
Utilizing Fuzzy Sets and Rule Engines for Intelligent Task Assignment in Industry 4.0
Production Processes

Gregor Grambow, Daniel Hieber and Roy Oberhauser

Dept. of Computer Science
Aalen University
Aalen, Germany

e-mail: {gregor.grambow, daniel.hieber, roy.oberhauser}@hs-aalen.de

Abstract—Today’s Industry 4.0 Smart Factories involve com-
plicated and highly automated processes. Nevertheless, certain
crucial activities such as machine maintenance remain that
require human involvement. For such activities, many factors
have to be taken into account, like worker safety or worker
qualification. This adds to the complexity of selection and
assignment of optimal human resources to the processes and over-
all coordination. Contemporary Business Process Management
(BPM) Systems only provide limited facilities regarding activity
resource assignment. To overcome these, this contribution pro-
poses a BPM-integrated approach that applies fuzzy sets and rule
processing for activity assignment. Our findings suggest that our
approach has the potential for improved work distribution and
cost savings for Industry 4.0 production processes. Furthermore,
the scalability of the approach provides efficient performance
even with a large number of concurrent activity assignment
requests and can be applied to complex production scenarios
with minimal effort.

Keywords—Business Process Management Systems; Fuzzy
Logic; Rule Engines; Resource Allocation Algorithms; Assignment
Automation.

I. INTRODUCTION

With this paper we extend our previous work [1], where
we first introduced our intelligent assignment concept. We
expound on the concrete workflow and implementation of the
utilized fuzzy sets for task assignment in Industry 4.0 pro-
cesses. Furthermore, we present a functional implementation
of the Rule Interface, introduced in our previous work as a
theoretical concept. Finally, we tie together our other work,
successfully implementing the intelligent task assignment.

”Industry 4.0” stands for the fourth industrial revolution
driven by digitalization [2]. Highly automated Smart Factories
enable more efficient and individual production methods as
well as greater customer focus. This includes the compre-
hensive control and organization of the entire production
value chain by utilizing real-time data processing across all
production stages. Cyber-Physical Systems (CPS) [3], which
consist of information technology (IT), machines, and built-in
sensors, form a unit that enables comprehensive optimization
of production with regard to criteria such as costs, resource
consumption, quality, or availability. While a strong focus
on autonomous systems and the highest possible degree of
automation exists, in highly complex processes human involve-
ment remains indispensable. Often the production process

depends on activities, in which people intervene, perform
complex activities and make important decisions.

Such higher-level business and production processes are
typically governed by Business Process Management Systems
(BPMS) [4], also known as Process-Aware Information Sys-
tems (PAIS). BPMS are in charge of the sequencing of the
different activities belonging to a business process including
automated activities and those processed by human agents. The
success of any BPM process realization can be endangered
by excessive activity automation and poor design of work
assignment strategies [5]. Therefore, assigning the optimal
agent to an activity and vice-versa is a time-consuming but
necessary task with every BPMS. In most BPMS, so-called
Staff Assignment Rules (SARs) (or resource allocation) are
utilized to achieve this. Yet this area has not received sufficient
research attention, as indicated by the survey by Arias et al.
[6] .

Moreover, in Industry 4.0 production scenarios, many differ-
ent factors have to be taken into account to select an agent that
can process an activity in an efficient and effective manner.
An obvious example for such factors is the qualification of
the agent, who must have the necessary skills and abilities to
correctly execute the activity without being overqualified (and
thus incurring unnecessary cost overhead). Usually agents with
a much higher qualification level should not be assigned to
a particular activity. Such optimizations should also consider
balancing the agent workload to not overburden an agent while
others are idle.

In large production facilities, the physical location of the
agents and where the activities are to be performed also play
an important role. An example are maintenance activities that
have to be executed from time to time across a large number of
production machines at a large facility. If not optimized prop-
erly, agents may waste a substantial amount of time in transit
to activities, analogous to the well-known Traveling Salesman
Problem [7]. Due to the high complexity of Smart Factories
and their CPS, involving specialized external (maintenance)
workers with specific knowledge to maintain a system can
incur additional costs. To contain these costs, utilization of
internal employees should be preferred if possible, depending
on the urgency, availability, and qualification levels. In modern
production, worker safety is also an important factor that is
usually regulated by respective laws, which address hazards



such as chemical, electrical, heat, and noise and may not be
adequately tracked by automation systems.

When taking such factors into account, it becomes evident
that standard BPMS SARs are insufficient because they are
only capable of determining if an agent is available to perform
an activity, but cannot readily determine the degree of suit-
ability. Fuzzy logic’s [8] fine granular classification between
0 and 1 provides a way to overcome the limitations of simple
Boolean logic and determine a specific assignment score for
each agent for each possible assignment. Automating such a
generic and recurring activity can optimize work efficiency
and manpower cost, while reducing employee frustration when
automated systems seem inflexible or make unsuitable assign-
ments. By combining fuzzy logic with rule processing, pre-
filtering allows the fuzzy-specific areas to be factored from
the rest of the more obvious rule-based resource allocation
problem, utilizing the best of both fuzzy logic and rule engines.

In prior work [9][10][11], we also developed a different
approach for contextual process management that did not
rely on Fuzzy Sets but rather utilized an adaptive process
management engine. software engineering processes and did
not use fuzzy sets or involve the complex specifics of Industry
4.0 nor processes with integrated AR support. The main
focus was extending processes with properties to enable auto-
mated software quality assurance and support collaboration of
software engineers. This was realized via automatic process
adaptations.

In this paper, we contribute an approach for activity assign-
ment in Industry 4.0 projects that takes the aforementioned
factors into account. By applying fuzzy sets and a rule engine,
fine-grained levels of suitability are integrated to improve
resource assignment results. To demonstrate its feasibility, we
integrated our solution with a common BPMS. We further
extended our previous version of the Intelligent Assignment
Component with the integration of a rule engine, which was
only theoretically discussed in our earlier work.

The remainder of this paper is structured as follows: Section
II highlights related research and background information.
Section III then describes the general concept and an initial
solution approach, while Section IV details the concept for
our Intelligent Assignment Component (IAC). In Section V,
we provide specific implementation details focusing on the
IAC while addressing the overall prototype. Then in Section
VI we evaluate our solution. Finally, Section VII provides a
conclusion and outlook on future upcoming work.

