach for DPD by realizing the ML core of 
our approach. Our evaluation using 75 unique Java and C# 
code projects for training and testing to detect three different 
types of GoF patterns (creational, structural, and behavioral) 
provided insights into its potential and limitations. It 
necessitated finding sufficient training sets (sample projects) 
for each pattern, and our realization, while combining metrics 
and semantic analysis, relied on a single technique, namely 
ML. 

This paper contributes our hybrid automated design 
pattern detection approach called Hybrid Design Pattern 
Detection (HyDPD) supporting multiple programming 
languages and amalgamating GA with ML to utilize the 
advantages of both techniques while decreasing their 
liabilities. Our realization of the solution approach shows its 
feasibility. An evaluation compared each technique and their 
combination for three common patterns across a set of 75 
single-pattern Java and C# public sample pattern projects. 
Furthermore, to provide insights into its potential and 
limitations, the GA component was applied on 23 GoF design 
patterns across 258 sample C# and Java projects, as well as a 
larger Java project (JUnit). 

The structure of this paper is as follows: the following 
section discusses related work. Section 3 describes our 
solution approach. In Section 4, our realization is presented, 
which is followed by our evaluation in Section 5. Thereafter, 
a conclusion is provided. 

II. RELATED WORK 
Various approaches have been used for software design 

pattern detection, and they can be categorized based on 
different analysis styles, such as structural, behavioral, or 
semantic (and some utilizing a combination of styles) [15]. 
Structural analysis utilizes static DPD based on inter-class 
dependencies, data types, and method invocations found in 
code. Behavioral analysis extracts behavior via static and/or 
dynamic analysis techniques, since structure alone may not 
suffice to differentiate patterns. Semantic analysis utilizes 
naming and annotations to distinguish patterns. Another 
categorization option is to group by detection methodologies 
or techniques (learning-based, graph-based, metric-based, 
etc). As a consequence, some work may fall into multiple 
categories. 

Graph-based approaches include: Yu et al. [16] that 
reverse engineer code to UML class diagrams and from XMI 
parse and analyze sub-patterns with class-relationship 
directed graphs. Mayvan and Rasoolzadegan [17] use a UML 
semantic graph. Bernardi et al. [18] apply a DSL-driven graph 
matching approach. DesPaD [19] extract the abstract syntax 
tree from the code, create a single large graph model of a 
project, and then apply an isomorphic sub-graph search 
method using the Subdue tool. Further isomorphic subgraph 
approaches include Pande et al. [20] and Pradhan et al. [21], 
both of which begin with UML class diagrams.  

Learning-based approaches map the DPD problem to a 
learning problem, and can involve classification, decision 
trees, feature maps or vectors, Artificial Neural Networks 
(ANNs), Convolutional Neural Networks (CNNs), Support 
Vector Machines (SVMs), etc. Examples include Alhusain et 
al. [22], Zanoni et al. [23], Galli et al. [24], Ferenc et al. [25], 
Uchiyama et al. [26][27], and Dwivedi et al. [28]. Thaller et 
al. [29] describe a micro-structure-based structural analysis 
approach based on feature maps. Chihada et al. [30] convert 
code to class diagrams, which are then transformed to graphs, 
and have experts create feature vectors for each role based on 
object-oriented metrics and then apply ML. 

Additional approaches include: reasoning-based 
approaches such as Wang et al. [31] that is based on matrices. 
Examples of fuzzy logic approaches include Alhusain et al. 
[32] and Hussain et al. [33]. Examples of rule-based 
approaches include Sempatrec [34] and FiG [35], which uses 
an ontology representation. Metric-based approaches include 
MAPeD [36], PTIDEJ [37], Uchiyama et al. [26][27], and 
Dwivedi et al. [28]. Fontana et al. [38] analyze microstructures 
based on an abstract syntax tree. An example semantic-
analysis style approach is Issaoui et al. [39]. DP-Miner [40] 
uses a matrix-based approach based on UML for structural, 
behavioral, and semantic analysis.  

The DPD styles and methodologies used are quite 
fractured and none has reached a mature and high-quality 
result with an accessible and executable implementation that 
we could evaluate. We are not aware of any approach yet that 
can automatically and reliably detect all 23 GoF design 
patterns. Most have some limitation or drawback, and the 
success rate reported among the approaches varies 
tremendously. Thus, further investigation and research in this 



area is essential to enhancing the knowledge surrounding this 
area. In contrast to the aforementioned work, our HyDPD 
solution offers a hybrid code-centric approach combining 
various promising structural, behavioral, and semantic 
analysis techniques to leverage the strengths of each. In 
contrast to others, it supports multiple popular programming 
languages. With HyDPD we show the advantages of 
combining GA, ML, metrics, and semantic analysis. 

III. SOLUTION 
Of all available artifacts for DPD, source code represents 

the reality rather than the intention, and should be readily 
available, whereas other pattern information (binaries may not 
build, and runtime instrumentation, UML models, or 
documentation may not exist). Furthermore, as UML 
diagrams can be generated by tools from the source code, the 
underlying data they utilize is also available in the source 
code. As shown in Figure 1, our solution approach thus begins 
with source code as the input and is based on the following 
principles: 

 
Figure 1.  The HyDPD solution concept. 

Programming language-independent: since patterns are 
independent of programming language, our solution abstracts 
the source code by converting it into an abstracted common 
format for further processing. For this, our realization 
currently utilizes srcML [41], which provides an XML-based 
format, currently supporting C, C++, Java, and C#. If other 
abstract syntax formats are standardized and available for 
analysis in a common format, these also can be considered. 

Semantic analysis: common pattern signal words in the 
source code can be used as an indicator or hint for specific 
pattern usage. Additional natural languages can be supported 
to detect usage of pattern names or their constituent 
components in case they were coded in other languages. Our 
realization supports German, Russian, and French. 

Static code metrics extraction: various static code metrics 
are utilized to detect and differentiate design patterns. The 
value ranges of metrics are normalized to a scale of 0-1 for 
utilization with an ANN.  

ML model: in utilizing ML to analyze sample data, a 
model can learn how to classify new unknown data, in our 
case to differentiate design patterns. Our realization may 
apply or combine any ML model that suits the situation. 
Currently, an ANN is used because we were interested in 
investigating its performance, and intend in future work to 
detect a wide pattern scope, pattern variants, and new patterns. 
From our standpoint, alternative non-ML methods such as 
creating a rule-based system by hand would require labor and 
expertise as the number of patterns increases and new 
undiscovered patterns should be detected. With an appropriate 
ML model, these should be learned automatically and be more 
readily detected. Challenges include appropriate slicing of the 
codebase for appropriate metrics and pattern comparison, and 

finding suitable and large enough training datasets for each 
pattern. 

Graph-based structural analysis: the XML-based code 
representation is converted to a BSON (Binary JSON) format 
and stored in a graph database to support graph-based 
structural analysis. In contrast to ML, the advantages include 
the ability to apply graph queries across an entire codebase 
and not requiring any training data. Liabilities include the 
need for hand-crafted detection queries that are not too 
specific (thus overlooking many with only slight variations) 
nor too general or ambiguous to be of practical use 
(identifying too many false positives). 

The underlying hypothesis driving our HyDPD 
investigation is that amalgamating additional data and metrics 
in combination with various analysis techniques such as graph 
and ML models results in better classification accuracy 
compared to any single technique or metric alone. From a 
practicality standpoint, our approach could reduce the labor 
involved in detecting and documenting patterns compared to 
finding potential patterns manually by perusing code and 
accurately classifying them (e.g., for assessing or modernizing 
an unfamiliar legacy system), and can assist developers, 
maintainers, or experts involved in various software 
archeology activities. 

IV. REALIZATION 
The realization of the HyDPD approach consists of two 

main components: HyDPD-ML that applies the ML technique 
and HyDPD-GA that applies the GA technique. Python was 
used to implement the prototype due to its versatility and large 
selection of available libraries, while a Jupyter Notebook was 
used for the DPD user interface. 

