Intelligent Task Assignment in Industry 4.0 Production Processes Utilizing Fuzzy Sets

Gregor Grambow, Daniel Hieber and Roy Oberhauser

Dept. of Computer Science
Aalen University
Aalen, Germany
e-mail: {gregor.grambow, daniel.hieber, roy.oberhauser} @hs-aalen.de

Abstract—Industry 4.0 production comprises complicated
highly automated processes. However, human activities are also
a crucial component of these processes, e.g., for machine main-
tenance. Task assignment of human resources in this domain
is challenging, as many factors have to be taken into account
to ensure effective and efficient activity execution and satisfy
special conditions (like worker safety). To overcome the limita-
tions of current Business Process Management (BPM) Systems
regarding activity resource assignment, this contribution provides
a BPM-integrated approach that applies fuzzy sets for activity
assignment. Our findings suggest that this approach can be
easily applied to complex production scenarios, while providing
efficient performance even with a large number of concurrent
activity assignment requests. Additionally, our evaluation shows
its potential for improved work distribution which can lead to
cost savings in Industry 4.0 production processes.

Keywords—Business Process Management Systems; Business
Process Modelling; Staff Assignment Algorithms; Assignment Au-
tomation; Fuzzy Logic.

I. INTRODUCTION

“Industry 4.0” stands for the fourth industrial revolution
driven by digitalization [1]. Highly automated smart factories
enable more efficient and individual production methods as
well as greater customer focus. This includes the compre-
hensive control and organization of the entire value chain by
processing of real-time data from all stages involved in the
chain. Cyber-Physical Systems (CPS) [2], which consist of
information technology, machines, and built-in sensors, form
an unit that enables comprehensive optimization of production
with regard to criteria such as costs, resource consumption,
quality, or availability. There is often a strong focus on au-
tonomous systems and the highest possible degree of automa-
tion. Yet in highly complex processes, human involvement
remains indispensable. Often the production process depends
on activities in which people intervene, perform complex
activities and make important decisions.

Such business and production processes are typically gov-
erned by Business Process Management Systems (BPMS) [3]
also known as Process-Aware Information Systems (PAIS).
BPMS are in charge of the sequencing of the different activi-
ties belonging to a process including automated activities and
those processed by human agents. The success of any BPM
process realization can be endangered by excessive activity
automation and poor design of work assignment strategies
[4]. Therefore, assigning the optimal agent to an activity and
vice versa is a time consuming but necessary task with every
BPMS. In most BPMS, so called Staff Assignment Rules

(SARs) are utilized to achieve this. However, in Industry 4.0
production scenarios, many different factors have to be taken
into account to find an agent that can process an activity in an
efficient and effective manner. An obvious example for such
factors is the qualification of the agent: She must have the nec-
essary skills and abilities to correctly execute the activity, yet
not be overqualified and this incur unnecessary cost overhead,
usually agents with a much higher qualification level should
not be assigned to a particular activity. Such optimizations
should also consider balancing the agent workload to not
overburden an agent while others are idle.

In large production facilities, the physical location of the
agents and where the activities are to be performed also
play an important role. An example are maintenance activities
that have to be executed from time to time across a large
number of production machines at a large facility. If not
optimized properly, agents may waste a substantial amount
of time in transit to activities, analogous to the well-known
Traveling Salesman Problem [5]. Due to the high complexity
of smart factories and their CPS, involving specialized external
workers with specific knowledge to maintain a system can
incur additional costs. To contain these costs, utilization of
internal employees should be preferred if possible, depending
on the urgency, availability, and qualification levels. In modern
production, worker safety is also an important factor that
is usually regulated by respective laws. that address hazards
such as chemical, electrical, heat, and noise and may not be
adequately tracked by automation systems.

Taking such factors into account, it becomes evident that
standard BPMS SARs are insufficient because they are only
capable of determining if an agent is able to perform an
activity but cannot determine the degree of suitability. Fuzzy
logic’s [6] fine granular classification between 0 and 1 provides
a way to overcome the limitations of simple Boolean logic and
determine a specific assignment score for each agent for each
possible assignment. Automating such a generic and recurring
activity can optimize work efficiency and manpower cost,
while reducing employee frustration when automated systems
seem inflexible or make unsuitable assignments.

In prior work [7][8][9], we also developed an approach for
contextual process management. However, this approach was
tailored towards software engineering processes and did not
use fuzzy sets or involve the complex specifics of Industry
4.0 nor AR processes. The main focus of this approach was
extending processes with properties to enable automated soft-

ware quality assurance and support collaboration of software
engineers. This was realized by automatic process adaptations.

In this paper, we contribute an approach for activity assign-
ment in Industry 4.0 projects that takes the aforementioned
factors into account. By applying fuzzy sets, fine grained levels
of suitability are integrated to improve resource assignment re-
sults. To demonstrate its feasibility, we integrated our solution
in a commons BPMS.

The remainder of this paper is structured as follows: Section
IT highlights related research and background information.
Section III then describes the general concept and an initial
solution approach, while Section IV details the concept for our
IAC. In Section V, we provide specific implementation details
focusing on the Intelligent Assignment Component while
addressing the overall prototype. Next, Section VI we evaluate
our solution. Finally, Section VII provides a conclusion and
outlook on future upcoming work.

