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Abstract. Software models in the Unified Modeling Language (UML) can been 
created or automatically reverse-engineered and used for quickly gaining struc-
tural insights into larger, legacy, or unfamiliar software. But as the size, struc-
tural complexity, and interdependencies between software components in larger 
systems grows, two-dimensional viewing and modeling has limitations, and new 
ways of visualizing larger models and numerous associated diagrams of differ-
ent types are needed to intuitively convey structural and relational insights. To 
investigate the feasibility of using Virtual Reality (VR) to create an immersive 
UML-based software modeling experience, this paper contributes a VR solution 
concept for visualizing, navigating, modeling, and interacting with software 
models using UML notation. An implementation shows its feasibility while an 
empirical evaluation highlights its potential. 

Keywords: Virtual Reality, Unified Modeling Language, Software Modeling, 
UML Tools, Visualization. 

1 Introduction 

Aristotle once stated "thought is impossible without an image," and F. P. Brooks, Jr. 
asserted that the invisibility of software remains an essential difficulty of software 
construction - because the reality of software is not embedded in space [1]. Text-based 
program comprehension remains the norm in our day, despite the obvious limitations 
for this form of software comprehension, as evidenced in the low code review reading 
rates of around 200 lines of code per hour [2]. 

In general, modeling provides an abstracted or simplified representation of a sys-
tem that can assist with understanding relationships between elements or concepts of 
interest. Typically, views are used to address stakeholder concerns and portray rele-
vant aspects of a model. For visualizing the structural design of a software system, 
UML [3] has provided a unified and standard modeling notation. UML tools can sup-
port software developers via visualization, diagramming, model-based code genera-
tion, reverse engineering (from code to models), round-trip engineering, model trans-
formation, and support for XML Metadata Interchange (XMI) [4] for transferring 
models between tools.  

Commonly available 2D modeling depictions in standard modeling tools have limi-
tations, and one can lose insight into the interrelationships across views, diagrams, and 
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relevant model elements as the size of the model and views grows. Evidence includes 
[5], who concluded a network graph in VR was three times as good as a 2D diagram. 
For 3D UML, X3D-UML [6] determined a clear and measurable benefit in 3D UML 
software visualization, while a 3D UML tool case study [7] showed that a 3D perspec-
tive was intuitive and improved model comprehension. A VisAr3D experimental 
study with 18 participants [8] showed positive evidence for 3D for UML model un-
derstanding when many elements were present (and the third dimension's contribu-
tion), while showing that precision, efficacy, and time were not negatively affected.  

VR could potentially assist with visualizing large and complex software models 
and their interrelationships simultaneously while also providing an immersive experi-
ence in the software models. VR is defined as a “real or simulated environment in 
which the perceiver experiences telepresence” [9], a mediated visual environment 
which is created and then experienced. VR has made inroads in various domains and 
become readily accessible as hardware prices have dropped and capabilities improved, 
increasing the accessibility and ubiquity of VR-based model visualization. VR-based 
visualization of software models for insights could rejuvenate the interest with soft-
ware models in general and UML modeling in particular. In their study with 99 partic-
ipants, [10] showed that VR resulted in better overall learning performance and higher 
engagement than textbook or video modes. A new approach via software model im-
mersion could help rejuvenate the software modeling area and help transition from 
source-code only comprehension to more integrative use of visual models where it 
makes sense. VR offers a unique advantage in the unconstrained 3D space for visual-
izing, conveying, navigating, and analyzing complex and heterogeneous models sim-
ultaneously. As software models grow in complexity, an immersive environment 
could provide an additional visualization capability to comprehend the “big picture” 
for structurally and hierarchically complex and interconnected software diagrams, 
while providing an immersive experience for the UML models in a 3D space viewable 
from different perspectives. The sensory immersion of VR can support task focus 
during model comprehension while limiting the visual distractions that typical 2D 
display surroundings incur. 