II. RELATED WORK

In literature there are numerous approaches for activity as-
signment optimization utilizing different algorithms like fuzzy
sets. Kubler et al. [12] provide a survey of the application of
Fuzzy Logic in combination with Multiple Criteria Decision-
Making, and within the category resource allocation, Shahhos-
seini and Sebt [13] is the only example of its application to
human resource allocation. However, it is specific to construc-
tion companies, centers around four specific human roles and
lacks an integration strategy with BPMS. Similarly, Kłosowski

et al. [14] also discuss a fuzzy model for assigning workers
to production activities. The main focus of their approach is
employee assessment and a rich set of properties. However,
for our use case, the model is too generic and contains
unnecessary properties, while at the same time neglecting other
important factors like worker safety or location. Furthermore,
it also lacks BPMS integration concepts. Seifi et al. [15] apply
fuzzy logic to optimize human resource allocation for project
planning in small-to-medium sized organizations and does not
consider live processes with a BPMS. In contrast, our work
focuses on the Industry 4.0 production and is integrated with
a BPMS.

Kluza and Nalepa [16] provide a formalized model com-
bining a procedural business process model with Attribute
Relation Diagrams for rules, and describe an algorithm that
can generate an executable BPMN model with decision table
schemas for rules in XTT2 representation. In contrast, our
approach does not address automatic generation of models,
and while supporting the simplicity of rules, our approach can
address more complex problems with resource allocation by
using fuzzy logic.

Antonelli and Bruno [17] deal with an Industry 4.0 topic: ac-
tivity assignment in human robot collaboration. This approach
splits the activity assignment problem into activity classifica-
tion with a decision tree classifier and activity assignment with
a decision-making algorithm. However, the approach does not
address BPMS integration and relies on Boolean rather than
fuzzy values, which makes it somewhat synthetic. In addition,
worker safety is not taken into account.

Another approach for activity-resource assignment that ap-
plies fuzzy logic is presented by Xu et al. [18]. It contains
a comprehensive but complicated fuzzy model targeted at
collaborative logistics networks comprising logistics service
integrators, activity contractors, and resource providers. Thus,
the model cannot be used for the assignment of single workers
in Industry 4.0 production. Finally, a category of approaches
similar to Simpson and Roberts [19] utilize various algorithms
like Bayesian methods, heuristic algorithms or game theoretic
approaches for activity assignment in spatial crowdsourcing.
As this domain has rather specific properties on which the
algorithms rely, they also cannot readily be applied to Industry
4.0 production and for similar reasons, BPMS integration is
not included in these approaches.

Approaches using rule-based resource allocation include
iDispatcher [20], which focuses on the insurance domain using
ILOG JRules. It does not address non-human allocations,
context-awareness, or fuzzy problems. Li et al. [21] use the
Drools rule engine and focus on human resource allocation
for the IT service order rather than the Industrial Internet of
Things (IIOT) domain. While mentioning the term workflow
engine, it does not state which one nor explicitly address how
it is practically integrated with a BPMS to do the assignment
for an activity. Havur et al. [22] use Answer Set Programming
with the clasp solver on timed Petri Nets using RDF Schema
as a resource ontology for the railway engineering domain. In
contrast, our work shows integration with commercial BPMS



and utilize the combination of a rule engine and fuzzy logic.
Sikal et al. [23] utilizes process mining for resource variability
discovery, but does not explicitly address rule modeling, fuzzy
problems, nor the integration in a specific BPMS, and pre-
sumes this data is available a priori for analysis. Erasmus et al.
[24] apply the Fleishman taxonomy for specifying activities,
human resources, and their ability-based allocation during
runtime for a manufacturing case study. The information
from their method is stored in an SQL database and Java
methods are used to make the assignments with the Camunda
BPM. It does not address non-human allocations nor fuzzy
problems. Vasilecas et al. [25] describe a rule- and context-
based approach of dynamic business process modeling and
simulation. It consists of a custom .NET-based implementation
without BPMN compliance, is focused on simulation, and
considers an ordering process.

Further non-fuzzy resource-allocation related work includes
Ihde et al. [26] who describe a resource-aware extension
framework to a traditional BPMS for process designers to
specify resource allocation constraints, enabling external allo-
cation services with different algorithms to process activities.
They did not apply fuzzy logic nor did it involve a Industry
4.0 or production situation. Tan et al. [27] propose an optimal
resource allocation strategy for cooperative task scheduling
in cross-organizational business processes. It focuses on team
formation, considering professional and cooperative ability,
analyzing process event logs for an insurance claim business
process. In contrast, our work extends an actual BPMS, uses
fuzzy logic, and is applied in the Industry 4.0 domain.

III. SOLUTION APPROACH

While different fuzzy-based approaches for activity assign-
ment exist, they are often rather generic and complicated,
or too specific and tailored to a certain domain. Moreover,
they typically do not address integration with contemporary
BPMS. To overcome these limitations and be able to create
a usable system for Industry 4.0 scenarios, we focus on a
more concrete model and a specific component executing the
activity assignments while addressing integration with current
BPMS.

To achieve suitable assignments in a practical and applicable
manner, our approach addresses these requirements:

1) The system shall calculate an assignment score that
reflects the suitability level of agents for handling a
specific activity.

2) The runtime shall be capable of handling a large number
of concurrent assignment scoring requests efficiently.

3) Integration into BPMS shall be readily feasible.
To maximize the efficiency of optimization options and

support easy integration into various BPMS, a new system for
handling assignments is created. By decoupling the assignment
process from the BPMS, a separate component can be imple-
mented solely for the assignment process, permitting better
performance optimization without the constraints imposed if
one were to internally extend a specific BPMS. Furthermore,
this decoupling via a generic API supports a generic approach
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Figure 1. Assignment and context engine conceptual architecture.

that can support integration across a much wider range of
BPMS. The conceptual architecture of the novel Assignment
and Context Engine (ACE) providing such functionality can
be seen in Figure 1.

The ACE uses a layer pattern, which is further subdivided
into components, with each layer contributing to the final
solution. Via the modular layers, if desired, the Data and
Algorithm Layer could be directly integrated into BPMS
(potentially enhancing performance). Alternatively, only the
Assignment Handler or its individual components could be
directly integrated in a BPMS (with a reduced set of features).
Thus, we hitherto focus on the ACE as a holistic solution to
fulfill the aforementioned requirements.