A. HyDPD-ML  
Python was used to implement the prototype due to its 

versatility and the available libraries to support the 
implementation of ANNs. TensorFlow was chosen along with 
Keras as a top-layer API.  

For ML, a sufficient dataset of different and realistic 
projects was needed to support supervised learning. While 
certain pattern examples in code can readily be found, finding 
a larger set of different ones in different project settings and 
programming languages turns out to encounter various 
practical challenges and is labor intensive. Due to resource 
and time constraints, our ML realization thus initially focused 
on having the network learn to detect one pattern out of each 
of three main pattern categories: from the structural category 
- Adapter; from the creational patterns -Factory; and from the 
behavioral patterns - Observer. Future work will expand the 
pattern scope. 

Metric-based matching: The ElementTree parser was used 
to traverse srcML and count the specific XML-tags. The 
metric values were not separated by roles or classes, but are 
merged and evaluated as a whole. The metrics used were 
inspired by Uchiyama et al. [26] and are shown in Table I. 

 



TABLE I.  OVERVIEW OF METRICS 

Abbreviation Description 
NOC Number of classes 
NOF Number of fields 
NOSF Number of static fields 
NOM Number of methods 
NOSM Number of static methods 
NOI Number of interfaces 
NOAI Number of abstract interfaces 

TABLE II.  SIGNAL WORDS FOR DESIGN PATTERNS 

Pattern Signal Words 
Adapter Adapter adaptee target adapt 
Factory Factory create implements type 
Observer observer state update notify 

 
Semantic-based matching: An obvious approach to pattern 

detection is naming. If a developer already used common 
design pattern terminology in the code, then this should be 
utilized as a pattern detection indicator. For our signal word 
detection, we translated the signal words to German, French, 
and Russian to improve results for non-English code. 

Semantic variations: To determine if other signal words 
beyond the design pattern name were used in 
implementations, we analyzed several examples of 
implemented design patterns. 12 additional signal words were 
selected, four for each pattern as shown in Table II. 

Internationalization: To test internationalization, the 
Python library translate was used to translate the signal words 
to German, French, and Russian. Rather than extending the 
list of metrics passed to the ANN, a match with a translated 
word is counted in the same input parameter as the original 
English words. Applying Natural Language Processing (NLP) 
to reduce words by stemming or creating lemmas to compare 
to a defined word list would also be possible, and may 
improve or deteriorate the results, if for instance the input 
array contained further zeros when no signal words were 
found. 

ANN: Based on our realization scope, since the input array 
is not multidimensional, deep neural networks (DNNs) with 
additional layers would not necessarily yield improved 
results. We thus chose to realize an Artificial Neural Network 
(ANN) with one input layer, two hidden layers, and one output 
layer as shown in Figure 2. We created the network with the 
Keras API with the TensorFlow Python library. 

The input layer size matches the data points, and as there 
are 7 metrics and 12 semantic match values, this makes 19 
input values total. The input model structure is a numpy array 
as follows: 
[NOC, NOF, NOSF, NOM, NOSM, NOI, NOAI, ASW1, 
ASW2, ASW3, ASW4, FSW1, FSW2, FSW3, FSW4, 

OSW1, OSW2, OSW3, OSW4] 
The first 7 values correspond to Table I while the rest 

indicate the number of signal word matches from Table II. 
SW=Signal Word, A=Adapter, F=Façade, and O=Observer, 
1-4 implies the corresponding table column. Only 7 metric 
values are utilized when no signal words exist. 

 
Figure 2.  ANN model overview created with Keras. 

The first hidden layer is a dense layer (with each neuron 
fully connected to the neurons in the prior layer) consisting of 
32 neurons. The activation function was a rectified linear unit 
(ReLU). The second layer is a dense layer with 16 neurons. 
This conforms with the general guideline to gradually 
decrease the neurons as one approaches the output layer. The 
output layer consists of three neurons to match the three 
design patterns that should be detected. The "Softmax" 
activation method is used, which is often used in classification 
problems and supports identifying the confidence of the 
network in its decision. The "Adam" algorithm is a universal 
optimizer that is recommended in a wide assortment of papers 
and guides. As no specialized optimizer was needed, "Adam" 
with its default values was chosen as defined in [42]. No 
regularization was applied in each layer. Adam automatically 
adjusts and optimizes the learning rate. Sparse categorical 
cross entropy was applied as the loss function for this multi-
class classification task. 

The size of the ANN should fit the size of the problem. 
Small adjustments to the ANN structure showed no significant 
performance impact, whereas significantly increasing the 
neuron count or layer count negatively impacted results. With 
two hidden layers and 48 neurons, the first layer contains 640 
parameters, the second layer 528, and the output layer 51, 
resulting in 1219 parameters that are adjusted during training. 

The network is trained in epochs, wherein the complete 
training set is sent through the network with weights adjusted. 
As the weights and metrics change per epoch, an early-
stopping callback stops the training if the accuracy of the 
network decreases over more than 10 epochs, saving the 
network that had the best accuracy. A validation dataset is 
typically used during training to monitor results on unlearned 
data after each epoch, but as our training set was limited, we 
used a prepared testing dataset with known labels. 

 
1) Training Datasets 

As to possible design pattern training sets, the Pattern-like 
Micro-Architecture Repository (P-MARt) includes a 
collection of microstructures found in different repositories 
such as Jhotdraw and JUnit. However, because these patterns 
are intertwined with each other, they do not provide isolated 
example specimens for training the ANN. The Perceptrons 



Reuse Repositories could theoretically provide many 
instances of design patterns for a training dataset, but no 
results were provided on the website during the timeframe of 
our realization, and while the source code analyzer is free, the 
servers could not be reached. 

We did manage to find training data as detailed in the next 
section. Since our initial intent for HyDPD was a much 
broader scope for data pattern mining, and because we 
expected a large supply of sample data, we focused on an 
ANN realization. We were also interested in determining if we 
could train an ANN to detect these patterns with relatively few 
samples. However, due to unexpected additional resource and 
time constraints involved in finding pattern samples manually, 
we had to reduce the number of design patterns involved, and 
could not compare the ANN with alternative classification 
schemes such as Naïve Bayes, Decision Tree, Logistic 
Regression, and SVMs, but intend to in future work. 

B. HyDPD-GA 
For the GA realization, the srcML is converted to BSON 

and stored in MongoDB. A Neo4j Cypher procedure is then 
used to import the BSON from MongoDB into the Neo4j 
database. OPTIONAL MATCH is used to permit variations of 
patterns to be in the result set, while missing entities are 
notated with None. The result set is provided as a 
Dataframe structure. Figure 3 shows the Python classes 
used for the implementation. Not all methods in the Python 
project are depicted in the diagram. Some methods have been 
defined in the scope of view of the class methods. They are 
only used within the framework of the respective method and 
serve to improve the readability of the code. For example, the 
method resolve_names in the ResolveJsonTypes 
class contains another 24 methods. 

The FileStorage class is required to create the folders 
in advance in which the intermediate results of program 
execution are stored. All classes other than DPDetector use 
the Settings class to query the values of the current 
configuration parameters (e.B. Uniform Resource Locator 
(URL) of the MongoDB). The SrcmlDriver class is used 
to convert the code project into the srcML XML 
representation. The SrcmlJsonConverterMulti class 
is used to detect whether the specified code project was 
written in Java or C#. Depending on this, either the class 
SrcmlJsonConverterForCSharp or 
SrcmlJsonConverterForJava is used to convert the 
XML representation of the project to JSON. Both classes 
inherit from the abstract class SrcmlJsonConverter, 
which contains shared functionality. In addition, the 
SrcmlJsonConverter class interacts with the 
ResolveJsonTypes, which undertakes part of the 
conversion process. In addition, all classes (except 
ResolveJsonTypes) use the SrcmlUtil class, which 
supports parsing the XML representation of the project. The 
TypesNeo class interacts with the TypesMongo class to 
import a specific project from MongoDB into the Neo4j 
database. The DPDetector class uses the TypesNeo class 
when executing the DPD queries on the Neo4j database. 