II. RELATED WORK

In literature, there are numerous approaches for activity
assignment optimization, utilizing different algorithms like
fuzzy sets. The approach presented by Shahhosseini and Sebt
[10] proposes a fuzzy adaptive model for competency-based
employee selection. It provides a large set of competencies
and a complicated fuzzy model. It is, however, created for
construction companies and centers around four specific hu-
man roles. It also lacks an integration strategy with BPMS.
Similarly, Ktosowski et al. [11] also discuss a fuzzy model
for assigning workers to production activities. The main focus
of this approach is employee assessment and a rich set
of properties. However, for our use case the model is too
generic and contains unnecessary properties, while at the same
time neglecting other important factors like worker safety or
location. Furthermore, it lacks BPMS integration concepts.

Tasdemir and Toklu [12] provide an approach for fuzzy
activity assignment integration with BPM concepts. The de-
scribed system is not suitable for the Industry 4.0 scenario
as it focuses on teams and the social relationships of the
worker in the team. In addition, some criteria for evaluating
the performance of workers are not compatible with current
legal regulations. Reijers et al. [13] also proposes a BPM-
integrated model for activity assignment, in this case based
on swarm intelligence. However, that model is targeted at
emergency situations where timeliness is more important than
other selection criteria and is thus also not suitable for In-
dustry 4.0 production. In contrast to this,Antonelli and Bruno
[14] deals with an Industry 4.0 topic: activity assignment in
human robot collaboration. This approach splits the activity
assignment problem into activity classification with a decision
tree classifier and activity assignment with a decision-making
algorithm. However, the approach does not address BPMS
integration and relies on Boolean rather than fuzzy values,
which makes it somewhat synthetic. In addition, worker safety
is not taken into account.

Another approach for activity-resource assignment that ap-
plies fuzzy logic is presented by Xu et al. [15]. It contains

a comprehensive but complicated fuzzy model targeted at
collaborative logistics networks comprising logistics service
integrators, activity contractors, and resource providers. Thus,
the model cannot be used for the assignment of single workers
in Industry 4.0 production. Kwak et al. [16] also present a
fuzzy approach for a specific domain, in this case audit staffing
for accounting. As with the other approaches, these concepts
cannot be easily transported to industrial production scenarios,
and they do not address BPMS integration. Finally, a category
of approaches similar to Simpson and Roberts [17] utilize
various algorithms like Bayesian methods, heuristic algorithms
or game theoretic approaches for activity assignment in spatial
crowdsourcing. As this domain has rather specific properties
on which the algorithms rely, they also cannot readily be
applied to Industry 4.0 production and for similar reasons,
BPMS integration is not a part of these approaches.

III. SOLUTION APPROACH

While different approaches for fuzzy activity assignment
exist, they are often rather generic and complicated or very
specific and tailored to a certain domain. Furthermore, they are
mostly not integrated with contemporary BPMS. To overcome
these limitations and be able to create a usable system for
Industry 4.0 scenarios, we focus on a more concrete model
and a specific component executing the activity assignments
while addressing integration with current BPMS.

To achieve suitable assignments for this complicated domain
in a practical and applicable manner, or approach has to satisfy
these requirements.

1) The system shall calculate an assignment score that
reflects the suitability level of agents for handling a
specific activity.

2) The runtime shall be capable of handling a large number
of concurrent assignment scoring requests efficiently.

3) Integration into BPMS shall be readily feasible.

To maximize the efficiency optimization options and support
easy integration into various BPMS, a new system for handling
assignments is created. By decoupling the assignment process
from the BPMS, a separate component can be implemented
solely to the assignment process, permitting better perfor-
mance optimization without the constraints imposed if one
were to internally extend a specific BPMS. Furthermore, this
decoupling via generic API supports a generic approach that
can support integrations across a much wider range of BPMS.
The conceptual architecture of the novel Assignment-Engine
providing such functionality can be seen in Figure 1.

The Assignment-Engine uses a layer pattern which is further
subdivided into modular components, with each of the layers
contributing to the final solution. Via the modular layers,
if desired, the Data and Algorithm Layer could be directly
integrated into BPMS (potentially reducing performance op-
timization). Alternatively, only the Assignment Handler or its
individual components could be directly integrated in a BPMS
(with a reduced set of features). Thus, we hitherto focus on
the Assignment-Engine as a holistic solution to fulfill all the
aforementioned requirements.

Request Publish/Subscribe
Layer REST Interface e
Data)

Layer Data Aggregation Component
Rule Interface
Algorith
ﬁ:n m Intelligent Assignment
yer
Component
Assignment Handler

Figure 1. Intelligent-assignment engine conceptual architecture.

5
execution
activity

sync service
utility activity

async script execution
utility activity activity

Figure 2. Activity solution variants (synchronous variant on top,
asynchronous variant on bottom).

—O
=8O

The public REST and Publish/Subscribe (Pub/Sub) In-
terfaces in the Request Layer are used as a BPMS and
programming language independent interface, allowing the
usage of the Assignment-Engine with any BPMS supporting
BPMN 2.0 or later, as this standard offers a wide range
of elements to integrate external services and functions [18]
[19]. The integration takes place via a two activity concept.
A utility-activity requests an assignment for the execution-
activity following in the process workflow. For the utility-
activity, two approaches in BPMN 2.0 are possible and should
be chosen according to the capabilities of the applicable BPMS
(Figure 2).

The Synchronous variant utilizes a Service Task to request
the assignment from the Assignment-Engine synchronously.
The service activity receives the required data from the process
and then awaits the calculated assignment. Finally, it assigns
the agent with the highest suitable level to the activity. The
Async variant utilizes a Script Task that obtains all the required
values itself, accessing the BPMS and then requesting an
assignment asynchronously. The BPMS can then ignore the
process until the assignment is calculated and no resources
have to await a response. As soon as the Assignment-Engine
finishes the calculation, it calls the BPMS API and assigns the
best fitting agent to the activity itself. With this approach every
state-of-the-art BPMS can easily be integrated (requirement
3) and one Assignment-Engine could even support multiple
BPMS at the same time.