The public REST and Publish/Subscribe (Pub/Sub) In-
terfaces in the Request Layer are used as a BPMS- and
programming-language-independent interface, allowing the us-
age of the ACE with any BPMS supporting BPMN 2.0 or
later. The REST and Pub/Sub interface can be used used
interchangeably as required by the concrete use-case, depend-
ing on the message volume and other factors. This standard
offers a wide range of elements to integrate external services
and functions [28] [29]. The integration is based on a dual
activity concept. A utility-activity requests an assignment for
the execution-activity succeeding it in the process workflow.
For the utility-activity, two approaches in BPMN 2.0 are
possible and should be chosen according to the capabilities
of the applicable BPMS (Figure 2).

The synchronous variant utilizes a Service Task to request
the assignment from the ACE synchronously. The service
activity receives the required data from the process and then
awaits the calculated assignment. Finally, it assigns the agent
with the highest suitability level to the activity. The asyn-
chronous variant utilizes a Script Task that obtains all the
required values itself, accessing the BPMS and then requesting
an assignment asynchronously. The BPMS can then ignore the
process until the assignment is calculated and no resources
have to await a response. As soon as the ACE finishes the
calculation, it calls the BPMS API and assigns the best fitting
agent to the activity itself. With this approach every state-of-
the-art BPMS can easily be integrated (requirement 3) and one
ACE could even support multiple BPMS at the same time.

Once a request is received by the backend, it is validated by
the Data Aggregation Component (DAC). If all required infor-
mation is present, the request is passed on to the Assignment
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Figure 2. Activity solution variants (synchronous variant on top,
asynchronous variant on bottom).

Handler. If some data is still missing the DAC can receive this
via predefined external sources, e.g., a database containing the
agents attributes (like position, or qualification) or directly via
the BPMS API if endpoints to request additional information
are provided.

The Assignment Handler is responsible for the overall
assignment process, this is split into three parts:

• Checking preconditions
• For the requesting activity, determining the assignment

score for each agent; and
• Triggering the assignment process in the BPMS
To reduce the overall load on the IAC, and to enable

task filtering on external values (like sensor measurements
or available inventory), rule-based methods are employed. By
creating a Rule Interface as a facade, external rule engines can
be readily connected to the ACE. These can utilize efficient
algorithms to validate if preconditions are fulfilled or if some-
thing prevents the successful assignment and execution of the
task. This rule engine integration can also be used to pre-filter
agents, removing incapable agents from the actual assignment
calculation. This can be advantageous when involving a high
number of agents per task, as chaining algorithms are generally
more efficient than fuzzy sets (requirement 2).

In order to provide the desired assignment score with
a fine granular suitability level, fuzzy sets are chosen. As
seen in Section II fuzzy approaches are able to generate
very precise assignment scores (requirement 1) in an ef-
ficient way (requirement 2). This is an improvement over
currently employed chaining-based SARs, which are capable
of calculating accurate assignments, but lack the capability to
differentiate between suitable agents, and thus do not provide
overall optimal assignments. While a Machine Learning (ML)
approach would also be feasible, the fuzzy sets provide some
striking advantages. For fuzzy sets, no preexisting datasets
are required, and necessary weights can be (re-)configured
according to empirical manual feedback or settings rather than
requiring actual digitalized data for analysis and training. This
enables more traditional companies with weak digitalization
and low to no sensor coverage an intelligent assignment
capability without a costly and long running preparation phase.
Also, this capability can transfer the intelligent assignment
with adapted weights instantly to all parts of its production
and workflow. Moreover, our intelligent assignment approach
avoids the (costly) training phase typically required by ML

approaches.
While it may seem possible to achieve similar functionality

with an alternative non-fuzzy approach, due to the benefits
and arguments noted above, we believe this would require far
more work to achieve the equivalent out-of-the-box function-
ality, flexibility, and maintainability that a fuzzy set approach
provides (without necessitating preexisting data or training).

For determining the assignment score and assigning the
most suitable worker, the ACE can either directly assign the
agent via a REST-API (present in many of the most popular
BPMS), or the assignment could be conducted in the sync
service utility activity via script access to the BPMS from
within the process itself.

Due to the complete decoupling of BPM and ACE, the latter
can be scaled independently of the scaling of the BPMS, such
that a high workload on one of these engines does not affect
the performance of the other. The separation further allows the
implementation of an optimized multi-processing and scaling
functionality, guaranteeing optimal efficiency even at high load
(requirement 2). The performance optimization takes place at
different levels. First, a multi-threading approach is utilized in
the Request Layer following reference architectures for REST
and Pub/Sub APIs. The subsequent handling of the request in
the Data and Algorithm Layer is handled in a separate process
decoupled from the Request Layer. To further accelerate large
assignment calculations, the IAC has its own scaling function
introduced in Section IV.

Figure 3 shows simplified workflow graphs for two BPMN
processes using the IAC to assign an agent to its execution
activity. In Figure 3A) this is done via the concept described
above, utilizing an asynchronous script utility activity. This
activity requests an assignment from the ACE via REST and
instantly receives an empty response to complete the utility
activity. Afterwards, an external rule engine is called via
REST using the Rule Interface. Receiving the response, the
Assignment Handler than triggers the IAC to calculate the
assignment scores via fuzzy sets. Afterwards, the Assignment
Handler assigns the execution activity via the BPMS REST-
API to the most suitable agent. The execution activity is
available all this time (right after async script utility activity is
completed by the empty REST response from the Assignment
Handler), however, it is not assigned to any agent until the
Assignment Handler does so via the REST API.

In Figure 3B. the assignment is handled via a synchronous
service utility activity, calling the rule engine directly via a
REST call and incorporating the IAC directly in the script
activity itself. This approach supports the execution activity
during the assignment process and does not allow refined
scaling options outside of the BPMS itself.

As previously mentioned, it is also possible to call the
Assignment Handler via a synchronous service utility task,
merging the two approaches displayed in Figure 3. This
works similarly to asynchronous script task approach, with the
difference being that the assignment is handled by the service
task rather than via an API call from the Assignment Handler.
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Figure 3. Different integration options in a BPM-engine with the utilization of a rule engine.

IV. INTELLIGENT ASSIGNMENT COMPONENT

The IAC is a standalone component of the ACE Assign-
ment Handler. Containing the fuzzy logic for the assignment
calculation, it is the functional core of the engine. This section
highlights the conceptual decisions behind the component and
details its internal structure.

A. Models

In order to compute meaningful assignment scores, the IAC
requires a custom set of models. This is provided by the
Assessment Criteria which are supplied as part of each activity
and agent data set. These data sets can either be directly
sent by the BPMS, when a new assignment request is sent,
or be actively collected by the DAC via the BPMS API and
connected data sources. For the second version the ID of all
available agents and the activity must still be provided as part
of the assignment request.