In prior work, [11] demonstrated the use of various metaphors for a VR immersion 
in software structures without the use of UML. VR-BPMN [12] described our solution 
concept for visualizing Business Process Model and Notation (BPMN) [13] models in 
VR. Next, VR-EA [14] presented a VR solution concept for visualizing, navigating, 
annotating, and interacting with ArchiMate [15] Enterprise Architecture (EA) models, 
while also describing our generalized VR modeling framework (VR-MF). Subse-
quently, VR-EAT [16] integrated EA tool visualizations into VR, in particular dynam-
ically generated diagrams from the EA tool Atlas and its meta-model [17]. VR permits 
the extent of large models to be depicted and navigated visually, while overall interre-
lationships within and between heterogeneous elements, models, and diagrams can be 
indicated and considered. This paper extends our prior contributions with our solution 
concept VR-UML, which provides a way to visually depict and immersively navigate, 
model, and interact with UML-based software models in VR, enhancing these dia-
grams with 3D depth, color, and inter-diagram element followers, while supporting 
heterogenous hypermodels in VR.  

The remainder of this paper is structured as follows: Section 2 discusses related 
work. Section 3 presents our solution concept VR-UML. Section 4 then provides de-
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tails on our prototype implementation that demonstrates its feasibility. In Section 5 
VR-UML is empirically evaluated, and a conclusion follows in Section 6.  

2 Related Work 

Work on combining VR and UML includes Ozkaya & Erata [18], who propose their 
intent for a research framework of a conceptual modeling tool, Virtual Reality Unified 
Modeling Language (VRUML), but no VR realization details could be found. That 
VR features are not yet commonplace in UML tools is evidenced by Ozkaya [19], 
who systematically analyzed 58 different UML modeling tools without any mention 
of VR, and Ozkaya & Erata [20] who surveyed 109 practitioners to determine their 
UML preferences without any mention of VR. Related 3D (non-VR) UML visualiza-
tion includes the aforementioned X3D-UML [6], VisAr3D [8], and the case study by 
Krolovitsch & Nilsson [7]. 

As to VR-based non-UML software model visualization, besides our own afore-
mentioned prior software modeling in VR [11, 12, 14, 16], various metaphors in VR 
have been attempted. Schreiber & Misiak [21] and Nafeie & Schreiber [22] use an 
island metaphor in VR to represent components, packages, classes, and dependencies. 
Vincur et al. [23] applies a city metaphor to software analysis. Schreiber & Brügge-
mann [24] use a modular electrical component system metaphor in VR to visualize 
software components.  

Regarding hypermodeling work, besides our own prior work, the survey by Bork et 
al. [25] comprehensively analyzed eleven visual modeling languages, including UML, 
ArchiMate, and BPMN, revealing heterogeneity in the specified modeling language 
concepts and techniques employed for concept specification. They found a lack of a 
common visual metamodel across various visual modeling languages, incompleteness, 
and thus difficulties in providing an overarching metamodel that could be used to 
simplify the specification and interrelations between various model types. Towards 
harmonizing heterogeneous software models, van den Berg [26] analyzes the various 
metamodels for ArchiMate, BPMN, and UML and shows how one might practically 
combine the notations across views and diagrams. 

In contrast, the VR-UML solution concept realizes a VR-centric visualization of 
and immersive experience in UML models, providing automatic layout of views as 
stacked 3D hyperplanes, visualizing the reality of inter-view relations and recurrence 
of elements, and enabling interactive modeling in VR. Its support for hypermodeling, 
e.g., such that UML, ArchiMate, BPMN, and EA tool (Atlas) models can be visual-
ized simultaneously in the same virtual space supports deeper cross-model analysis 
across various diagram types and stakeholder concerns. This capability may grow in 
importance with increasing digitalization as (automatically extracted) UML-based 
software models become more relevant to the business and EA and text-based code 
analysis (by non-developers) is no longer efficient or viable.  
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3 Solution Concept 