Once a request is received by the backend, the Data
Aggregation Component (DAC) validates it. If all required
information is present, the request is sent directly to the
Assignment Handler. If some data is still missing the DAC
can receive this by predefined external Sources, e.g., a database
containing the agents or the BPMS public APL

In order to provide the desired assignment score with a fine

granular suitability level, fuzzy sets are chosen. As seen in
Section II fuzzy approaches are able to generate very precise
assignment scores (requirement 1) in an efficient way (require-
ment 2). This is an improvement over currently employed
chaining-based SARs, which are capable of calculating ac-
curate assignments, but lack the capability to differentiate be-
tween suitable agents and therefore do not provide overall op-
timal assignments. While a Machine Learning (ML) approach
could also be a feasible option, the fuzzy sets provide some
striking advantages. For fuzzy sets, no preexisting datasets are
required, and necessary weights can be configured according
to experiences rather than actual data. This enables more
traditional companies with weak digitalization and low to no
sensor coverage an intelligent assignment capability without a
costly and long running initialization phase and can transfer
the intelligent assignment with adapted weights instantly to
all parts of its production and workflow. Furthermore, our
intelligent assignment approach without the training phase
typically required by ML approaches.

In order to process the assignment score and assign the
best suited worker, the Assignment-Engine either can directly
assign the agent via REST-API (as present in many of the most
popular BPMS), or the assignment could be conducted in the
sync service utility activity via script access to the BPMS from
within the process itself.

Due to the complete decoupling of BPM and Assignment-
Engine, the latter can be scaled independently of the scaling
of the BPMS, and high workload on one of these engines
does not interfere with the performance of the other engine.
The separation further allows the implementation of an opti-
mized multiprocessing and scaling functionality, guaranteeing
optimal efficiency even at high load (requirement 2). The
performance optimization takes place at different levels. First
a multi-threading approach is utilized in the Request Layer
following default architectures for REST and Pub/Sub APIs.
The subsequent handling of the request in the Data and
Algorithm Layer is handled in a separate process decoupled
from the Request Layer. To further speed up large assignment
calculations the Intelligent Assignment Component has its own
scaling function introduced in Section IV.

Figure 3 shows a simplified workflow graph of a BPMN
process consisting of an asynchronous script utility activity
requesting an assignment from the Assignment-Engine and the
execution activity being assigned after the calculation.

IV. INTELLIGENT ASSIGNMENT COMPONENT

The Intelligent Assignment Component (IAC) is a stan-
dalone component of the Assignment-Engine. Containing the
fuzzy logic for the assignment calculation it is the functional
core of the engine. This section highlights the conceptual deci-
sions behind the component and details the internal structure.

A. Models

In order to compute meaningful assignment scores, the
component requires a custom set of models. While Agents
and Activity are supplied with each assignment request the

:BPM-Engine :Assignment-Engine
Process Instance Assignment Handler
taskis .

available ! !
[.
REST - assignment request.
async script 7 -
utility activity | ... return Intelligent
Assignment
| Component
) REST - assignment response
execution |€—
activity | ________. return __________ >
LI

Figure 3. Asynchronous integration in BPM-engine.

Assessment Criteria provides a model which the activity and
agent data sets need to include. The agent and activity data can
either be directly sent by the BPMS, or be actively collected
by the DAC via the BPMS API and connected data sources.

1) Assessment Criteria Model: The Assessment Criteria
consist of five parameters, oriented on realword examples and
define the values with which the engine should conduct the
assignment and which are required in activities and agents
used with the IAC. It can be viewed as an interface required
by all data and components connected to the assignment.

Distance: calculates the distance between agent and activity
position optimizing assignments regarding the travel distance.
Position objects contain 3D coordinates with numeric values
for X, Y and Z.

Qualification: calculates the difference between the required
qualification for an activity and the existing qualification of an
agent. It answers the Boolean question if the agent is capable
of performing the activity and permits the determination of
a possible overqualification to prevent utilizing expensive
agents on trivial activities. Qualification objects consist of the
four parameters: “electrical”, ”computer”, “engineering” and
”bio_chemical”, which represent the different skills of agents
or activity requirements in this area. As this skill cannot be
calculated automatically and must be defined by humans each
parameter will be represented by a number between 0-10. This
provides an accustomed scale to rank skill and requirements
instead of a default fuzzy scale from 0-1, which is more
abstract and an untypical scale for people.

Hourly Rate: calculates the extra cost of using a given agent
for an activity per hour in Cents. This prevents the usage of
external/temporary workers that incur extra costs if a similar
qualified employee is available. This should not include the
salary of permanent staff, as their salary is independent of
their utilization rate. The cost is represented by an integer to
prevent floating errors.

Workload: calculates the capacity utilization of agents,
preferring agents with few enqueued activities and preventing
overloaded agents form enqueueing additional activities. Thus,
load balancing between resources and compliance with labor
protection regulations can be supported within the algorithm.
This could either be added to the agent itself by the BPMS, or
can be calculated using the agents work list, which is present

in all BPMS. The parameter is represented by an integer value.

Danger Level: calculates if an agent can safely perform an
activity. As some activities have special hazards and given
safety regulations, only agents with an appropriate safety
clearance can be assigned to these. The Danger is thereby de-
fined by an Object consisting of the four parameters: “noise”,
“heat”, “electrical”, and “chemical”. The separate values are
represented by floats between 0 and 1. This provides an
abstract concept, but can easily be modified for more concrete
parameters as required a concrete use case.