 
Figure 3.  HyDPD-GA Python classes (partial view). 

For each parsed class, the full class name, available 
imported entities, and inheritance from other classes and 
interfaces are extracted. A flag indicates whether the 
respective class is abstract. For each attribute, the type, name, 
and two flags are used for indicating a static attribute or if it 
involves a collection. The parsed class contains a collection of 
methods with their implementation, abstract methods, 
constructors, and getter/setter methods taken into account. For 
each method, the following data is extracted: 

- method name; 
- static flag; 
- abstract flag; 
- constructor flag; 
- return type; 
- flag whether the method is accessible outside its class; 
- method arguments; 
- declared variables including name, type, and collection 

flag; 
- type assigned when a variable was initialized; and 
- names of other methods called from this method. 
After all relevant information has been extracted and 

stored in the form of the JSON object in the types attribute, 
the second stage of processing takes place. This consists in 
resolving the name via all possible types and methods. For 
this, the static class ResolveJsonTypes or its method 
resolve_names is utilized. All possible types refers to the 



inherited classes, class attributes, method variables, method 
arguments, and the type a method returns. Resolving methods 
considers the methods that are called as well as the methods 
that are used for initialization, and is based on the imported 
entities, the attributes and methods of existing and inherited 
classes, and the local variables. Moreover, the relationship of 
overriding a parent method via a method in the class being 
analyzed is included. In addition, the attributes and methods 
of the parent class are added to the inheriting class. 

The method is then executed transform_types to 
convert the obtained JSON format to the mongoDB BSON 
format. The result is returned by the convertToJson 
method in the SrcmlJsonConterverMulti class. To 
store the BSON object in MongoDB, a new object of the 
TypesMongo class is instantiated. It then calls the method 
transformed_types and passes the BSON object as 
input to that method. Finally, the code project is saved in 
BSON format in MongoDB. 

The class DPDetector performs pattern recognition. 
The method dpd_on_one_testcase in this class 
removes any preexisting Neo4j entities and searches for a 
single pattern in the specified project. It instantiates a new 
object of the class TypesNeo, importing the corresponding 
collection from MongoDB into the Neo4j database using a 
Cypher query. The detect_pattern method uses a 
Cypher query to search for a designated design pattern. If 
matches with the query exist, the result records are grouped 
by the main participant of the pattern, and the correctness of 
the match is calculated as a proportion of the matching nodes 
relative to the total number of nodes searched for (e.g., 0.70 
would indicate a 70% query match). The resulting records are 
then returned as a DataFrame. 

An example Cypher query for the Chain of Responsibility 
(CoR) pattern is shown in Figure 4. First, the type handler 
is defined that has two methods: handle_op and set_op. 
The set_op has at least one argument of type handler. 
Furthermore, two types c_handler and c_handler2 
that inherit from the handler are defined. In addition, both 
classes must have a handler attribute and a method that 
overrides the parent class's method. 

There should also be a client type with a method 
client_op. The client_op method should call either 
handle_op or c_handle_op. In the following, negative 
conditions are defined that further refine the query and 
distinguish it from other patterns. The client type cannot 
inherit from the handler type. The type 
clientc_handler and c_handler2 must not have a 
collection of the type handler. 

The Cypher query for each pattern was tuned as follows: 
For each pattern, a test dataset of at least six Java and C# 
examples from an internet search of GitHub and other sources 
was used to tune the Cypher query in such a way that it detects 
the expected pattern (true positives or TPs). In case it did not, 
the code was analyzed to determine the underlying cause and, 
if possible, the query or, if appropriate due to a faulty 
implementation of the pattern, the code adjusted until it is 
detected. If not, the underlying cause was identified; reasons 

included for instance 1) a non-compliant application of the 
pattern that violate core structural rules of the pattern 
(intentionally or unintentionally due to an author's 
misunderstanding), 2) referencing external classes (missing) 
that were not contained in the source code and required to 
fulfill the pattern, 3) the use of functional programming 
constructs. 

 
Figure 4.  Cypher query for the Chain of Responsibility pattern. 

Thereafter, each query was executed on all 22 other 
patterns to determine what should not belong to the query 
result with regard to FPs. If a positive in an unexpected pattern 
was detected, it was analyzed to determine if 1) the query must 
be further tuned, 2) something in the target code example is 
inappropriate (abstract method, a participant is not allowed in 
an inheritance hierarchy, optional pattern elements), etc. 

An example excerpt from the result output of a Jupyter 
Notebook is shown in Figure 5.  

 
Figure 5.  Example Jupyter Notebook result output excerpt. 



C. HyDPD 
To enhance DPD, the HyDPD realization combines both 

HyDPD-ML and HyDPD-GA components, with each 
component supplying a probability P as shown in (1) about 
the likelihood of a certain pattern being detected, where w is 
the weighting.  w is currently equal and set to 0.5 until further 
empirical insights are gathered as to which approach is 
typically more accurate.  

   R  = wML *RML + wGA *RGA (1) 

Weight Tailoring: The weightings can be tailored across 
all patterns or on a per pattern basis, for instance based on 
empirical accuracy rates if one technique is determined to 
have better accuracy for a specific design pattern. 

V. EVALUATION 
Since the primary contribution in this paper is the new GA 

component and its hybrid combination with ML, this 
evaluation focused primarily on investigating the potential of 
GA and its utilization in combination with ML. Our research 
questions (RQs) are adjusted to the limitations of our 
available datasets and time and resources.  

The first three RQs utilize three common GoF patterns for 
analyzing and comparing the HyDPD components and the 
hybrid approach, since HyDPD-ML requires larger pattern-
specific datasets for training:  
RQ1. How does HyDPD-ML perform against three common 

GoF patterns? 
RQ2. How does HyDPD-GA perform against three common 

GoF patterns, and how does it compare with HyDPD-
ML? 

RQ3. How does the hybrid HyDPD perform against three 
common GoF patterns, and how does it compare with 
HyDPD-ML and HyDPD-GA? 

The next four RQs focus on analyzing HyDPD-GA's 
capabilities:  
RQ4. Can HyDPD-GA detect more abstract architectural 

patterns, in particular the Model-View-Controller 
(MVC) pattern? 

RQ5. How does HyDPD-GA perform against the 23 GoF 
patterns and in comparison to related work? 

RQ6. How does HyDPD-GA and HyDPD-ML perform 
against a large project in comparison to related work? 

RQ7. What performance latency and scalability can one 
expect with using HyDPD-GA and how does it 
compare with HyDPD-ML? 

The evaluation consisted of seven parts, each addressing a 
research question: A) HyDPD-ML with three common design 
patterns, B) HyDPD-GA with three common design patterns, 
C) hybrid HyDPD with the same patterns, D) HyDPD-GA to 
probe its ability with an architecture pattern: MVC, E) 
HyDPD-GA across all 23 GoF patterns, and F) HyDPD-GA 
performance latency and scalability  

The software configuration used in the evaluation 
consisted of srcML v1.0, Python 3.8, MongoDB v4, and 
Neo4j 4.2. Python libraries included: simplejson 3.17.4, 
pymongo 3.12.0, neo4j 4.2.0, tensorflow 2.6.0, googletrans 

3.1.0a0, scikit-learn 0.24.2, keras 2.6.0, beautifulsoup4 4.9.3, 
numpy 1.19.5, matplotlib 3.4.3, conda 4.10.3, dpd 0.0.1, 
dpdml 0.0.1, scipy 1.7.1, pip 21.2.4, pandas 1.3.2, jupyter-
client 6.1.12, jupyter-core 4.7.1, jupyter-server 1.10.2. The 
hardware configuration consisted of a PC with an i5-
10210U@1.6GHz CPU, 8GB RAM, 1TB SSD running W10 
Home. Docker v20.10.8 was used to containerize the services: 
jupyter-notebook, neo4j, mongo, and mongo-gui. 