With the upcoming challenges that increasing digitalization and IT infrastructure will 
bring to enterprise architecture, rather than viewing models in isolation and in separate 
tools, we envision the future of (software) modeling as integrative and holistic, utiliz-
ing and accessing various available models concomitantly. VR provides a unique me-
dium of unlimited space and an immersive environment to support this modeling vi-
sion. Thus, the foundation for our VR-UML solution (shown in blue in Fig. 1) is our 
generalized VR Modeling Framework (VR-MF) [14]. It provides a VR-based domain-
independent hypermodeling framework supporting multiple heterogeneous models 
while addressing three primary aspects of modeling in VR: visualization, navigation, 
interaction, and data retrieval. Relationships between elements can be shown in 3D 
space, and related elements can be grouped in 3D layers or views as appropriate. The 
capability to simultaneously visualize multiple heterogenous models in VR is a key 
principle of our solution concept as realized via VR-MF. As depicted in Fig. 1, prior 
work based on VR-MF addressed enterprise architecture (EA) modeling with Archi-
mate in VR called VR-EA [14], business process modeling in VR called VR-BPMN 
[12], and integrated EA tool data and visualizations demonstrated with VR-EAT [16] 
using the EA tool Atlas. ArchiMate models use a graphical notation consisting of a 
collection of concepts (approximately 50) to portray a wide scope of EA elements and 
relationships. On the other hand, BPMN models focus on business processes and con-
sist of Business Process Diagrams (BPDs) composed of graphical elements consisting 
of flow objects, connecting objects, swim lanes, and artifacts. To meet commercial EA 
needs, Atlas, as a representative EA tool, provides access to diverse EA-related data in 
a coherent repository and meta-model and is not restricted to certain standards or nota-
tions. Thus, while UML is focused on modeling software structural aspects, Archi-
Mate, BPMN, and other EA models and views can convey other non-software aspects 
that may also be of importance to various stakeholders depending on their context and 
concern, especially as software becomes an integral part of the overall digital organi-
zations and their processes. Thus, our hypermodeling principle as detailed in our prior 
work plays a fundamental role towards supporting heterogenous VR model visualiza-
tion with regard to our VR-UML solution concept. 

 

Fig. 1. Solution concept showing our new VR-UML solution concept within our VR-MF mod-
eling framework, with VR-EAT, VR-EA, and VR-BPMN support. 
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Visualization. UML models use a graphical notation consisting of a collection of 
concepts to portray a wide scope of software elements and relationships. The diagram 
types can be categorized as structural diagrams (Class, Component, Composite struc-
ture, Deployment, Object, Package, and Profile) and behavioral diagrams (Activity, 
Communication, Interaction overview, Sequence, State, Timing, and Use case). These 
diagrams can participate in views used to convey information addressing concerns of 
specific stakeholders. While many visual options and metaphors can be considered for 
VR, diverging too far from the 2D diagrams and UML notations familiar to UML tool 
users would reduce diagram comprehension. Yet placing 2D UML images like flat 
screens in front of users would provide little added value in the 3D VR space. For 
visualizing and differentiating diagrams, planes are used to take advantage of the 3D 
space, with each plane representing a diagram. Stacked hyperplanes support viewing 
multiple diagrams at once, while allowing the user to quickly see an overview of how 
many diagrams of what type are available. Furthermore, stacked hyperplanes allow us 
to utilize the concept of a common transparent or invisible backplane to indicate 
common elements across diagrams via multi-colored inter-diagram followers. Stacked 
diagrams are a scalable approach for larger projects (compared to side-by-side) since 
the distance to the VR camera is shorter, and multiple stacks can be used to group 
diagrams or delineate heterogeneous models. Diagrams are of interest can be viewed 
side-by-side by moving them from the stack via an affordance on a diagram corner we 
call anchor spheres, which can also hide or collapse diagrams to reduce visual clutter. 

To distinguish UML elements types, generic (customizable) UML icons are placed 
on upper right and lower left of the top of the element. Rather than graphically model-
ing each element type separately, this enables us to quickly support many different 
element types using a common shallow box approach. 

Due to the current lack of a common metamodel and/or inter-model specification 
language that can be used when visualizing heterogenous models (cf. [25, 26] in Sec-
tion 2), we resort to a pragmatic approach of providing a basic inter-model annotation 
capability in VR. 
 
Navigation. The immersion afforded by VR requires addressing how to intuitively 
navigate the space while reducing the likelihood of potential VR sickness symptoms. 
Two navigation modes are included in the solution concept: the default uses gliding 
controls, enabling users to fly through the VR space and get an overview of the entire 
model from any angle they wish. Alternatively, teleporting permits a user to select a 
destination and be instantly placed there (i.e., by instantly moving the camera to that 
position); this can be disconcerting but may reduce the likelihood of VR sickness that 
can occur when moving through a virtual space for those prone to it. 
 