2) Activity Model: This model can consist of any BPM
activity extended with the Assessment Criteria except Hourly
Rate and Workload, as the cost of an activity is irrelevant for
its optimal assignment, and an activity itself has no workload.

3) Agent Model: The model consists of a user from the used
BPMS extended with the Assignment Criteria. In a minimal
engine such a user could only contain an ID. In contrast to
the activity, all criteria are mandatory, as they all provide
valuable data for calculating optimal suitability levels. The
Danger Level object is renamed to Danger Threshold on the
agent level for a more descriptive and easier-to-understand
naming. If a task is assigned to an agent the danger level of the
activity is subtracted from the agent’s threshold, preventing an
overload with too many dangerous activities. After a resting
period, the agents danger levels are reset.

B. Overall Assignment Algorithm

The internal algorithms in the IAC are based on a Fuzzy
Logic approach. In contrast to ML, no existing datasets are
required, only a scheme of the data is mandatory to configure
the fuzzy sets. However, the same level of fine calculation
of the suitability score is possible as opposed to the simple
calculation of suitability based on chaining. As described
earlier the activity and agent list are provided to the component
either directly by the BPMS or the DAC according to the
introduced models and can therefore be directly supplied to
the algorithms as parameters without further aggregations or
parsing. After executing the algorithms, the TAC will return
the suitability level for all provided agents to the Assignment
Handler.

To speed up processing time of large numbers of agents the
IAC will be able to run calculations in a multi-processing con-
figuration with multiple available modes. This allows an opti-
mal resource allocation concerning the concrete assignments,
rather than a general solution that could slow small assignment
calculations or non-optimally benefit large calculations.

1) Exclusion Criteria: The Algorithm further contains three
exclusion criteria. If one of them is reached, the assignment
score for the agent is set to 0 and further calculations are
skipped, as the agent is not capable of performing the activity
in a qualified or safe way. The agent’s score of 0 will then be
returned with the other results at the end of the calculation.
The exclusion criteria are:

¢ Qualification below the required qualification of the activ-

ity. This prevents the assignment of unqualified agents to
activities even if they are a perfect fit in all other regards.

o Workload equal to or larger than 20, as overloading with
activities can lead to stressed out workers, increasing the
risk of errors and accidents as well as decreasing their
motivation and productivity.

o Danger thresholds lower than the required danger levels
of the activity. This not only complies to work safety
regulations but also prevents accidents.

2) Fuzzy Calculation: After providing the activity and
agent data to the IAC, the calculation can begin. Overall,
the agent with the highest score is preferred. Therefore, all
Assignment Criteria for each requested agent are calculated
distinctly, with 1 being the best score possible and O the
worst. The concrete calculation for each value is conducted
as follows:

Distance: the distance between activity and agent is cal-
culated from the difference between the position variables of
both. These are transformed into three dimensional vectors
(X, v, z) and deducted. The distances between 0 and 1000 are
mapped to a fuzzy value from 1 to 0, where all distances above
1000 are also mapped to O in order to reduce the distance
agent should travel between activities at maximum. Therefore,
agents in close proximity to the activity are preferred in the
assignment and all agents further than 1000 units away are
heavily discriminated by the fuzzy set. However, as this is no
exclusion criteria they could still be assigned to the activity if
they are the overall best suited agent.

Workload: the workload can take values between 0 and
20. Values between 0 and 20 are mapped to the fuzzy value
between 1 and O, while values equal to or greater than 10
are mapped to 0. This allows the assignment of new activities
to workers with 10 or more activities, but prefers those with
lower workloads, Further, if the workload has a value of 20 the
score is set to 0 and acts as an exclusion criterion, preventing
the algorithms from overburdening agents.

Danger Thresholds: for each danger value, a separate fuzzy
set is calculated. After the disjunct calculations, all values are
added to a common fuzzy domain and weighted according to
a configuration. In the default case, all values are weighted
the same, leading to a 25% weight per value. All danger
values between 0 and 1 are mapped to fuzzy values from
0 to 1, where all values below the activity’s danger level
are 0 and trigger an exclusion criterion. This prevents labor
law violations and moreover increases work safety. All values
above the requirement through the maximum danger threshold
of 1 are mapped between 0 and 1. An agent who approximately
meets the requirements can therefore work on the activity
but gets a score of 0. This prefers agents with higher danger
thresholds, as they are most likely more experienced and more
rested than agents with lower danger thresholds.

Qualification: the qualification is calculated in three separate
fuzzy models. First the four values of qualification between 0
and 10 are compared to the values of required qualification of
the activity between 0 and 10 via separate fuzzy sets similar to
the danger levels. All values below the activity’s requirements
are assigned to O and trigger an exclusion criterion, as the
agent is technically not capable of performing the requested

activity. All values above the requirement are assigned to 1.
Subsequently, the degree of overqualification is calculated in
the second fuzzy model. Starting from the required qualifi-
cation up to the max qualification of 10, each qualification
value is assigned to a fuzzy value between 0 to 1, where
0 perfectly fits the required qualification value and 1 is the
maximum amount of overqualification possible. Afterwards
the overqualification is subtracted from the qualification value
resulting in a value between 0 and 1 called degree of qualifi-
cation, where 1 is a perfect fit without over qualification and
0 is a maximum overqualification. After this, two steps are
conducted for all four properties of an agent’s qualification:
the four separate degrees of qualification are added to the final
fuzzy domain and weighted according to the configuration.
The process is identical to the Danger Threshold calculation
and also uses a 25% weight distribution per value as a default.
The resulting value is used as the qualification in the final
calculation of the score, preferring qualified agents with as
low an overqualification as possible.