Dirty datasets: While it would be feasible to only involve 
both pure training and pure test datasets (manually removing 
or fixing all incorrectly implemented or mislabeled projects) 
and thus boost the accuracy numbers, we instead chose to 
include the real-world datasets as they were labeled by the 
authors of the projects we found, even though the authors may 
have incorrectly implemented or labeled the patterns. Thus, 
we intentionally include real-world impurity and our 
calculated accuracies reflect this, rather than achieving the 
100% accuracy possible had we manually precleaned training 
and test datasets. 

A. HyDPD-ML Evaluation (Three Patterns) 
To address RQ1 and serve as a basis for comparison, the 

HyDPD-ML evaluation consisted of three steps: 1) dataset 
acquisition, 2) supervised training, and 3) testing.  

1) Dataset Acquisition 
It remains a challenge to procure sufficient code projects 

with implemented pattern datasets in different programming 
languages and various patterns for both training and testing an 
ANN. Due to resource constraints, we thus focused on three 
common patterns from each of the major pattern categories: 
from the creational patterns, Factory; from the structural 
category, Adapter; and from the behavioral patterns, 
Observer. We then found 25 unique single-pattern code 
projects per pattern small single-pattern code projects from 
public repositories, 49 in Java and 26 in C# (mostly from 
github and the rest from pattern book sites, MSDN, etc.), 
evenly distributed into as shown in Figure 6. They were 
specifically labeled as examples of these patterns and 
manually verified. These popular programming languages are 
supported by srcML, and the mix of languages permits us to 
demonstrate the programming language independent 
principle. Language inequalities between available pattern 
examples is likely attributable to the popularity and longevity 
of a language and interest in patterns in that community.  

Training data: Applying hold-out validation, of the 75 
projects available, we selected 60 (20 per pattern category) for 
training the ANN, with between 60-75% of the code projects 
being in Java (green) and the remainder in C# (blue) as shown 
in the upper section of Figure 6. 

Test data: The remaining 15 projects of the 75 total (five 
per pattern category with three in Java and two in C#) were 
used for the test dataset. In order to test whether signal word 
pattern matching significantly impacts the ANN results, these 
projects were duplicated and their signal words removed or 
renamed, resulting in six Java (orange) and four C# (purple) 
projects per pattern/category as shown in the lower section of 
Figure 6. This resulted in 10 test projects per pattern or 30 total 
test projects. 



 
Figure 6.  Pattern-specific datasets in columns with programming language 
specific training sets on the top rows and test sets on the bottom. 

2) Supervised Training 
As shown in Figure 7, during training the accuracy 

improves from 47% to 95% in the first seven epochs, 
thereafter fluctuating between 85-95% with a peak of 96.7% 
in the 27th epoch. The network loss metrics are shown in 
Figure 7. The loss value drops from an initial 1.0841 to 0.2816 
in epoch 17 before small fluctuations begin, with the trend 
continuing downward. The loss value of 0.1995 in epoch 27 
is an adequate prerequisite for detecting patterns in unknown 
code projects, and we saw little value in increasing the training 
epochs. The early stopping callback was not triggered since 
the overall accuracy of the network is still increasing despite 
the fluctuations, indicating a positive learning behavior and 
implying that with the given data points, it is finding structures 
and values that allow it to differentiate the three design 
patterns from each other. We thus chose to stop the training at 
30 epochs, which took 2-45 seconds depending on the 
underlying hardware environment (any Graphical Processing 
Unit (GPU) with CUDA support will improve processing 
times). 

  
Figure 7.  Network accuracy and loss over 30 epochs of training. 

Considering that the worst case of random guessing would 
result in an accuracy of 33%, the accuracy result of 97% is 
significantly better and shows the potential of the approach.  

The training results show that not only is the ANN 
learning to differentiate the patterns, its confidence for these 
determinations increases during the training. By epoch 27 
with an accuracy of 96.7% and a loss of 0.1995, only two out 
of the 60 total training projects spread evenly across the three 
design patterns are incorrectly classified.  

3) Testing 
For the test dataset, 15 unique code projects were selected 

(five unique projects per pattern), and these were then 
duplicated and their signal words removed, resulting in 30 
code projects. By removing the signal words, we can 
determine the degree of dependence of the network on these 
signal words. 

During testing, the reported accuracy dropped to 83.3%, 
meaning 25 of the 30 patterns were correctly identified. 
Furthermore, the loss went to 0.4060, meaning a loss in 
confidence of its determination. A deterioration in these 
values is to be expected when working with unfamiliar data. 

The resulting confusion matrix is shown in Table III, 
showing that the network was able to use its learned 
knowledge in training to correctly classify a majority of 
unknown projects (25 out of the 30 test projects). The 
precision column indicates how many of the predicted labels 
are correct, while the recall row indicates how many true 
labels were predicted correctly. Fewer false positives (FPs) 
improve the precision, while fewer false negatives (FNs) 
improve the recall value. All the code projects predicted to be 
Factory were correct (a precision of 100%), while the 
remaining 30% of the Factory pattern projects were 
incorrectly classified as another pattern, resulting in a recall of 
0.70. This indicates that the Factory is more easily confused 
with the other patterns, a possible explanation being that the 
metrics we used may better differentiate more involved (i.e., 
more complex) patterns. The other patterns had less precision 
(0.81 or 0.75), but a better recall of 0.90. The overall accuracy 
is 88.9% with an F1 score of 0.83. In one Observer testcase, 
HyDPD-ML was evenly split with Factory Method (0.46 vs. 
0.46) and thus categorized as a FP. 

As to the influence of signal words, our hypothesis that 
signal words would improve the results proved hitherto 
unfounded. The classification precision was not affected by 
signal words, with 12 projects with signal words and 13 
without being correctly classified. Additional test runs 
showed similar results (+/- one project).  

TABLE III.  CONFUSION MATRIX: ML TEST 10 PROJECTS PER PATTERN 

Predicted 
Labels 

True Labels Accur. Precision Recall F1 Score 
Factory Adapter Observer     

Factory 7 0 0 90.0% 1.00 0.70 0.82 
Adapter 1 9 1 90.0% 0.81 0.90 0.86 
Observer 2 1 9 86.7% 0.75 0.90 0.82 
Overall    88.9% 0.83 0.83 0.83 

Accur. = Accuracy 

TABLE IV.  CONFUSION MATRIX: ML CROSS-TESTING 90 PROJECTS  

Predicted 
Labels 

True Labels Accur. Precision Recall F1 Score 
Factory Adapter Observer     

Factory 24 0 1 92.2% 0.96 0.80 0.87 
Adapter 0 24 0 93.3% 1.00 0.80 0.89 
Observer 6 6 29 85.6% 0.71 0.97 0.82 
Overall    90.7% 0.87 0.86 0.86 

Accur. = Accuracy 

Since HyDPD-GA requires no training set, and we will be 
comparing HyDPD-ML with HyDPD-GA and the 
combination as HyDPD, it is pragmatic to utilize the entire 



dataset of 90 projects for our testing. Hence, we also applied 
ML across the entire dataset (including the training set) to 
serve as a reference for comparison and to ensure that DPD 
did not get worse when the training set is also used for testing. 
This result, which includes the training dataset, is shown in 
Table IV, showing that overall accuracy increased to 90.3%, 
with precision and recall increasing to 0.86 with an overall F1 
score of 0.86. 