Interaction. VR interaction with VR elements has not yet become standardized. In 
our VR concept, user-element interaction is done primarily via the VR controllers and 
a virtual tablet. The virtual tablet provides detailed element information with CRUD 
(Create, Retrieve, Update, Delete) capabilities specific to each element as well as a 
virtual keyboard for text entry via laser pointer key selection. The aforementioned 
corner anchor sphere affordance supports moving / hiding / displaying diagrams. In-
ter-diagram element followers can be displayed, hidden, or selected (emphasized).  
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4 Realization 

The VR-UML implementation architecture for our prototype is shown in Fig. 2. Due 
to its multi-platform support, direct VR integration, popularity, and cost, the Unity 
game engine 2020.2.0b4 is used with the SteamVR plugin v2.6.0b4. As shown, Unity 
uses various assets such as Models, Scenes, and Scripts, which in turn access external 
model files via our plugin adapter interface that parses and converts various model file 
formats (e.g., UML, BPMN, ArchiMate) to our internal generic object representation. 

 

Fig. 2. VR-UML implementation architecture. 

For text readability, an aspect that is irrelevant for 2D but which VR needs to con-
sider is that the viewing angle from the user to the element (camera angle) can be 
dynamic based on the VR camera position in space (which is what is actually moved 
to "navigate"), thus the recognition and readability of elements must be considered 
from various angles. Thus, in VR-UML the diagrams and any elements they contain 
are raised slightly for a 3D effect and these visible side edges utilized for text place-
ment to permit the text to be read from all sides in addition to the top. To support ele-
ment delineation in space, rather than using clear elements with border outlines - as is 
typically done in 2D UML representations, in VR-UML a texture/color/material is 
used on all sides of an element to give it substance. However, in 3D space if the ele-
ments are opaque, then another element or relation could become hidden (and the user 
unaware of this), so a certain degree of transparency for diagram planes and for cer-
tain elements is used to ensure that relations and elements do not completely "disap-
pear" within or behind other elements. Furthermore, a customizable color scheme, 
e.g., Coad et al. [27] or the colored layers used in the ArchiMate specification can be 
used to help distinguish UML diagrams and elements as models grow, since, in con-
trast to 2D, many elements can be depicted visually in VR. 

One unexpected challenge in the UML visualization area is support for a common 
UML diagram interchange format between UML tools that contains positioning and 
layout data. While a mechanism for UML model exchange had been specified for 
UML 1.x using XMI, it only provides information on the model elements while lack-
ing support for exchanging diagram and element positioning and layout information. 
This limitation is due to the UML metamodel lacking a standard way of representing 
diagram definitions. While UML Diagram Interchange (UMLDI) [28] was published 
in 2006, few UML tool vendors appear to implement and support it. At the time UML 
2.0 was published in 2005, UMLDI was unavailable for another year, so vendors may 
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have ignored it and continued with their own proprietary format for maintaining dia-
gram layout information. Most web-based UML tools and various desktop tools we 
tried support exporting only common image file formats, while some support export-
ing the model in XMI but lack any positional information. As XML can readily be 
converted into a JSON format, rather than relying on the older common XML format 
in UML, we wanted to investigate utilizing the newer and more efficient JSON format 
for UML model files. Various popular UML tools were analyzed to determine if they 
already used or supported a JSON format for UML. As StarUML uses JSON in their 
MDJ model files, VR-UML uses its UML JSON file format. In Unity, the JsonDotNet 
package was used in combination with quicktype to parse the JSON model file. 

As shown in Fig. 3, at the highest level, an MDJ model file contains a single object 
of the type Project that includes the project name and ID as well as an array of the 
next level of objects. This array contains all saved Model Objects inside the project. 
These Model Objects contain another array of objects of different types, of which we 
focus on three: Diagram Objects (objects in a diagram and their positional data), Mod-
el Data Objects (objects and their model data including relations and Child Objects), 
and Collaboration Objects (all diagram data for sequence diagrams). While further 
objects for diagram types such as activity or flowchart would expand the types, they 
are similar to the sequence diagram in another object tree branch.  

 

Fig. 3. Model file structure in JSON format. 