These models were also used as a foundation to create the
Context and Augmented Reality eXtension (CARX) for BPMS
[30]. This extension includes a modeler to create new BPM
process templates, which contain all information required to
enable an assignment via the IAC, while being fully BPMN
2.0 compliant and supporting the easy addition of information
to new processes or the upgrade of existing processes.

1) Assessment Criteria Model: The Assessment Criteria
consist of five parameters (oriented on real-world examples)
that define the values for determining the assignment. These
are required in activities and agents used with the IAC. It can
be viewed as an interface required by all data and components
connected to the assignment.

Distance: calculates the distance between agent and activity
position optimizing assignments regarding the travel distance.
Position objects contain 3D coordinates with numeric values
for X, Y and Z.

Qualification: calculates the difference between the required
qualification for an activity and the existing qualification of an
agent. It answers the Boolean question if the agent is capable
of performing the activity, and permits the determination of
a possible over-qualification to prevent utilizing expensive
agents on trivial activities. Qualification objects consist of the

four parameters: ”electrical”, ”computer”, ”engineering” and
”bio chemical”, which represent the different skills of agents
or activity requirements in this area. As this skill cannot be
calculated automatically and must be defined by humans, each
parameter will be represented by a number between 0-10. This
provides an accustomed scale to rank skill and requirements
instead of a default fuzzy scale from 0-1, which is more
abstract and an unusual scale for people.

Hourly Rate: calculates the extra cost of using a given agent
for an activity per hour in Cents. This prevents the usage of
external/temporary workers that incur extra costs if a similar
qualified employee is available. This should not include the
salary of permanent staff, as their salary is independent of
their utilization rate. The cost is represented by an integer to
prevent floating errors.

Workload: calculates the capacity utilization of agents,
preferring agents with few enqueued activities and preventing
overloaded agents form enqueueing additional activities. Thus,
load balancing between resources and compliance with labor
protection regulations can be supported within the algorithm.
This could either be added to the agent itself by the BPMS, or
can be calculated using the agents work list, which is present
in all BPMS. The parameter is represented by an integer value.

Danger Level: calculates if an agent can safely perform an
activity. As some activities have special hazards and given
safety regulations, only agents with an appropriate safety
clearance can be assigned to these. The Danger is thereby
defined by an object consisting of the four parameters: ”noise”,
”heat”, ”electrical”, and ”chemical”. The separate values are
represented by float values between 0 and 1. This provides an
abstract concept, but can easily be modified for more concrete
parameters as required for a given concrete use case.

2) Activity Model: This model can consist of any BPM
activity extended with the Assessment Criteria except Hourly
Rate and Workload, since the cost of an activity is irrelevant
for its optimal assignment, and an activity itself has no
workload in the context used by the IAC.

As the model extends BPM activities the activities priority
remains intact and is respected by the IAC during activity
assignment.
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Figure 4. IAC - workflow tree.

3) Agent Model: The model consists of a BPMS human
resource (user) extended with the Assignment Criteria as
attributes. In a minimal engine configuration, such a resource
might only contain an ID. In contrast to the activity, all criteria
are mandatory, as they all provide valuable data for calculating
optimal suitability levels. The Danger Level object is renamed
to Danger Threshold on the agent level for a more descriptive
and easier-to-understand naming. If a task is assigned to
an agent the danger level of the activity is subtracted from
the agent’s threshold, preventing an overload with too many
dangerous activities, which could lead to potential labor law
violations and increased incident risk. After a resting period,
the agent’s danger levels are reset (e.g., at the start of the
agent’s next shift or after a longer break).

B. Overall Assignment Algorithm

The internal algorithms in the IAC are based on a Fuzzy
Logic approach. In contrast to ML, no existing datasets are
required, only a scheme of the data is mandatory to configure
the fuzzy sets. However, the same level of fine calculation
of the suitability score is possible, as opposed to the simple
calculation of suitability based on chaining. As described ear-
lier, the activity and agent list are provided to the component
either directly by the BPMS or via the DAC according to the

aforementioned models, and can therefore be directly supplied
to the algorithms as parameters without further aggregations
or parsing. After executing the algorithms, the IAC will return
the suitability level for all provided agents to the Assignment
Handler.

To speed up the processing time for large numbers of
agents, the IAC can run calculations in a multi-processing
configuration with multiple available modes. This allows an
optimal resource allocation concerning the concrete assign-
ments, rather than a general solution that could slow simple
assignment calculations or non-optimally benefit more com-
plex calculations.

An approximate workflow of the IAC can be seen in Figure
4. However, while parts of the fuzzy calculation are shown
in parallel, it is actually executed sequentially. This format
was chosen for its space-efficient layout. The order of the
different calculations does not matter for the final result. The
block displayed in brackets can either be executed in parallel
via multi-processing or sequentially as a loop. The figure also
contains images of the used fuzzy models to provide a general
idea how they look. Figure 5 displays the over-qualification
model in detail.

1) Preprocessing: After providing the activity and agent
data to the IAC, some preprocessing steps take place (c.f.



Figure 4 Preprocessing). While the input values are already
validated and per definition complete, the position entry for
tasks is not necessarily set, as other defaults can be used.
Namely, the position of a connected machine - if no positional
constraints are enforced, and the position of the agent. There-
fore, if no position is set, ”Validate Input Values” attempts to
determine the position of the machine connected to the task.
If no machine is set, the value is left empty.

For the second step ”Initialize Process Pool”, the configu-
ration is checked for the multi-processing flag. If this flag is
set, it is checked if a pool amount is set. If no pool amount
is set, the number of processes in the pool is set to n − 2
where n is the number of cores of the host system. A process
pool is created and the following steps shown in brackets are
executed in parallel by the different processes for each agent
supplied to the IAC. Else, if no multi-processing flag is set,
they are executed in a loop, once for each agent, in a sequential
manner.

”Position Checkup” is the final agent-specific validation of
the position. If, in earlier steps, no position was assigned to the
activity, it is set to the agent’s current location. This is required,
as the fuzzy set for distance requires a position value of the
activity, even if the activity itself is not location-dependent. If
the activity position is already initialized (e.g., via the activity
context or a connected machine) this step is skipped.

The final preprocessing step ”Calculate Distance”, calcu-
lates the Euclidean distance between the agent and activity.
This is done by transforming the position values of agent and
activity into three dimensional vectors (x, y, z) and deducting
them. This can be used as a simple orientation. In a finalized
productive system, however, this should be replaced by a more
refined path calculation algorithm, providing a more resilient
calculation for the following fuzzy set.