B. HyDPD-GA Evaluation (Three GoF patterns) 
To answer RQ2 and to be able to compare HyDPD-GA 

with HyDPD-ML for the three GoF patterns, we utilized the 
entire ML dataset (both the training and test data) as the test 
dataset at 30 test projects per pattern and 90 total. The results 
are shown in Table V-VII below, where for this section we are 
focused on the columns HyDPD-GA and its comparison to 
HyDPD-ML (the column HyDPD will be discussed in the 
following section). The Testcase ID is unique only within a 
specific pattern (for internal tracking), so the ID may reoccur 
within another pattern and refers to a different test case.  

TABLE V.  DPD COMPARISON: FACTORY PATTERN 

Testcase HyDPD-ML HyDPD-GA HyDPD 
1 1.00 0.00 0.50 
10 1.00 0.70 0.86 
11 1.00 0.70 0.86 
12 1.00 1.00 1.00 
13 0.98 0.70 0.85 
14cs 1.00 1.00 1.00 
15cs 1.00 1.00 1.00 
16cs 1.00 1.00 1.00 
17cs 0.99 0.00 0.49 
18 1.00 1.00 1.00 
19cs 1.00 1.00 1.00 
2 1.00 1.00 1.00 
20 0.99 1.00 1.00 
21 1.00 0.70 0.86 
22 0.04 1.00 0.52 
23 0.98 1.00 0.99 
24cs 0.99 1.00 0.99 
25cs 1.00 1.00 1.00 
26 0.02 0.70 0.37 
27 0.03 1.00 0.51 
28 0.02 1.00 0.51 
29cs 0.03 1.00 0.51 
3 1.00 0.70 0.86 
30cs 0.05 1.00 0.53 
4 0.99 0.70 0.85 
5 1.00 0.70 0.86 
6 0.67 0.70 0.69 
7 1.00 0.70 0.86 
8 0.86 0.70 0.78 
9 0.99 0.70 0.85 
FN* 6 2 2 

*False Negatives marked in bold above 

In applying GA to the test datasets, certain testcases 
returned less than the ideal value of 1.0 (e.g., 0.75 would 
indicate a partial match and 0 no match). Since GA works 
differently than ML and can identify a specific node involved 
in a pattern, we can utilize the results to analyze the cause. A 
manual analysis found the following explanations for the 

discrepancies (non 1.0 values) in the HyDPD-GA column in 
Tables V-VII:  

TABLE VI.  DPD COMPARISON: ADAPTER PATTERN 

Testcase HyDPD-ML HyDPD-GA HyDPD 
1 0.06 0.75 0.40 
10 1.00 1.00 0.87 
11 1.00 1.00 1.00 
12 1.00 1.00 1.00 
13cs 1.00 1.00 1.00 
14cs 1.00 1.00 1.00 
15cs 1.00 0.75 0.87 
16cs 1.00 1.00 1.00 
17cs 1.00 1.00 1.00 
18cs 1.00 0.75 0.87 
19cs 1.00 1.00 1.00 
2 1.00 0.00 0.50 
20cs 1.00 1.00 1.00 
21cs 1.00 1.00 1.00 
22cs 0.89 1.00 0.95 
23 1.00 1.00 1.00 
24 1.00 1.00 1.00 
25 0.71 1.00 0.86 
26cs 0.07 1.00 0.54 
27cs 0.04 1.00 0.52 
28 0.05 1.00 0.52 
29 0.06 1.00 0.53 
3 1.00 1.00 1.00 
30 0.04 1.00 0.52 
4 0.64 0.00 0.32 
5 1.00 1.00 1.00 
6 1.00 1.00 1.00 
7 1.00 0.00 0.50 
8 1.00 1.00 1.00 
9 1.00 1.00 1.00 
FN* 6 3 2 

* False Negatives marked in bold above 

Factory pattern: 1) missing either an abstract Factory, an 
abstract Factory Method, or both, 2) using Builder and 
functional programming, 3) Factory Method does not return a 
Product (offers a getter call to retrieve it).  

Adapter pattern: 1) client missing or call of target method 
missing, i.e., code just shows a possible implementation 
without invoking the pattern 2) Adaptee calls the Adapter's 
method – but an Adaptee should not have to know about the 
adaptation (GA returns 0) 3) two different methods are used, 
one method overrides the target method and another method 
calls the Adaptee's method, 4) the Adapter does not actually 
call the Adaptee (GA returns 0). 

Observer pattern: 1) missing abstract Subject or abstract 
methods for notification, 2) missing methods to add or remove 
Observers from the internal list, 3) an external iterator, events, 
or delegation was used (GA returns 0). 

The results show no overlap of FNs occurred across all 90 
test cases - an indication of how each component differs and 
how they can be used together to complement one another. 
HyDPD-GA performed as good or better than HyDPD-ML for 
each pattern with the exception of the Observer pattern with 2 
FNs (False Negatives) versus 1 FN for HyDPD-ML.  

Table VIII shows the result for cross-testing the three 
patterns across the 90 test cases resulting in 270 tests in total 
(TN = true negative). HyDPD-GA had a total of 7 FNs and 1 



FP across the testcases, which compares well against the 13 
FNs and 13 FPs for HyDPD-ML. Overall HyDPD-GA shows 
as good or better recall, precision, accuracy, and F1 scores than 
HyDPD-ML, with the exception of the single FP for the 
Adapter pattern resulting in 96.4% vs. 100% precision, and 
the additional FN in the Observer pattern resulting in a recall 
of 93.3% vs. 96.7%. 

TABLE VII.  DPD COMPARISON: OBSERVER PATTERN 

Testcase HyDPD-ML HyDPD-GA HyDPD 
1 1.00 0.70 0.85 
10 1.00 1.00 1.00 
11 1.00 1.00 1.00 
12 1.00 1.00 1.00 
13cs 0.99 0.00 0.49 
14cs 1.00 1.00 1.00 
15cs 1.00 1.00 1.00 
16cs 1.00 1.00 1.00 
17 1.00 0.70 0.85 
18cs 1.00 0.00 0.50 
19cs 1.00 1.00 1.00 
2 1.00 1.00 1.00 
20cs 1.00 1.00 1.00 
21cs 1.00 1.00 1.00 
22cs 0.95 1.00 0.97 
23 1.00 1.00 1.00 
24 0.95 1.00 0.97 
25 1.00 1.00 1.00 
26cs 0.91 1.00 0.95 
27cs 0.95 1.00 0.97 
28 0.94 1.00 0.97 
29 0.95 1.00 0.97 
3 0.46 0.70 0.58 
30 0.94 1.00 0.97 
4 1.00 1.00 1.00 
5 1.00 0.70 0.85 
6 1.00 1.00 1.00 
7 1.00 1.00 1.00 
8 1.00 1.00 1.00 
9 1.00 0.70 0.85 
FN* 1 2 1 

* False Negatives marked in bold above 

C. HyDPD Evaluation (Three GoF Patterns) 
To answer RQ3, for all three patterns corresponding to 

Table V through Table VII, the hybrid probability (1) was 
calculated from the HyDPD-ML and HyDPD-GA results, 
with the result shown in column HyDPD. Across all three 
patterns, every single FN from either of the techniques was 
compensated by a partial or full detection by the other 
technique, with 0.32 for Adapter testcase 4 being the lowest 
combined score. the combination often compensates for a FN 
from another component as can be seen in the tables with the 
bold FNs. Furthermore, in practical use perhaps a threshold 
such as 0.3 instead of 0.5 could be used to trigger detection.  

Thus, the resulting combination as HyDPD provides a 
recall as good or better than any single component. Thus, 
HyDPD improves DPD by compensating for a FN of any 
isolated HyDPD-ML or HyDPD-GA value, since one may not 
detect a pattern that the other component can. While this may 
result in more FPs, we are of the opinion that the benefits of 
automation improve efficiency sufficiently that one would 

rather manually quickly verify a detection as false (FP) rather 
than misleading FNs. Thus, we prefer to minimize the miss 
rate or false negative rate (FNR).  