To evaluate the practicality of the VR-UML solution concept and implementation 
prototype, a case study was used. Support is initially limited to the common UML 
diagram types: use case, class, sequence, and deployment. The travel agency example 
project provided by UML Designer [29] was used as a UML model basis and then 
imported to StarUML in order to get an MDJ model in JSON format. The model pro-



8 

vides the basic UML diagram types known in the 4+1 view model [30]: a use case 
diagram depicting requirements in the scenario view (Fig. 4 left), a sequence diagram 
(Fig. 4 right) depicting runtime behavior in the dynamic or process view, a class dia-
gram for depicting the internal structure in the logical view (Fig. 5), and a deployment 
diagram (Fig. 6) for depicting the physical view. 

 

Fig. 4. Travel agency use case (left) and sequence (right) diagrams in StarUML. 

 

Fig. 5. Travel agency class diagram in StarUML. 
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Fig. 6. Travel agency deployment diagram in StarUML. 

The VR_UML visualization of the travel agency model is shown in Fig. 7, depict-
ing stacked hyperplanes for this model. Colors help differentiate diagram types. Here 
the top grey plane shows a sequence diagram, the second purple plan the use case 
diagram, the third plane the deployment diagram in green, and the bottom a class dia-
gram in red. Random colored followers along the invisible backplane (currently clos-
est to the camera) are automatically generated between recurring elements across dia-
grams to follow participating elements across views (e.g., Customer (purple), Reserva-
tion (aqua) and Customer (light green), which recur in the class and sequence dia-
grams with details shown later), and can be used to quickly recognize recurring ele-
ments in other diagrams. Anchor spheres on the corner of each diagram act as af-
fordances that supports expanding, collapsing, and moving a diagram. 

 

Fig. 7. VR-UML stacked hyperplane visualization of travel agency model. 
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A virtual tablet is provided in VR-UML to support interaction and modeling and to 
provide detailed information about an element. We chose this method since tablet 
usage is common and intuitive (less VR training needed), and other VR-based af-
fordances are not yet standardized for providing detailed context-specific information 
for an element. Fig. 8 shows the ability to add a new class to a diagram including a 
keyboard where each key is picked via a virtual laser pointer. Fig. 9 shows the inter-
face for creating a new relation and indicating the type of relation (e.g., association, 
aggregation, etc.) and its multiplicity. Fig. 10 shows the ability to edit class attributes, 
e.g., the type, multiplicity, and visibility. 

 

Fig. 8. VR-UML create class modeling support with virtual tablet and virtual keyboard. 

 

Fig. 9. VR-UML create relation modeling support with virtual tablet. 

 

Fig. 10. VR-UML attribute modeling support via virtual tablet. 
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As exemplified in Fig. 11, visual clutter can be reduced via the anchor sphere af-
fordance to collapse (hide) a diagram (which then displays the hidden diagram type).   

 

Fig. 11. VR-UML stacked plane view with two hidden / collapsed diagrams. 

Fig. 12 shows side-by-side and offset diagram placement via anchor spheres.  

 

Fig. 12. VR-UML side-by-side and offset diagram placement. 

Fig. 13 shows the VR-MF hypermodeling capability for heterogeneous models in 
VR (e.g., here UML and ArchiMate); related elements can be annotated across models 
to support analysis. 
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Fig. 13. Hypermodeling example showing a VR-UML and VR-EA ArchiMate model. 

5 Evaluation 

To assess VR-UML empirically, a convenience sample of seven computer science 
students from sophomore through master students participated, despite the currently 
very restrictive COVID-19 pandemic situation and university contact policies. While 
the group is not large enough to be statistically significant, the results can provide 
insights to inform and guide future research. The subjects used an HTC Vive room 
scale VR set with a head-mounted display and two wireless handheld controllers 
tracked by two base stations. Each subject worked individually with a supervisor who 
provided instructions and timed the tasks. A Likert five-point scale was used for 
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range-based responses. All had some familiarity with UML and had used Sparx Sys-
tems Enterprise Architect before; only two had used StarUML, and all but one had 
used VR. 

The hypotheses that guided our tasks and questions were: while VR-UML will like-
ly be less efficient than 2D modeling in general, (1) VR-UML is advantageous and 
efficient for more complex and multi-diagram models; and (2) users will subjectively 
enjoy the VR immersion experience in UML models more that the 2D models. 