2) Fuzzy Calculation: After the preprocessing steps, the
calculation of the actual fuzzy models can begin. Overall,
the agent with the highest score is preferred. Therefore, all
Assignment Criteria for each requested agent are calculated
distinctly, with 1 being the best score possible and 0 the
worst. Besides the score calculation, the fuzzy sets also contain
certain exclusion criteria. In this section we only mention when
they are reached, with a brief description why they are chosen.
In the next section, we further elaborate these exclusion criteria
in detail. The concrete calculation for each value is conducted
as follows:

Distance: this algorithm uses the distance calculated in
the corresponding preprocessing step as a basis. Distances
between 0 and 1000 are mapped to a fuzzy value from 1 to 0,
where all distances above 1000 are also mapped to 0, in order
to simplify the handling of large distance values. Therefore,
agents in close proximity to the activity are preferred in the
assignment, and all agents further than 1000 units away are
heavily discriminated by the fuzzy set. However, as this is no
exclusion criteria, even agents further than 1000 units away
could still be assigned to the activity if they are the overall
most suitable agent.

Workload: the workload can take values between 0 and 20 at

Figure 5. Qualification fuzzy model showing fuzzy score of agent
over-/qualification for a task with qualification requirement 5.

maximum. Values between 0 and 20 are mapped to the fuzzy
value between 1 and 0, while values equal to or greater than
10 are mapped to 0. This still allows the assignment of new
activities to workers that already have 10 or more activities
assigned to them, but prefers those with smaller workloads.
Further, if the workload has a value of 20, the score is set to 0
and triggers the overloaded exclusion criterion, preventing the
algorithms from assigning any more activities to this specific
worker, thus preempting the overburdening of agents.

Danger Thresholds: for each danger value, a separate fuzzy
set is calculated. After the disjunct calculations, all values are
added to a common fuzzy domain and weighted according to
a configuration (cf. Figure 4 ”Calculate Dangers”, first each
domain is processed isolated, then all values are combined in a
single domain). In the default case, all values are weighted the
same, leading to a 25% weight per value. All danger values
between 0 and 1 are mapped to fuzzy values from 0 to 1, where
all values below the activity’s danger level are 0 and trigger an
exclusion criterion. This addresses labor law regulations while
increasing worker safety. All values above the requirement
through the maximum danger threshold of 1 are mapped
between 0 and 1. An agent who approximately meets the
requirements can therefore work on the activity but gets a
score of 0. This prefers agents with higher danger thresholds,
as they are most likely more experienced and more rested
than agents with lower danger thresholds. While a valid agent
who barely fulfills the requirements and an agent who fail the
requirements both get a score of 0, a final filter in the ”Validate
Exclusion Criteria” Algorithm of the Score Calculation block
removes all invalid agents from the assignment.

Qualification: the qualification is calculated in three separate
fuzzy models. First, the four values of qualification (electrical,
engineering, computer, bio chemical) between 0 and 10 are
compared to the values of required qualification of the activity
between 0 and 10 via separate fuzzy sets similar to the
danger levels. All values below the activity’s requirements are
assigned to 0 and trigger an exclusion criterion, as the agent is
technically not capable of performing the requested activity.
All values above the requirement are assigned to 1. Subse-
quently, the degree of over-qualification is calculated in the



TABLE I. IAC EXCLUSION CRITERIA.

Criteria Condition Explanatory note
Qualification Agent qualification below activity requirement This prevents agents from being assigned to activities they are formally not

capable of, potentially reducing rate of errors, incident risk and execution time.
Workload Workload of agent greater or equal to 20 This prevents the overburdening of agents with too many activities. Also, the

general time before an activity is executed is reduced, as they are split more
equally between the available workers.

Danger level Agent’s danger threshold below activity’s danger level This prevents potential labor law violations and increases the safety of activity
executions.

second fuzzy model. Starting from the required qualification
up to the max qualification of 10, each qualification value is
assigned to a fuzzy value between 0 to 1, where 0 perfectly
fits the required qualification value and 1 is the maximum
amount of over-qualification possible. Afterwards the over-
qualification is subtracted from the qualification value resulting
in a value between 0 and 1 called degree of qualification,
where 1 is a perfect fit without over qualification and 0 is a
maximum over-qualification.

These values were all empirically selected and provided
good results during our early tests. In a productive environment
they could be applied for a base configuration. However, we
recommend the selection of own values tailored to the concrete
environment.

Figure 5 displays the two fuzzy models described above
for an activity’s qualification requirement of 5. The agent’s
score value for the (under-)qualification is displayed as the
blue dashed line, where the fuzzy set for all possible agent
qualifications below 5 returns 0, and jumps to 1 for all
values fulfilling the requirements. The over-qualification is
highlighted as a solid black line, the transition points between
the qualification score of 0 to 1 are marked by circles.
All agent qualifications below and at the required activity
qualification of 5 return 0, representing no over-qualification.
Above 5 the agent’s qualifications are slowly assigned to a
fuzzy value between 0 and 1, representing an increasing degree
of over-qualification.

After this, two steps are conducted for all four properties
of an agent’s qualification. The four separate degrees of
qualification are added to the final fuzzy domain and weighted
according to the configuration. The process is identical to the
Danger Threshold calculation and also uses a 25% weight
distribution per value as a default. The resulting value is
used as the qualification in the final calculation of the score,
preferring qualified agents with as low an over-qualification
as possible.

Hourly Rate: the hourly rate is mapped to the fuzzy value
from 1 to 0 for values from 0 to 50000 (being equal to 500C
following the integer data format). All values over 50000 are
set to 0. This prefers agents with low additional cost (like
employees) over external workers, costing extra money and
therefore improves the economic efficiency of the process.

3) Score Calculation: In the score calculation step, two
algorithms are employed. First, the tree aforementioned ex-
clusion criteria are involved. These could be triggered by the
calculation of the fuzzy sets as described above. Table I lists
them in detail.

To check if an exclusion criterion was triggered, the fuzzy
value for each of the three domains is checked. If one of
these values is 0, it is further checked if the agent’s value is
below the task’s value. If this is also the case, the exclusion is
triggered. Following this, the assignment score is set to 0 and
the Score Calculation step is completed. As a fuzzy value of
0 is per definition valid (e.g., just fulfilling the qualification
requirement also receives a fuzzy value of 0), comparing the
agents value against the tasks value is required. Setting the
fuzzy value to another value, e.g., -1, is not possible, as this
would interfere with the calculation of the combinatorial fuzzy
sets for qualification and danger.