TABLE VIII.  270 CROSS-TEST DPD SUMMARY 

Component Result Factory Adapter Observer Total 
HyDPD-ML FP 0 0 12 13 

FN 6 6 1 13 
TP 24 24 29 77 
TN 60 60 48 167 
Recall 80.0% 80.0% 96.7% 85.6% 
Precision 100.0% 100.0% 70.7% 85.6% 
Accuracy 93.3% 93.3% 85.6% 90.4% 
F1 Score 88.9% 88.9% 81.7% 85.6% 

HyDPD-GA FP 0 1 0 1 
FN 2 3 2 7 
TP 28 27 28 83 
TN 60 59 60 179 
Recall 93.3% 90.0% 93.3% 92.2% 
Precision 100.0% 96.4% 100.0% 98.8% 
Accuracy 97.8% 95.6% 97.8% 97.0% 
F1 Score 96.6% 93.1% 96.6% 95.4% 

HyDPD FP 0 1 0 1 
FN 2 2 1 5 
TP 28 28 29 85 
TN 60 59 60 179 
Recall 93.3% 93.3% 96.7% 94.4% 
Precision 100.0% 96.6% 100.0% 98.8% 
Accuracy 97.8% 96.7% 98.9% 97.8% 
F1 Score 96.6% 94.9% 98.3% 96.6% 

 
HyDPD results in Table VIII show improved results, with 

only 5 FNs and 1 FP out of the 270 test cases, resulting in 
94.4% recall, 98.8% precision, 97.8% accuracy, and an F1 
score of 96.6%. In all cases, HyDPD provided as good or 
better results than either HyDPD-ML or HyDPD-GA alone. 

D. HyDPD-GA Evaluation (MVC Architectural Pattern) 
With regard to RQ4, 20 MVC test pattern examples (16 in 

Java and 4 in C#) were acquired and HyDPD-GA applied. The 
results were 16 TPs, 4 FNs, and 10 FPs. Recall is 0.80, 
precision 0.62, accuracy 0.53, with an F1 score of 0.70. The 
FNs were due to alternative implementations that deviated 
from the formal pattern expectation, while the high number of 
FPs was due to keeping the Cypher query abstract in order to 
maximize DPD given the numerous possibilities the 
architectural pattern could be implemented. We are of the 
opinion that we would rather verify a positive and determine 
a FP than miss a DPD due to a FN. Thus, we prefer to 
minimize the miss rate or FNR. Despite the worse results in 
comparison to the three GoF patterns, we believe HyDPD-GA 
to be a potentially promising technique for architectural 
pattern detection as well, and intend to investigate this further 
in future work. 

E. Evaluation of HyDPD-GA with all GoF Patterns  
RQ5 focuses on the 23 GoF patterns. Due to resource and 

time constraints, it was not feasible to train and evaluate the 
HyDPD-ML component (both alone and in conjunction with 
GA) against all remaining 20 GoF patterns at 25 sample 
projects per pattern, which would require the manual 
acquisition of an additional 500 code project samples. As 



HyDPD-GA performed well with relatively good accuracy for 
the three patterns evaluated previously in sections B and C, 
and since it requires no training sets, our GoF evaluation only 
utilized HyDPD-GA. For the remaining 20 GoF patterns, from 
GitHub and further sources we acquired at least 6 pattern 
examples (3 in Java und 3 in C#) per GoF design pattern as a 
test dataset. 

1) Testdata 
The Cypher query for each pattern was applied to its own 

pattern test data and tuned as described in the previous section 
IV.B to maximize its TP and TN. Then the queries were 
applied to the entire GoF pattern test set consisting of 258 
tests. The cross-testing resulted in 5934 tests being executed. 
A result of 1 was treated as positive, 0 negative, and in-
between values manually analyzed. Table IX shows the GoF 
DPD results, where X stands for Cross-pattern detection and 
indicates the number of unexpected detections of that pattern 
in a different pattern test set. These deviations were then 
manually analyzed to determine if that pattern did indeed 
occur in the other test set or if it was a FP, shown in the 
corresponding column.  

TABLE IX.  HYDPD-GA GOF DPD. 

  TC FN X FP TP TN A P R F1 
Abstract Factory 6 0 1 0 7 251 1.00 1.00 1.00 1.00 
Builder 9 0 2 2 9 247 0.99 0.82 1.00 0.90 
Factory Method 40 2 26 2 62 192 0.98 0.97 0.97 0.97 
Prototype 12 1 0 0 11 246 1.00 1.00 0.92 0.96 
Singleton 8 0 0 0 8 250 1.00 1.00 1.00 1.00 
Adapter 33 3 15 15 30 210 0.93 0.67 0.91 0.77 
Bridge 7 0 1 0 8 250 1.00 1.00 1.00 1.00 
Composite 10 0 10 0 20 238 1.00 1.00 1.00 1.00 
Decorator 14 0 6 6 14 238 0.98 0.70 1.00 0.82 
Façade 6 1 1 1 5 251 0.99 0.83 0.83 0.83 
Flyweight 14 1 0 0 13 244 1.00 1.00 0.93 0.96 
Proxy 6 1 6 6 5 246 0.97 0.45 0.83 0.59 
CoR 6 0 0 0 6 252 1.00 1.00 1.00 1.00 
Command 6 0 1 0 7 251 1.00 1.00 1.00 1.00 
Interpreter 6 1 3 3 5 249 0.98 0.63 0.83 0.71 
Iterator 6 1 0 0 5 252 1.00 1.00 0.83 0.91 
Mediator 6 1 0 0 5 252 1.00 1.00 0.83 0.91 
Memento 6 0 0 0 6 252 1.00 1.00 1.00 1.00 
Observer 30 3 3 3 27 225 0.98 0.90 0.90 0.90 
State 7 0 5 5 7 246 0.98 0.58 1.00 0.74 
Strategy 6 1 6 3 8 246 0.98 0.73 0.89 0.80 
Template Method 7 0 5 0 12 246 1.00 1.00 1.00 1.00 
Visitor 7 1 0 0 6 251 1.00 1.00 0.86 0.92 
Total 258 17 91 46 286 5585 0.99 0.86 0.94 0.90 

X = Cross-pattern detection; A=Accuracy; P=Precision; R=Recall 

A brief explanation of the FNs and FPs in Table IX: 
Builder: FPs were detected in Memento, whereby an 

Originator instantiates the Memento object based on its own 
state, resulting in similar behavior. 

Factory, Adapter, and Observer: the FNs are described 
above in Section B. One FP each in Composite and Façade. 

Prototype: FN: a clone method calls a Dictionary object, 
resulting in an incomplete graph mapping.  

Decorator: FPs: the DPD confusion occurs since 
Decorator, Adapter, Proxy, Interpreter, and State have 
structural similarities and primarily behavioral differences or 
differences of intent. Also, the main participant inherits 

functionalities from an abstract interface and has a reference 
to an object with this interface. 

Façade: FN: the Cypher query required that the Façade 
class use at least 3 independent classes, but the test case uses 
an inheritance hierarchy, an atypical realization of the pattern. 

Flyweight: FN: missing abstract Flyweight class. 
Proxy: FN: the Proxy class inherits the Service, a non-

compliant pattern. FPs: see Decorator explanation. 
Interpreter: FN: Interpreter method does not use the 

Context object for accumulating results. FPs: see Decorator 
explanation. 

Iterator: FN: an external class was used as an abstract 
iterator; thus the overwriting of the abstract method could not 
be detected. 

Mediator: FN: using functional programming; separating 
Listener and Handler classes rather than a common class for 
both purposes. 

State: FPs: see Decorator explanation. 
Strategy: FN: the client does not create specific strategies 

and does not define which strategy to use; decision made in 
the Context class, which does not reflect the classic pattern 
definition. 

Visitor: FN: The Visitor methods, which apply different 
logic depending on the type of argument, are missing; there is 
only one method with the type of the parent class. This 
violates the pattern definition. 