 
5.1 Quantitative Analysis 

The subjects were timed for the following tasks in non-VR (using StarUML) and VR-
UML: 

1. Multi-diagram elements: which elements with the same name recur in multiple 
diagrams and how often? 

2. Change the attribute "email" in the Customer class from public to private. 
3. Change the relation multiplicity between Customer to Shopping Cart to 1-1. 
4. Create the Model-View-Controller (MVC) pattern in the class diagram in non-

VR (see Fig. 14) and VR-UML (Fig. 15). In non-VR a paper copy was acces-
sible as a reference, in VR they had to remember or verbally ask questions 
while wearing the headset. 

 

Fig. 14. MVC pattern task example in StarUML. 

 

Fig. 15. MVC pattern task example in VR-UML. 
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Fig. 16 shows the task duration results. On average, VR took 344% longer for Task 
1, 141% longer for Task 2, and 43% longer for Task 4. For Task 3, when dealing with 
multi-diagram elements, VR was 14% more efficient on average - because VR-UML's 
ability to visualize multiple diagrams and highlight inter-diagram elements. We see 
this result as providing support for hypothesis (1). Note that for Task 2, 3, and 4, the 
ranges show a large degree of overlap, which can be interpreted that VR can perform 
better than non-VR to depending on the user's UML and VR competency.  

Three possible reasons for the longer VR results are: 1) the VR interface is more 
cumbersome to control for modeling vs. a 2D mouse-based interface with which the 
subjects have been trained, 2) text entry via virtual laser pointer keypad selection (re-
sembling one finger typing using a laser pointer) instead of the non-VR physical key-
board (enabling touch typing), and 3) time spent in VR navigating through 3D space 
to see or interact with the object of interest (vs. in 2D moving the mouse on a screen). 
As VR keyboards become commonplace, this could reduce this factor's efficiency 
influence. 

 

Fig. 16. VR and Non-VR task duration range and average (blue dot) in seconds. 

Table 1. UML familiarity (1 to 5, 5= very familiar, 1=unfamiliar) vs. error frequency. 

UML Familiarity Non-VR Errors VR Errors Total Errors 
2 1 3 4 
3 0 0 0 
3 2 0 2 
4 0 2 2 
4 0 0 0 
4 0 2 2 
4 0 5 5 

 
Table 1 shows the errors made. We note that in two cases no errors were made in 

either mode, in one case fewer errors were made in VR, while in four cases errors 
increased in VR. Since VR relied on subjects' memory of the pattern and subjects 
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could not compare their model to a reference model on paper as they did in non-VR, 
we do not weight VR errors strongly. Due to the relatively minor error rate differ-
ences, we interpret the results to indicate that with additional training and familiarity 
with VR-UML, the error rate in VR could be equivalent to that of 2D and that it is not 
inherently more error prone for all cases and all subjects.  
 
5.2 Qualitative Analysis 

In the qualitative responses shown in Fig. 17, all agreed VR-UML to be intuitive and 
43% more so than non-VR. 86% agreed that VR-UML provided a clear model struc-
ture. As to changing an element, 71% found them equivalent while 29% found non-
VR easier. For finding recurring elements across diagrams, 86% strongly agreed that it 
was easy in VR-UML compared to 43% for non-VR. In general, VR did not fare 
worse than non-VR on these qualitative aspects, and often even better. 

 

Fig. 17. Qualitative comparison of VR and Non-VR. 

Additionally, 71% stated that they liked VR-UML better than non-VR. We inter-
pret this as support for hypothesis (2). VR-UML advantages explicitly mentioned 
included: VR provided a better overview of diagrams and how they relate to each 
other, the layered 3D hyperplane stack makes comprehension of architecture easier, 
better visualization in general - and specifically for relations, VR is more intuitive, the 
VR user interface simpler than a menu system, and VR provides better focus due to 
immersion. Disadvantages mentioned included: efficiency to perform tasks, text input 
takes much longer via virtual keyboard with laser pointer, and the potential for VR 
sickness for sensitive users. Suggested improvements included: voice input or other 
text input alternative for VR. 