Another approach could be throwing the exclusion criteria
as an exception right after encountering it. This could poten-
tially reduce the computing time of the IAC, as no further
calculations would be required after encountering the first
exclusion criteria. While this coding-by-exception approach
is generally considered bad practice, it would be possible to
move the ”Validate Exclusion Criteria”-block right after each
fuzzy model containing exclusion criteria, rather than having
one block after all calculations.

After the exclusion criteria are checked and none was
thrown, the agent’s assignment score for the activity is calcu-
lated. This is once again achieved by a fuzzy set, combining
all scores from the five previous fuzzy sets and once again
applying a weight to them, similar to the calculation of the
danger and qualification values. The weights for this final score
calculation can either be supplied on a per assignment request
basis directly by the BPM process, or via a default value in
a configuration file. The first approach is quite beneficial if
an activity is very one-sided and strongly focuses on one
assignment criteria, e.g., a focus on distance alone if a fire
has to be extinguished.

When the final fuzzy value has been calculated, it is
multiplied by 100, giving the agent a final assignment score
between 0 and 100 for the activity, while 0 means the agent
is completely unsuited and 100 is a perfect fit.

4) Postprocessing: As the last component of the IAC, the
”Create Assignment Response” algorithm is triggered. This
takes all calculated assignment scores together with the agent’s
id as an identifier and orders them by score, putting the highest
score on top. Afterwards the final assignment score structure
is returned to the ACE for further processing.

V. IMPLEMENTATION

The ACE has been implemented as part of the Augmented
Reality Process Framework (ARPF) [31], additionally incor-



porating AR and context support for workers during the
execution of tasks. However, following the modular solution
concept, it is still possible to use the IAC as a standalone
module (e.g., directly integrated in a BPMS) or to use the
ACE as a standalone product without the ARPF. CARX also
utilizes ARPF (and therefore the IAC) as the CARX BPMS
IIoT Extension Framework.

Like ARPF, our prototype of the ACE with focus on the IAC
is implemented using Python. This approach was chosen for its
fast prototyping capabilities while still providing performant
libraries and refined multi-processing logic. As a base image
for the ACE, a Django server was created, providing the
most powerful REST-Server available for Python. In contrast
to other Python server-frameworks, Django offers not only
fast and simple prototyping capabilities, but can also be
scaled up to a performant production deployment. To provide
the required REST interface, the Django REST framework
was integrated. A Pub/Sub interface was implemented using
Python paho, the Python MQTT [32] framework from Eclipse.
Architecturally the DAC is adjacent to the REST Layer. It can
invoke REST requests on its own, aggregating all required data
from the BPMS or configured external data sources.

The fuzzy portions of the IAC were implemented using
the fuzzylogic library for Python 3 [33]. As an example,
the complex fuzzy set for the qualification is displayed in
Figure 6. It consists of the calculation of the under- and over-
qualification, as well as the final score with its defined weights.

As BPMSs for our prototype, we integrated AristaFlow [34]
(using a synchronous service activity approach) and Camunda
[35] (using an asynchronous script activity approach). In the
following, we focus on the Camunda implementation. It is
a well-known application in the BPM context and further
provides all required functionality as well as a BPMN Modeler
as an open-source solution. In addition to a full implemen-
tation of the BPMN 2.0 standard, Camunda also provides
a Connector element, allowing easy REST requests from
within process instances via script and service activities. The
well documented REST-API [36] supports a quick and easy
integration of the communication interface.

As the free version of Camunda only provides a BPMS with
minimal user management, an extension in form of a minimal
REST-Backend (further called CamundaClient) handling users
and assignments was required. Users are added via a new
backend and saved according to our agent model. The process
templates were extended as planned in the solution approach.
The utility activity requests a score calculation from the
CamundaClient for the subsequent execution activity. This
execution activity must contain the Assignment Criteria as
described in the activity model. The CamundaClient then loads
the required user data from the database and sends a request
to the ACE. It is also possible to move this step to the DAC
in the ACE; in this case, it would only be required to send
the activity ID to the ACE. While we implemented both the
synchronous and asynchronous variants, we focus here on
the asynchronous one, as it provides additional benefits such
as better multi-processing support and should be chosen if

Figure 6. Code snippet showing fuzzy implementation for qualification.

supported by the utilized BPMS. As soon as the assignment
is calculated, the assignment scores are sent from the ACE to
the CamundaClient and the assignment in Camunda is handled
via the client. Connected to this, the workload of the assigned
agent(s) is increased and their Danger Threshold is decreased
by the Danger Level of the activity. The Danger Levels can
further be reset to the agents’ default value, e.g., on a daily
or weekly basis as required by labor safety laws.

Alternatively, the IAC could be integrated in the Camunda-
Client itself, removing the need for the additional REST-
Requests between the client and the ACE. The current ap-
proach, however, supports the generic usage of the ACE as



Figure 7. Example precondition rule validated by Drools.

a service for multiple BPMS simultaneously and entails less
restrictions.

The Rule Interface was implemented for the Drools rule
engine [37]. The engine was chosen for its widespread use in
the industry as well as its REST interface. While the imple-
mentation of the Rule Interface itself has to be customized via
an adapter to the utilized rule engine itself, the internal API
called by the Assignment Handler was created in a generic
way, allowing an easy exchange of rule engines.

Currently the Rule Interface can only be used to filter
activities itself. For this, preconditions have to be created in
the language of the rule engine and have to be added to the
process template. The precondition is then sent to the rule
engine when the assignment is requested for the connected
activity and it is evaluated. This is available in two modes;
loop and single. In loop, the rule is executed in a loop with a
small delay between executions until it is fulfilled. In single
mode, the condition is evaluated once, if this fails an error
is returned to the BPMS. While currently no pre-filtering of
agents is supported, this could be added to the Rule Interface
in coming updates. Figure 7 shows a simple example for such
a precondition rule, validating that the current temperature
of a sensor $sensorData.getCurrentV alue is below the
maximal allowed threshold $sensorData.getMaxV alue.