Hourly Rate: the hourly rate is mapped to the fuzzy value
from 1 to O for values from 0 to 50000 (being equal to 500€
following the integer data format). All values over 50000 are
set to 0. This prefers agents with low additional cost like
employees over external workers costing extra money and
therefore improves the economic efficiency of the BPMS.

After the calculation of the separate suitability levels, if no
exclusion criteria is fulfilled, the assignment score is calculated
for the agent according to a weight function in one final
fuzzy domain. This weight function can either be configured
generally and used for all calculations as a default or it can be
defined on a per request basis when provided to the Intelligent
Assignment Components algorithm as a parameter. All weights
are defined between 0 and 1 to a total sum of 1. For the
calculation, a new fuzzy set is defined and all values are
summed up according to their weight. The result of the new
fuzzy set is then multiplied by 100 to return a score between
0 and 100. Finally, the results are sorted in descending order
and returned to the Assignment-Engine for further processing.

V. IMPLEMENTATION

Our prototype of the Assignment-Engine with focus on
the IAC is implemented using Python. This approach was
chosen for its fast prototyping capabilities while still providing
performant libraries and refined multiprocessing logic. As a
base image for the Assignment-Engine, a Django server was
created, providing the most powerful REST-Server available
for Python. In contrast to other Python server-frameworks,
Django offers not only fast and simple prototyping capabil-
ities, but can also be scaled up to a performant production
deployment. To provide the required REST interface, the
Django REST framework was integrated. A Pub/Sub interface
was implemented using Python paho, the Python MQTT [20]
framework from Eclipse. The DAC was added according to
the architecture right after REST Layer. It is able to invoke
REST requests on its own, aggregating all required data from
the BPMS or configured external data sources.

1
0.8
Fuzzy
Domain ¢ ¢
Value
0.4
0.2
0r i
0 2 4 6 8 10
Agent Qualification
__Qualification _Overqualitication

Figure 4. Fuzzy model showing fuzzy domain value vs. agent task
qualification.

The fuzzy portions of the IAC were implemented using
the fuzzylogic library for Python 3 [21]. As an example,
Figure 4 shows the qualification and overqualification fuzzy
model for the qualification values as introduced in Section
IV. In this example, a qualification of 5 is required for the
task. The black line represents the qualification while the blue
line represents the overqualification. Below 5 the qualification
value is 0, at 5 and above the qualification jumps to 1 and
the overqualification starts to rise with a value of 0 by 5 and
a maximum of 1 by 10. These two domains are calculated
for all four qualification values and afterwards combined in a
single domain. The code calculating these fuzzy domains can
be seen in Figure 5.

As a BPMS for our prototype, Camunda [22] was chosen.
It is a well-known application in the BPM context and further
provides all required functionality as well as a BPMN Modeler
as an open-source solution. In addition to a full implemen-
tation of the BPMN 2.0 standard, Camunda also provides a
Connector element, allowing easy REST requests from within
process instances via script and service activities.

As the free version of Camunda only provides a BPMS with
minimal user management an extension in form of a mini-
mal REST-Backend (further called CamundaClient) handling
users and assignments was required. Users are added via a
new backend and saved according to our agent model. The
process templates were extended as planned in the solution
approach. The utility activity requests a score calculation from
the CamundaClient for the following execution activity. This
execution activity must contain the Assignment Criteria as
described in the activity model. The CamundaClient then loads
the required user data from the database and sends a request
to the Assignment-Engine. It is also possible to move this step
to the DAC in the Assignment-Engine, in this case it would
only be required to send the activity ID to the Assignment-
Engine. While we implemented both, the sync and async
variants, we focus on the asynchronous one as it provides more
benefits, such as better multiprocessing support, and should
be chosen if supported by the utilized BPMS. As soon as
the assignment is calculated, the assignment scores are sent
from the Assignment-Engine to the CamundaClient and the
assignment in Camunda is handled via the client. Connected

def eval_gualification{required: dict, values: dict):
required value and agents valus™"
gqualifications = {"types": {}}

for gualification_type, required_gualification in required.items():
Qualification = Domain("gualification", 0, 10, res=1)
qualified = (
rectangular{required_qualification, 10)
if required_qualification < 10
else singleton(required_gualification)
)
over_qualified =
Set(R{required_qualification, 10))
if required_qualification = 10
else Set{constant{0))
)
begin_flat = Set(singleton(required))

if required_qualification 1= 0:
begin_flat = MAX(
~3et{rectangular(0, required_qualification}},
Set(singleton{required_qualification)},

)

Cualification.qualified = qualified
Cualification.over_qualified = over_qualified
Qualification.not_over_qualified = {
Set{S(required_qualification, 10}))
if required_qualification < 10
else Set(begin_flat)
)

if required_qualification !'= 0 and required_gualification != 10:
Qualfication.not_owver_qualified = product|
begin_flat, Set(S{required_qualification, 10))
)
if required_qualification == 10:
Clualification.not_over_qualified = begin_flat

qualifications["types"|[qualification_type] = float(
CQalification.min{values[qualification_type])

)

Cualification = Domain("gualification”, 0, 1, res=0.001)
weight = {"electric™ 0.25, "computer": 0.25, "social": 0.25, "bio_chemical": 0.25}

w_func = weighted_sumi{weights=weight, target_d=Cualification)
qualifications["weighted"] = w_funciqualifications["types"])

return qualifications

Figure 5. Code snippet showing fuzzy implementation for qualification.

to this, the workload of the assigned agent(s) is increased and
their Danger Threshold is decreased by the Danger Level of
the Activity. The Danger Levels further can be reset to the
agents’ default value, e.g., on daily or weekly base as required
by labor safety laws.