To summarize, out of 258 testcases there were 286 TPs, 
17 FNs, 46 FPs, and 5585 TNs, resulting in 0.99 accuracy, 
0.86 precision, 0.94 recall, and an F1 score of 0.90. We believe 
this rate to be relatively good for application on this real-world 
sampling. 91 cross detections triggered a manual analysis with 
half of them being FPs. Due to their similarities, certain 
patterns remain challenging to differentiate based only on GA. 
Note that, despite being labeled as such on the internet, a 
number of the FNs were non-compliant or atypical 
implementations, affecting the accuracy rate. While these 
could have been culled beforehand, we wanted to utilize a 
dataset with real-world labeling. Having a larger benchmark 
dataset prepared or approved by experts in the future would 
be helpful for tuning. We note that the four lowest F1 scores 
are for Proxy, Interpreter, State, and Adapter.  

F. HyDPD-GA Evaluation (JUnit) 
To evaluate DPD for a larger project, for RQ6 we 

analyzed the latest version of JUnit source code version 5.8. 
The 1170 Java source files contained 83595 NCLOC (non-
commented LOC) out of 143440 total lines. Since we do not 
presume to be familiar with the architecture of JUnit, we used 
a manual case-independent partial keyword search that 
included all the signal words used to train HyDPD-ML as well 
as certain other terms the GoF book contains with that pattern, 
including "also known as" or component or method names.  

The results for the three GoF patterns to compare HyDPD-
GA and HyDPD-ML are shown in Table X. Since the term 
"factorymethod" was found 137 times in 21 files, the range of 
HyDPD-GA and HyDPD-ML results seem probable. As 
adapter-related terms also occur relatively frequently, the 
range of results for HyDPD-GA and HyDPD-ML also seem 
probable. For Observer, since HyDPD-ML had the worst F1 



score with a precision of only 70.7%, in our opinion the high 
number of 689 hits are unlikely related to an actual 
implementation of the pattern and we would tend to see the 
HyDPD-GA results as more likely. If proved empirically true 
by further large project testing, one could, for example, tailor 
the HyDPD weightings of (1) for the Observer pattern more 
heavily towards HyDPD-GA. 

TABLE X.  DPD COMPARISON FOR JUNIT (THREE GOF PATTERNS) 

Pattern HyDPD-GA 
Hits [p<1] 

HyDPD-ML 
Hits 

Lexical Search 
Keyword* Hits(Files) 

[raw]** 
Factory 
Method 

33 
[24@0.71] 

150 factory 972(185) 
create 1099(202) 

implements 417(267) 
type 3455(367) 

factorymethod 137(21) 
Adapter 102 

[13@0.75] 
15 adapter 88(23) 

adaptee 8(3) 
target 538(145) 
adapt 100(24) 

wrapper 307(27) 
Observer 0 689 observer 0 

state 204(39) 
update 0 [6(3)] 
notify 17(7) 

publish 222(58) 
subscribe 0 
subject 0 
attach 0 [3(2)] 
detach 0 
register 706(109) 

unregister 14(4) 
deregister 0 

setstate 0 
getstate 0 

* partial any case code search; ML signal words in italics **[raw] values revised where obvious 

For small results where it was obvious, raw values 
sometimes were adjusted if the search result context made it 
clear the pattern was not involved, e.g., the use of the word 
outside of a pattern context in a comment or in error handling 
code for a different purpose. This was in no way a systematic 
analysis of each search result. 

HyDPD-GA was used for checking all 23 GoF patterns 
and provided various pattern detections that lexical analysis 
also found indicators for. Table XI compares our results with 
those of other work we found that published GoF DPD for 
JUnit, which utilized much older versions of JUnit. 
Nevertheless, we can compare the reported results by GoF 
pattern to see the relative extent of detection for such a project. 
Additionally, we performed a lexical search of JUnit v5.8 to 
determine if the pattern name as a keyword indicates possible 
usage, and this was marked next to our HyDPD-GA numerical 
result. While related work used only older JUnit versions, in 
comparison it does not seem to be completely off track in the 
detections, except for the high number of Adapter detections. 
As an explanation, for the three GoF patterns, HyDPD-GA 
had its lowest DPD scores for the Adapter and for all GoF its 
precision was 0.67 with an F1 score of 0.77. Thus, the Adapter 
pattern is possibly confused and not necessarily as high, yet 
the lexical results in Table X may make the higher number 
possible relative to what related work had found. 

TABLE XI.  FULL GOF DPD COMPARISON FOR JUNIT 
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Year 2022 2018 2017 2016 2015 2014 2014 2006 

Version v5.8 - 
v3.8, 
v4.1 v3.8 v4.1 v3.8   v3.7 v3.7 

Abstract 
Factory 0* 6 0     0 0 0 na 

Builder 11*         0       
Factory 
Method 33*   1     2 0 0 0 

Prototype 1         0       
Singleton 7*   0 0 4 0 0 0 0 
Adapter 102* 11 4     9 6 1 6 
Bridge 3* 9   2 4 0       
Composite 0*   1 1 2 0 1 1 1 
Decorator 1*   1 1 1 2 1 1 1 
Façade **          0       
Flyweight 1         0       
Proxy 1*         0       
CoR 0*         0       
Command 3*         0       
Interpreter 3         0       
Iterator 8*         0       
Mediator 1         0       
Memento 0         0       
Observer 0   3     1 3 1 1 
State 0*   3     0 3 4 3 
Strategy 0*         0       
Template 
Method 8* 38 1 12 22 1 1 1 1 

Visitor 0*   0     0 0 0 0 
*Manual lexical search indicates possible usage (may just use/extend Java API) **Memory issue 

The results indicate that HyDPD-GA can be utilized on a 
larger project and potentially find or detect patterns. As the 
HyDPD-GA accuracy rates for GoF as shown in Section E 
above were relatively good, we expect the results for JUnit to 
be comparable. However, we note the issues mentioned in that 
previous section, where similar patterns that are mostly 
differentiated by intention can result in a different labeling to 
a similar pattern (e.g., Decorator, Adapter, Proxy, Interpreter, 
and State being similar in structure), being thus more easily 
confused and having lower F1 scores. Detection would require 
a more in-depth analysis to determine if there are issues. 

G. HyDPD Performance Evaluation 
DPD performance was measured as depicted in Table XII 

for small projects (50 to 400 LOC from the test data sets) as 
well as for JUnit 5.8 (to exemplify a large project). The values 
are depicted on a log scale in Figure 8. The differences in 
latency are due to the varying number of positive (required) 
elements (nodes and relations) that need to be matched in a 
Cypher query while ensuring that negative unwanted elements 
are not in the structure. The queries thus vary in complexity 
and in turn affect latency. For instance, Interpreter has many 
conditions as well as negative conditions, whereas Singleton 
requires one class as a participant and has no negative 
conditions. The effects become more noticeable when 
analyzing larger projects.  



TABLE XII.  HYDPD-GA LATENCY 

Pattern Small project average 
(seconds) 

JUnit 5.8 
(seconds) 

Abstract Factory 0.04 0.09 
Builder 0.02 9.77 
Factory Method 0.02 0.10 
Prototype 0.02 0.21 
Singleton 0.02 0.05 
Adapter 0.04 183.71 
Bridge 0.04 0.26 
Composite 0.02 0.04 
Decorator 0.02 23.81 
Façade 0.02 error 
Flyweight 0.02 1.41 
Proxy 0.03 0.14 
CoR 0.08 1.90 
Command 0.03 12.60 
Interpreter 0.02 692.98 
Iterator 0.02 0.23 
Mediator 0.02 0.07 
Memento 0.03 1.59 
Observer 0.03 3.23 
State 0.02 3.01 
Strategy 0.05 58.34 
Template Method 0.02 0.21 
Visitor 0.02 0.31 
Total 0.63 994.06 
Average 0.03 43.22 

 

 
Figure 8.  HyDPD-GA per-pattern latency: small project average vs. JUnit 
(log scale). 