 
5.3 Discussion 

While our small sample size is not statistically significant, we believe there is still 
sufficient value from the results to infer trends and to inform future research. The 
study showed evidence that VR can indeed support modeling for certain scenarios. 
We hypothesized that VR would be advantageous relative to 2D for more complex 
structures or inter-diagram scenarios which VR can better depict simultaneously due 
to its 3D nature. As shown in Fig. 16, recurring elements across multiple diagrams 
were indeed found more quickly (16% on average), due primarily to our VR-based 
support for visually depicting these same elements, supporting hypothesis (1). 
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Factors that affected our study included: the COVID-19 policies to reduce interac-
tions and interaction time, such that no preparation, training, or warm-up was given 
(no VR training nor VR-UML app training). In contrast, all participants had used 2D 
UML tools beforehand. Furthermore, VR app interaction and controls are not yet 
standardized and familiar, so subjects may not automatically know how to achieve 
some goal in VR – compared with professional 2D tools where common expectations 
exists as to where one will likely find menu items to achieve some task. Another as-
pect is cognitive stimulus: VR visualization takes up much more visual processing that 
is still relatively new and unfamiliar as yet to these subjects and can be disconcerting 
or initially affect efficiency (i.e., a new world to explore effect). 

Threats to validity include: the small convenience sample size; the self-assessed 
UML competency (vs. a UML competency test); lack of experienced software devel-
oper UML competency or certification; VR tasks were performed directly rather than 
after a VR warm-up phase; users lacked a MVC reference image in VR (non-VR had 
a paper copy), thus subjects had to recall the MVC pattern from memory - which some 
may be better at than others - or verbally ask questions; lack of prior training with the 
VR-UML app, leading to inefficiencies and errors that may not actually depend on VR 
as a medium, but are caused by unfamiliarity with such an app and its interface (due to 
COVID-19 the evaluation time was minimized and training time cancelled).  

As to counter-scenarios, VR-UML is likely not suitable or recommended for small 
and simple UML models or single-diagram models from and efficiency or effective-
ness perspective. However, despite this, VR-UML could provide qualitative im-
provements which could possibly create (or rejuvenate) excitement for UML model-
ing. 

In summary, we see various positive indicators from this study that VR-UML can 
show advantages where more complex and multi-diagram models are involved (and 
by inference hypermodeling); that the immersive experience of UML models in VR 
adds qualitative aspects that users prefer; and that any task inefficiencies in VR are 
probably tolerable (as shown be the task duration range overlap). VR-UML efficiency 
could be improved with explicit VR-UML training and text entry alternatives. 

6 Conclusion 

With our VR-UML contribution we have provided an immersive UML model experi-
ence for visually depicting and navigating UML diagrams of software models in VR. 
The solution concept and guiding principles were described, and its feasibility demon-
strated with a VR prototype, with which we empirically evaluated our solution. Based 
on our VR hyperplane principle, it enhances UML diagrams with 3D depth, color, and 
automatically generated inter-diagram element followers based on our backplane con-
cept. Modeling and interaction are supported via a virtual tablet and virtual keyboard. 
By leveraging the unlimited space in VR, the overall extent of multiple diagrams and 
large models can be depicted and navigated visually, while overall interrelationships 
within and between heterogeneous elements, diagrams, and models can be indicated 
and analyzed. Furthermore, our VR modeling framework VR-MF contributes a gener-
alized hypermodeling approach for loading and visualizing different model types in 
VR whereby UML and EA-related models such as ArchiMate, BPMN, and Atlas can 
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be visualized and analyzed simultaneously. The sensory immersion of VR can support 
task focus during model comprehension and increase modeling enjoyment, while lim-
iting the visual distractions that typical 2D display surroundings incur. Most subjects 
preferred VR-UML overall. 

Various UML tools support reverse-engineering models directly from the code 
(Ozkaya 2019). By leveraging today's processors and cloud computing, they can rap-
idly provide just-in-time reverse-engineered models to document and visually convey 
the real software model based on the actual codebase both efficiently and without 
model-to-code inconsistencies. In combination with VR-UML, visualization, analysis, 
and immersion in software models could rejuvenate UML-based software modeling in 
the face of rapidly evolving codebases and in support of software maintenance of 
legacy systems. Future work includes adding support for additional UML diagram and 
elements types, enhancing the VR interface, adding additional inter-model annotation 
and informational capabilities, optimizing the model storage format, and a compre-
hensive empirical study. 
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