Alternatively, the IAC could be integrated in the Camunda-
Client itself, removing the need for the additional REST-
Requests between the client and the Assignment-Engine. The
current approach however, allows the usage of the Assignment-
Engine as a service for multiple BPMS simultaneously in a
generic way.

Powerful multiprocessing capabilities were implemented in
the Intelligent Assignment Component and managed by an

intelligent orchestrator. While the Assignment Component is
already realized with a runtime of O(n), its performance
can be further increased with our multiprocessing approach.
Assignments with large numbers of agents can therefore be
run in a multi-processing configuration with multiple modes.
The default for large requests is n — 1 processes, where n
is the maximal number of cores available on the machine.
This provides maximum calculation speed while still preserv-
ing one process for the Assignment-Engine itself, preventing
slowdowns. If the request is too small for multiprocessing (the
multiprocessing overhead would slow down the computation
speed), the orchestrator runs the calculation in a single process.
Finally, it is possible to run the calculation in n—m processes,
where m,m < n is calculated according to the server’s
performance in multiprocessing mode. We implemented a
semi-automatic test setup, calculating the optimal m for a
server for 10, 100. 1000, ... 1000000 agents in a single
assignment request. The calculated m can then be used in the
server configuration to allow maximum performance according
to the utilized hardware.

VI. EVALUATION

The evaluation is separated in two parts. First the IAC
is evaluated on their own regarding its speed, this part is
further referred to as the performance evaluation. In the
second part, an integration test is conducted comparing the
activity assignment of a BPMS (Camunda) with the activity
assignment of the Intelligent Assignment Component, referred
to as the integration evaluation.

A. Performance Evaluation

The first test was conducted on a virtual server with 90GB
main memory. As an operating system Debian 10 was chosen
utilizing Python 3.7.2 for the algorithm execution. The test was
separated in two groups of 10, 100, 1000, 10000 and 100000
agents getting assigned to a single activity. In the first group
all agents were capable to perform the activity according to the
assignment criteria. In the second group, only certain agents
were capable of performing the activity. The assignment of
each group of agents to their activity was conducted 100000
times. The groups of 10 - 1000 agents were assigned using the
IAC without multiprocessing while 10000 and 100000 agents
were assigned using 17 processes (n — 1 mode).

Figure 6 displays the assignment calculation performance
if all supplied agents were capable, while Figure 7 displays
the calculation performance if only some agents fulfilled the
requirements. The calculation duration results show an approx-
imately linear scaling in the single processing mode (10-1000
agents), while multiprocessing decreases with larger numbers
of agents (10000-100000 agents). Unexpectedly, calculation
duration for assignments with only capable agents is lower
than that of agents with mixed requirements. This could
mean that there are still some optimization problems in the
elimination of incapable agents.

In general, the assignment of high volumes of agents
provided no problems for the algorithms. As the IAC is meant

175

1.50

calculation duration (in sec)

o

9
B
number of agents assigned

Figure 6. Calculation performance vs. number of capable agents assigned.

£

= N
e] o

calculation duration (in sec)
I
(=]

0.5
e
0.0 —+— —+—
O O O Q £
N \(‘) 1\9‘6 ()QQ GQ()
S

number of agents assigned

Figure 7. Calculation performance vs. number of capable and non-capable
agents assigned.

to run behind SARs, rule engines or other performant basic
filtering algorithms a load of 10000 possible agents for a
single activity is further quite unlikely. The runtime in the
sub seconds for agent values below 10000 would also allow
the removal of preliminary filtering, reducing the runtime of
the whole BPM process.

B. Integration Evaluation

The second test was conducted using the AnyLogic sim-
ulation software. The AnyLogic simulation was run on a
Lenovo T495 with 14GB main memory utilizing Arch Linux
as an operating system. No changes were made between the
performance evaluation and this one besides the setup of
this edition. The laptop and server containing the BPM and
Assignment-Engine were on the same network.

The evaluation was used to compare a BPMS using the
IAC against a plain BPMS. To simulate workers and a re-
alistic workflow, an AnyLogic simulation was built and two
simulation setups were configured.

A factory with 21504m? and a total of 29 machines which
required maintenance every 16 hours was created. The first

TABLE 1. IA/CMD-SETUP SIMULATION MEASUREMENTS.

IA | Camunda

total_activities (amount) 13.98 16.84

work_time (in minutes) | 1636.38 1955.20

idle_time (in minutes) 523.62 204.80

cost (in €) 10.00 420.00

avg_overqualification (value) 0.34 0.09
max_avg_under-qualification (value) 0.00 -0.02
traveled_dist (in meters) | 7346.92 8911.79
downtime_maintain (in minutes) 484.18 303.30
downtime_repair (in minutes) 204.00 138.23

maintenance was scheduled between 0 to 16 hours after
start of the simulation. Further, the machines had an average
breakdown interval of 36 hours. If a machine required main-
tenance or repair it started a new Camunda process instance
with the required qualification and the machines position.
The activity takes between 1 to 3 hours and requires an
engineering qualification of 4 for maintenance and 6 for
repairs. Other qualifications (electric, computer, bio_chemical)
were not required and set to 0. A total of 5 agents were
available to complete this activity. Four internal workers,
waiting in a maintenance building in the factory hall and
one external agent, waiting 165 meters away. The internal
agents had engineering qualifications of 4, 5, 6 and 7 while the
external agent had an engineering qualification of 8. The other
qualification values were set to 0, to avoid bias. The usage of
the external agent further was connected to an additional cost
of 2500 (25€/activity), while the usage of internal workers
incurred no additional costs. In their idle state, an agent
checked every 5 minutes if a new activity is available. If they
were working, after completion of their current activity they
checked if another activity was enqueued. If no activity was
enqueued, they switched back to the idle state and moved to
their starting position. This part of the setup was identical in
both simulation setups.