Powerful multi-processing capabilities were implemented
in the Intelligent Assignment Component and managed by
an intelligent orchestrator. While the Assignment Component
is already realized with a runtime of O(n), its performance
can be further increased with our multi-processing approach.
Assignments with large numbers of agents can therefore be
run in a multi-processing configuration with multiple modes.
The default for large requests is n − 1 processes, where n is
the maximal number of cores available on the machine. This
provides maximum calculation speed while still preserving
one process for the ACE itself, preventing slowdowns. If the
request is too small for multi-processing (the multi-processing
overhead would slow down the computation speed), the or-
chestrator runs the calculation in a single process. Finally, it
is possible to run the calculation in n −m processes, where
m,m < n is calculated according to the server’s performance
in multi-processing mode. We implemented a semi-automatic

test setup, calculating the optimal m for a server for 10, 100.
1000, ... 1000000 agents in a single assignment request. The
calculated m can then be used in the server configuration
to allow maximum performance according to the utilized
hardware.

VI. EVALUATION

The evaluation focuses on two aspects of the solution:
the first considers performance and scalability implications of
our IAC agent assignment algorithm utilizing our prototype
within a realistic software and hardware environment, in order
to determine if there are unforeseen practical limitations or
bottlenecks that would hinder its usage. For the second part,
we evaluate assignment optimizations achieved when a BPMS
utilizes the IAC versus a BPMS only (Camunda without the
IAC) in order to determine if a significant benefit can be
shown.

MatPlotlib [38] was used to briefly analyze the data as well
as to graphically process the results. The evaluation itself was
conducted utilizing the Python libraries pandas [39], SciPy
[40] and NumPy [41].

A. Performance Evaluation

The performance evaluation was conducted to analyse the
performance and scalability implications of our IAC on a
virtual server with 90GB of main memory. As an operating
system, Debian 10 was chosen utilizing Python 3.7.2 for the
algorithm execution. The test was separated in two groups of
10, 100, 1000, 10,000 and 100,000 agents being assigned to
a single activity. In the first group, all agents were capable of
performing the activity according to the assignment criteria.
In the second group, only certain agents were capable of
performing the activity. The assignment of each group of
agents to their activity was conducted 100,000 times. The
groups from 10 to 1000 agents were assigned using the IAC
without multi-processing while 10,000 and 100,000 agents
were assigned using 17 processes (n− 1 mode).

Figure 8 displays the assignment calculation performance
if all supplied agents were capable, while Figure 9 displays
the calculation performance if only some agents fulfilled
the requirements. The calculation duration results show an
approximately linear scaling in the single processing mode
(10-1000 agents), while multi-processing decreases with larger
numbers of agents (10000-100000 agents). Unexpectedly, cal-
culation duration for assignments with only capable agents
is lower than that of agents with mixed requirements. This
originates from some optimization problems in the elimination
of incapable agents. A possible solution to this can be found
in the evaluation summary below.

In general, the assignment of high volumes of agents caused
no issues for the algorithms. As the IAC is meant to run
behind SARs, rule engines, or other performant basic filtering
algorithms, a load of 10,000 possible agents for a single
activity is further quite unlikely. The runtime in the sub
seconds for agent values below 100,000 would also allow the



Figure 8. Calculation performance vs. number of capable agents assigned.

Figure 9. Calculation performance vs. number of capable and non-capable
agents assigned.

removal of preliminary filtering, reducing the runtime of the
whole BPM process.

B. Integration Evaluation

The integration evaluation was conducted using the Any-
Logic simulation software. The AnyLogic simulation was run
on a Lenovo T495 with 14GB main memory utilizing Arch
Linux as an operating system. No changes were made between
the performance evaluation and this one besides the setup of
this edition. The laptop and server containing the BPM and
ACE were on the same network.

The evaluation was used to compare a BPMS using the
IAC against a plain BPMS. To simulate workers and a re-
alistic workflow, an AnyLogic simulation was built and two
simulation setups were configured.

A factory with 21,504m2 and a total of 29 machines
which required maintenance every 16 hours was created.
The first maintenance was scheduled between 0 to 16 hours
after start of the simulation. Further, the machines had an
average breakdown interval of 36 hours. If a machine required
maintenance or repair, it started a new Camunda process

instance with the required qualification and the machine’s
position. The activity takes between 1 to 3 hours and requires
an engineering qualification of 4 for maintenance and 6 for
repairs. Other qualifications (electric, computer, bio chemical)
were not required and set to 0. A total of 5 agents were
available to complete this activity; four internal workers,
waiting in a maintenance building in the factory hall and
one external agent, waiting 165 meters away. The internal
agents had engineering qualifications of 4, 5, 6 and 7 while
the external agent had an engineering qualification of 8. The
other qualification values were set to 0 to avoid bias. The
usage of the external agent was connected to an additional cost
of 2500 (25C/activity), while the usage of internal workers
incurred no additional costs. In their idle state, an agent
checked every 5 minutes if a new activity is available. If they
were working, after completion of their current activity they
checked if another activity was enqueued. If no activity was
enqueued, they switched back to the idle state and moved to
their starting position. This part of the setup was identical in
both simulation setups.

The factory size and machine breakdown/maintenance inter-
vals were empirically selected to achieve a high utilization of
the available agents without overstraining their capacity, allow-
ing for a realistic environment. The qualification of the internal
and external assignments were selected in a way, which allows
the internal agents to do most of the work on their own, but
requiring the external agents support with high workloads.
We have refrained from mixing more different tasks/more
complex tasks with many different requirements, to provide
an easy to understand and analyzable evaluation. Mixing more
different task types/requirement constrains would not affect the
technical evaluation in a meaningful way, as all fuzzy models
are run even with requirements of 0, however, it would become
harder to understand and analyse the simulations findings.

In the Camunda Setup (called CMD-Setup), the agents
fetched their activities directly from Camunda. All activities
of the simulation were available to all of the workers with
no further verification. If an activity is available to the group,
the agents try to claim it and, if successful, work on it. In the
IAC Setup (called IA-Setup) the agents checked their personal
worklist at the ACEs REST API. If their personal worklist
contains an activity, they start to work on it, otherwise the
stayed idle.

A timespan of 36 working hours were simulated for both
configurations, using the same seed for the simulations random
number generator. This process was repeated 10 times with
different seeds to get the statistical relevant test data. For
the IAC, the model introduced in Section IV was used. The
qualification value was weighted half to increase utilization
of the more qualified agents and reduce the downtime of
the machines. Further adjustment of the weighting could lead
to heavily deviating results. An optimal weighting has to be
configured according to the needs of the activities.

Table II shows a general comparison between the CMD
(only Camunda, no IAC) and IA simulation (Camunda with the
IAC), while III shows a more detailed comparison of internal



TABLE II. IA/CMD-SETUP SIMULATION MEASUREMENTS.

IA Camunda
total activities (amount) 13.98 16.84
work time (in minutes) 1636.38 1955.20

idle time (in minutes) 523.62 204.80
cost (in C) 10.00 420.00

avg over-qualification (value) 0.34 0.09
max avg under-qualification (value) 0.00 -0.02

traveled dist (in meters) 7346.92 8911.79
downtime maintain (in minutes) 484.18 303.30

downtime repair (in minutes) 204.00 138.23

TABLE III. INTERNAL/EXTERNAL WORKER SIMULATION
MEASUREMENTS.

IA-int IA-ext CMD-int CMD-ext
total activities 17.38 0.40 16.85 16.80

work time 2037.25 32.88 1946.62 1989.50
idle time 122.75 2127.12 213.38 170.50

cost 0.00 10.00 0.00 420.00
avg overqual 0.05 1.50 0.06 0.20

max avg uqual 0.00 0.00 -0.02 0.00
traveled dist 9082.78 403.45 8750.17 9558.25

(-int) and external (-ext) worker stats in both simulations. In
the following values from Table II will be compared with the
more detailed values from Table III.

The average work time and total activities per worker are
lower in the IA run, while the utilization of the internal work-
ers (IA-int) is slightly increased and the external utilization
(IA-ext) is heavily reduced. The average idle time is increased
which can be deducted from the low external utilization. The
heavily reduced average cost of a simulation run, if using the
IAC instead of a plain BPMS, can be attributed to the preferred
use of internal workers.

The increase in over-qualification while using IA instead of
plain Camunda can be explained with the low weighting of
qualification in the algorithms, as well as the lack of under-
qualification in comparison to the CMD-Setup, where under-
qualification was generally present. In Table III, the main
source of over-qualification in the IA simulation comes from
the usage of the external worker, who was mainly used for
activities below his qualification. This happened because of a
extreme workload and could be solved by employing another
internal worker with lower qualification to help out with
this activity. This would lead to reduced cost and downtime.
Optimization in the simulated company is needed, rather than
an adaptation of the algorithm.

The traveled distance for the internal workers is slightly
increased in the IA simulation compared to the CMD run.
This, however, stands in linear dependency with the increased
workload. A stronger weight regarding the distance could
reduce this effect.

The downtime in the IA run is around 50% higher than in
the CMD-Setup, while the cost was reduced to 4.2% of the
CMD-Setup. This was expected behavior, as the algorithms
by default try to save money and therefore did not employ the
external worker as much as the CMD-setup.

C. Summary

The IAC performed as expected with fast execution times
on mid-to-low budget hardware. Scaling was only required
for the case when more than 1000 agents could be assigned to
the same activity. This is highly unlikely even in companies
with more than 1000 employees, as the BPMS most of the
time already pre-filters valid agent groups. Further, the number
of agents available for assignment in such large corporations
could further be reduced by extending the precondition filter-
ing as mentioned in Section V. If further scaling is necessary,
it can be readily achieved and works efficiently for at least
100,000 agents per activity. The algorithms further produce
comprehensible results for analysis by non-experts, which can
be adjusted as required through dynamic weighting of the
different variables in the algorithm.

Due to the non-blocking REST-API design and decoupled
async assignment process, we do not foresee any multi-tenant
performance issues.

Taking the current runtime in the sub seconds for less
than 100,000 agents into account, the implementation of agent
pre-filtering via rule engines should not be implemented for
low- to mid-size systems, as the additional REST calls would
ultimately mean a slowdown and increase the overall runtime.

However, the evaluation also shows an unexpected finding,
whereby the calculation duration for assignments with only
capable agents is lower than that of agents with mixed re-
quirements. As in the second case, the execution criteria are
triggered and the final score calculation can be skipped for
some agents. This leaves room for optimization regarding the
handling of exclusion criteria for future work.

VII. CONCLUSION AND FUTURE WORK

Industry 4.0 stands for highly automated production pro-
cesses. However, these processes also rely on complicated
tasks that can only be performed manually by humans. The
integration of such activities into the processes is still problem-
atic. One important issue is efficient task assignment, which
is not solved well in contemporary BPMS.

To counteract this, the current contribution described an
approach for more effective and efficient activity assignment
for Industry 4.0 production processes. The focus of this
approach was to build a compact model of fuzzy sets that
can be easily applied to real projects, while also combining
rules for pre-filtering for more obvious logical determinations
and combinatorial constraints that do not require fuzziness.
These rules can be easily adjusted and adapted by users
and efficiently executed on a rules engine, thus focusing the
fuzzy sets on those areas for which it is specialized. For
our realization and evaluations we chose a set of important
properties that incorporate aspects relevant in current Industry
4.0 production: achieve cost savings by incorporating not only
under-qualification but also over-qualification, and the separa-
tion between internal and expensive external workers; achieve
a balanced workload for all workers to avoid both idle time
and overburdened workers; protect the workers from different
hazards as enforced by government regulations; and finally,



optimize assignments with knowledge about the locations of
workers and their potential activities by minimizing transit
overhead.

Besides providing a practical model, our approach also
features concepts for the direct integration with BPMS. To
demonstrate its feasibility, we have currently implemented,
integrated and tested our prototype approach with two con-
crete BPMS; AristaFlow and Camunda. The approach is built
modularly and can be easily expanded. Furthermore, the fuzzy
sets used to calculate an assignment utilize weights that can be
changed dynamically according to the users’ specific needs. It
is also possible to use this prototype with any other BPMS
supporting BPMN 2.0 with minimal effort.

The evaluation showed that our approach is an efficient
way to automatically compute assignments. We evaluated the
algorithms regarding performance and built a comprehensive
simulation scenario to show its effectiveness and efficiency in
providing optimal assignment recommendations. However, the
Rule Engine interface, as well as the exclusion criteria filtering
of incapable agents, still leaves room for optimization.

For future work, we plan to incorporate a more generic
model where not only the weights are dynamic, but also the
criterion. Instead of hardcoded values, it should be possible
to define them via configuration files, or dynamically as part
of the REST call to the ACE. Thus, the approach can be
easily adapted for further domains and scenarios by extending
or replacing the evaluation criteria. Additionally, we plan
to rework the exclusion criteria in order to speed up the
removal of unsuited agents from the assignment process. Other
upcoming improvements could include utilizing transit path
finding algorithms for the distance calculation in order to
provide a more realistic and resilient calculation. The duration
of activities could also be considered in order to measure the
workload not only in the amount, but also in terms of estimated
time required to complete the activities.
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