The total processing time needed for conversion, import, 
and DPD was measured as depicted in Table XIII. As one 
might expect for larger code bases, preparation processing 
time plays a more significant role, notably vector conversion 
for HyDPD-ML and Neo4j import for HyDPD-GA. During 
DPD execution, however, HyDPD-ML is not significantly 
impacted in contrast to HyDPD-GA. 

To address performance for larger projects, one 
workaround might be to apply HyDPD-GA selectively for 
only certain pattern searches, or to apply HyDPD-ML initially 
since it executes much more quickly, and then selectively 
apply HyDPD-GA to certain patterns or only to certain 
modules to confirm those that HyDPD-ML detected. 

TABLE XIII.  TOTAL PROCESSING LATENCY 

Process step Small project 
average (sec.) 

JUnit 5.8 
(sec.) 

 ML GA ML GA 
scrML conversion 0.11 0.10 29.2 29.24 
Training 5.90  5.90  
Vector conversion 16.75  22385.25  
MongoDB import  0.01  1.91 
Neo4j import  0.08  948.48 
Total preparation 22.74 0.19 22420.36 979.62 
DPD execution 0.01 0.63 0.11 994.06 
Total  22.75 0.82 22420.47 1973.69 

 

H. Evaluation Discussion 
The discussion of the evaluation results follows the RQs: 
RQ1: HyDPD-ML did demonstrate its feasibility, 

showing practical DPD results in cross-testing three common 
GoF patterns, with overall 90.7% accuracy, 87% precision, 
86% recall, and an F1 score of 0.86. 
RQ2: HyDPD-GA showed its feasibility, and performed 

relatively well against the three common GoF patterns, 
finding fewer but different overall fewer FNs and FPs than 
HyDPD-ML. Overall HyDPD-GA shows as good or better 
recall, precision, accuracy, and F1 scores than HyDPD-ML, 
with the exception of the single FP for the Adapter pattern 
resulting in 96.4% vs. 100% precision, and the additional FN 
in the Observer pattern resulting in a recall of 93.3% vs. 
96.7%. 
RQ3: For the three common GoF patterns, the hybrid 

HyDPD demonstrated its feasibility, performing well with 
results of 94.4% recall, 98.8% precision, 97.8% accuracy, and 
an F1 score of 96.6%. In all cases, HyDPD provided as good 
or better results than either HyDPD-ML or HyDPD-GA alone. 
RQ4: While HyDPD-GA can be useful for detecting more 

abstract architectural patterns, these are more challenging for 
GA to reliably detect due to their more abstract nature, 
enabling various implementation strategies. Testing the MVC 
pattern resulted in 0.80 recall, 0.62 precision, 0.53 accuracy, 
and an F1 score of 0.70. 
RQ5: For checking HyDPD-GA against all 23 GoF 

patterns, cross-testing our 258 GoF testcases resulted in 5934 
tests. It performed well, providing 0.99 accuracy, 0.86 
precision, 0.94 recall, and an F1 score of 0.90. It thus appears 
to provide quite useable results by itself. This could be 
especially suitable when larger datasets necessary for training 
(which HyDPD-ML would require) are unavailable.  
RQ6: Based on the relatively large project JUnit (83K 

NCLOC), when comparing HyDPD-GA to HyDPD-ML for 
the three GoF patterns, a range difference in hits was 
observed, which correlates with our previous analysis that 
FNs of one component are often compensated as TPs by the 
other, or in other words, one DPD technique is better than 
another in certain circumstances. A lexical analysis of the 
code provided insights into the likelihood of the pattern usage, 
and the low precision of 70.7% for HyDPD-ML for the 
Observer pattern and the lack of clear lexical evidence would 
indicate it has a high FP rate for this pattern. HyDPD-GA 
performed relatively well. HyDPD-GA was used for checking 
all 23 GoF patterns and provided various pattern detections 



that lexical analysis also found indicators for. While related 
work used only older JUnit versions, in comparison it does not 
seem to be completely off track in the detections, except for 
the high number of Adapter detections. As an explanation, for 
the three GoF patterns, HyDPD-GA had its lowest DPD 
scores for the Adapter and for all GoF its precision was 0.67 
with an F1 score of 0.77. Thus, the Adapter pattern is possibly 
confused and not necessarily as high, yet the lexical results in 
Table X may make the higher number possible relative to 
what related work had found. 
RQ7: HyDPD-GA performance latency and scalability 

showed that for simpler queries its DPD performance in 
relative magnitude is on par with HyDPD-ML (for JUnit 5.8 
a few seconds or less), but that particular patterns (in particular 
Builder, Adapter, Decorator, Command, Interpreter, Façade, 
Strategy) do require much longer query times. Preparation 
processing time plays a significant role before DPD can be 
executed, especially vector conversion for HyDPD-ML and 
Neo4j import for HyDPD-GA. 

To summarize the evaluation, HyDPD has shown that it is 
viable for DPD for multiple programming languages. While 
combining the different strengths of HyDPD-ML and 
HyDPD-GA, HyDPD can also compensate for certain 
weaknesses of the other and improves the overall DPD 
capability (e.g., fewer FNs and improved F1 score) while 
allowing for tailoring in weighting. More abstract 
architectural patterns such as MVC, while more challenging 
due to their abstract nature, can also be detected. For situations 
where insufficient training data is available for HyDPD-ML, 
HyDPD-GA can also be used alone and showed relatively 
good DPD results. Additionally, if performance and 
scalability are a primary factor, one alone can be chosen to 
lessen the impact on preparation or execution. 

VI. CONCLUSION 
This paper presented our HyDPD solution, a hybrid 

approach for generalized DPD utilizing graph analysis (GA) 
and Machine Learning (ML) and programming-language-
agnostic approach to automate the detection of design patterns 
via source code analysis. Its realization demonstrates its 
feasibility, using srcML as a common markup language to 
support multiple programming languages, and its generalized 
approach works for many different patterns. The HyDPD-ML 
component was realized with TensorFlow using static code 
metrics and semantic analysis, while the HyDPD-GA 
component uses Cypher queries on the graph database Neo4j. 

The evaluation compared each component and their 
combination for three common patterns across a set of 75 
single pattern Java and C# public sample pattern projects. 
HyDPD-GA was also used to detect the 23 Gang of Four 
design patterns across 258 sample C# and Java projects as well 
as in a larger Java project JUnit. By applying the hybrid, 
HyDPD can compensate for certain weaknesses of the other 
component and improves the overall DPD capability (e.g., 
fewer FNs and improved F1 score) while allowing for per-
pattern or per-technique tailoring in probability weighting. 
More abstract architectural patterns such as MVC, while more 
challenging due to their abstract nature, were also detected. 
While HyDPD-ML requires sufficient initial training data for 

a pattern, HyDPD-GA can also be used alone without training 
and showed relatively good DPD results. Performance and 
scalability measurements showed the differences between 
components, which can be considered as to which technique 
to apply, with HyDPD-GA showing high performance-
sensitivity for certain patterns due to the large number of 
matching and negative conditions that must be met. 

Future work will investigate the inclusion of additional 
pattern properties and key differentiators to improve the 
results even further. This includes analyzing the network 
classification errors in more detail to further optimize the 
network accuracy, adding support for the remaining GoF 
patterns, utilizing semantic analysis with NLP capabilities on 
the code for additional natural languages, supporting 
additional programming languages such as C++. Also, we 
intend to evaluate pattern detection when they are intertwined 
with other patterns and address accuracy, performance, and 
scalability on large code bases. We will also investigate the 
detection of additional design and architectural patterns and 
implementation variants and integration with maintainer and 
developer tooling. Furthermore, to address the risk of 
overfitting, we intend to apply cross-validation and consider 
alternative classification schemes. Thereafter, we intend to do 
a comprehensive empirical industrial case study. 
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