In the Camunda Setup (called CMD-Setup), the agents
fetched their activities directly from Camunda. All activities
of the simulation were available to all of the workers with
no further verification. If an activity is available to the group,
the agents try to claim it and, if successful, work on it. In
the TAC Setup (called IA-Setup) the agents checked their
personal worklist at the Assignment-Engines REST API. If
their personal worklist contains an activity, they start to work
on it, otherwise the stayed idle.

A timespan of 36 working hours were simulated for both
configurations, using the same seed for the simulations random
number generator. This process was repeated 10 times with
different seeds to get the statistical relevant test data. For
the IAC, the model introduced in Section IV was used. The
qualification value was weighted half to increase utilization
of the more qualified agents and reduce the downtime of
the machines. Further adjustment of the weighting could lead
to heavily deviating results. An optimal weighting has to be
configured according to the needs of the activities.

Table I shows a general comparison between the CMD and
IA simulation, while II shows a more detailed comparison of

TABLE II. INTERNAL/EXTERNAL WORKER SIMULATION

MEASUREMENTS.
TA-int TA-ext | CMD-int | CMD-ext
total_activities 17.38 0.40 16.85 16.80
work_time | 2037.25 32.88 1946.62 1989.50
idle_time 122.75 | 2127.12 213.38 170.50
cost 0.00 10.00 0.00 420.00
avg_overqual 0.05 1.50 0.06 0.20
max_avg_uqual 0.00 0.00 -0.02 0.00
traveled_dist | 9082.78 403.45 8750.17 9558.25

internal and external worker stats in both simulations. In the
following values from Table I will be compared with the more
detailed values from Table II.

The average work time and total activities per worker are
lower in the IA run, while the utilization of the internal work-
ers (IA-int) is slightly increased and the external utilization
(TA-ext) is heavily reduced. The average idle time is increased
which can be deducted from the low external utilization. The
heavily reduced average cost of a simulation run, if using the
IAC instead of a plain BPMS can be attributed to the preferred
use of internal workers.

The increase in overqualification while using IA instead
of plain Camunda can be explained with the low weighting
of qualification in the algorithms as well as no presence of
under-qualification in comparison to the CMD-Setup, where
under-qualification was generally present. In Table II, the main
source of overqualification in the IA simulation comes from
the usage of the external worker, who was mainly used for
activities below his qualification. This happened because of a
too high workload and could be solved by employing another
internal worker with lower qualification to help out with
this activity. This would lead to reduced cost and downtime.
Optimization in the simulated company is needed, rather than
an adaptation of the algorithm.

The traveled distance for the internal workers is slightly
increased in the IA simulation compared to the CMD run.
This however stands in linear dependency with the increased
workload. A stronger weight regarding the distance could
reduce this effect.

The downtime in the IA run is around 50% higher than in
the CMD-Setup while the cost was reduced to 4.2% of the
CMD-Setup. This was expected behavior as the algorithms by
default try to save money and therefore did not employ the
external worker as much as the CMD-setup.

In summary, the IAC worked as expected with fast runtimes
on mid-to-low budget hardware. Scaling was only required for
the case when more than 1000 agents could be assigned to the
same activity. This is highly unlikely even in companies with
more than 1000 employees, as many of them would most likely
not fulfill the preconditions to be considered for the activity.
However, if scaling is necessary, it can be readily achieved and
works efficiently for at least 100000 agents per activity. The
algorithms further produce comprehensible results for analysis
by non-experts, which can be adjusted as required through
dynamic weighting of the different variables in the algorithm.

VII. CONCLUSION AND FURTHER WORK

Industry 4.0 stands for highly automated production pro-
cesses. However, these processes also rely on complicated
tasks that can only be performed by humans manually. The
integration of such activities into the processes is still problem-
atic. One important issue is efficient task assignment, which
is not solved well in contemporary BPM systems.

To counteract this, this paper described an approach for
more effective and efficient activity assignment for Industry
4.0 production processes. The focus of this approach was
to build a compact model of fuzzy sets that can be easily
applied to real projects. Therefore, we chose a set of important
properties that incorporate aspects relevant in current Industry
4.0 production: achieve cost savings by incorporating not only
underqualification but also overqualification and the separation
between internal and expensive external workers; achieve a
balanced workload for all workers to avoid idle times as well
as overburdened workers; protect the workers from different
hazards as enforced by legal regulations; and finally, optimize
assignments with knowledge about the locations of workers
and their potential activities by minimizing transit overhead.

Besides providing a practical model, our approach also
features concepts for the direct integration with BPMS. To
demonstrate its feasibility, we have currently implemented,
integrated and tested our prototype approach with two concrete
BPMS (AristaFlow [23] and Camunda). The approach is built
modularly and can be easily expanded. Further, the fuzzy
weights used to calculate the assignment can be changed
dynamically according to the users’ specific needs. It is also
possible to use this prototype with any other BPMS supporting
BPMN 2.0 with minimal effort.

The evaluation showed that our approach is an efficient
way to automatically compute assignments. We evaluated the
algorithms regarding performance and built a comprehensive
simulation scenario to show its effectiveness and efficiency in
providing optimal assignment recommendations.

As future work, we plan to incorporate a more generic
model where not only the weights are dynamic but also the
criteria. Thus, the approach can be easily adapted for other do-
mains and scenarios by extending or replacing the evaluation
criteria. Other upcoming improvements could include utilizing
transit path finding algorithms for the distance calculation to
provide a more realistic and resilient calculation. The duration
of activities could also be considered in order to measure the
workload not only in terms of number but also in terms of
estimated time required to complete the activities. Finally, the
slight performance decrease in the elimination of unqualified
agents should be investigated.

ACKNOWLEDGMENTS

We thank Felix Griber for his contribution regarding the
fuzzy algorithms and implementation, and Camil Pogolski for
his input on the models. This work was partially funded via
the PARADIGMA project by “Zentrales Innovationsprogramm
Mittelstand” (i.e., the “Central Innovation Programme for
small and medium-sized enterprises (SMEs)”), of the Federal

Ministry for Economic Affairs and Energy of the Federal
Republic of Germany.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0, Business & Information Systems Engineering, vol. 6, no. 4, pp.
239-242, 08 2014.

[2] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, no. 1, pp. 161-166, 2011.

[3] D. Karagiannis, “Bpms: business process management systems,” ACM
SIGOIS Bulletin, vol. 16, no. 1, pp. 10-13, 1995.

[4] C. Moore, “Common mistakes in workflow implementations,” Giga
Information Group, Cambridge, MA, vol. 2, 2002.

[5]1 M. M. Flood, “The traveling-salesman problem,” Operations Research,
vol. 4, no. 1, pp. 61-75, Feb. 1956.

[6] L. A. Zadeh, “Fuzzy logic,” Computer, vol. 21, no. 4, pp. 83-93, 1988.

[7] G. Grambow, R. Oberhauser, and M. Reichert, “Semantic workflow
adaption in support of workflow diversity,” in 4th Int’l Conf. on Advances
in Semantic Processing. Xpert Publishing Services, 2010, pp. 158-165.

[8] G. Grambow, R. Oberhauser, and M. Reichert, “Employing semantically
driven adaptation for amalgamatingsoftware quality assurance with pro-
cess management,” in Second Int’l Conf. on Adaptive and Self-adaptive
Systems and Applications (ADAPTIVE’10). Xpert Publishing Services,
2010, pp. 58-67.

[91 G. Grambow, R. Oberhauser, and M. Reichert, “Enabling automatic
process-aware collaboration support in software engineering projects,”
in Communications in Computer and Information Science (CCIS) 303.
Springer, 2012, pp. 73-89.

[10] V. Shahhosseini and M. Sebt, “Competency-based selection and assign-
ment of human resources to construction projects,” Scientia Iranica,
vol. 18, no. 2, pp. 163 — 180, 2011.

[11] G. Klosowski, A. Gola, and A. Swig, “Application of fuzzy logic in
assigning workers to production tasks,” Distributed Computing and
Artificial Intelligence, 13th International Conference, pp. 505-513, 01
2016.

[12] C. Tasdemir and C. Toklu, “Qos driven dynamic task assignment for
bpm systems using fuzzy logic,” in Emerging trends and challenges in
information technology management. Hershey, Pennsylvania (701 E.
Chocolate Avenue, Hershey, Pa., 17033, USA: IGI Global, 2006.

[13] H. A. Reijers, M. H. Jansen-Vullers, M. zur Muehlen, and W. Appl,
“Workflow management systems + swarm intelligence = dynamic task
assignment for emergency management applications,” in Business Pro-
cess Management, G. Alonso, P. Dadam, and M. Rosemann, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 125-140.

[14] D. Antonelli and G. Bruno, “Dynamic distribution of assembly tasks
in a collaborative workcell of humans and robots,” FME Transactions,
vol. 47, pp. 723-730, 01 2019.

[15] X. Xu, J. Hao, L. Yu, and Y. Deng, “Fuzzy optimal allocation model for
task-resource assignment problem in a collaborative logistics network,”
IEEE Transactions on Fuzzy Systems, vol. 27, no. 5, pp. 1112-1125,
2019.

[16] W. Kwak, Y. Shi, and K. Jung, “Human resource allocation in a cpa firm:
A fuzzy set approach,” Review of Quantitative Finance and Accounting,
vol. 20, pp. 277-290, 2003.

[17] E. Simpson and S. Roberts, Bayesian Methods for Intelligent Task
Assignment in Crowdsourcing Systems. Cham: Springer International
Publishing, 2015, pp. 1-32.

[18] Business Process Model and Notation(BPMN) - Version 2.0.2.
Object Management Group, 12 2013, retrieved: 2021.06.10. [Online].
Available: https://www.omg.org/spec/BPMN/2.0.2/PDF

[19] T. Allweyer, BPMN 2.0: introduction to the standard for business
process modeling. BoD-Books on Demand, 2016.

[20] G. C. Hillar, MQTT Essentials-A lightweight IoT protocol.
Publishing Ltd, 2017.

[21] A. Kiefner. Python3 fuzzylogic. Last visited: 2021.06.14. [Online].
Available: https://github.com/amogorkon/fuzzylogic

[22] Camunda. Last visited: 2021.06.10. [Online].
https://camunda.com

[23] M. Reichert, “Enabling flexible and robust business process automation
for the agile enterprise,” in The Essence of Software Engineering.
Springer, Cham, 2018, pp. 203-220.

Packt

Available:

