
VR-UML: The Unified Modeling Language in
Virtual Reality – An Immersive Modeling Experience

Roy Oberhauser1[0000-0002-7606-8226]

1Computer Science Dept., Aalen University, Aalen, Germany
roy.oberhauser@hs-aalen.de

Abstract. Software models in the Unified Modeling Language (UML) can been
created or automatically reverse-engineered and used for quickly gaining struc-
tural insights into larger, legacy, or unfamiliar software. But as the size, struc-
tural complexity, and interdependencies between software components in larger
systems grows, two-dimensional viewing and modeling has limitations, and new
ways of visualizing larger models and numerous associated diagrams of differ-
ent types are needed to intuitively convey structural and relational insights. To
investigate the feasibility of using Virtual Reality (VR) to create an immersive
UML-based software modeling experience, this paper contributes a VR solution
concept for visualizing, navigating, modeling, and interacting with software
models using UML notation. An implementation shows its feasibility while an
empirical evaluation highlights its potential.

Keywords: Virtual Reality, Unified Modeling Language, Software Modeling,
UML Tools, Visualization.

1 Introduction

Aristotle once stated "thought is impossible without an image," and F. P. Brooks, Jr.
asserted that the invisibility of software remains an essential difficulty of software
construction - because the reality of software is not embedded in space [1]. Text-based
program comprehension remains the norm in our day, despite the obvious limitations
for this form of software comprehension, as evidenced in the low code review reading
rates of around 200 lines of code per hour [2].

In general, modeling provides an abstracted or simplified representation of a sys-
tem that can assist with understanding relationships between elements or concepts of
interest. Typically, views are used to address stakeholder concerns and portray rele-
vant aspects of a model. For visualizing the structural design of a software system,
UML [3] has provided a unified and standard modeling notation. UML tools can sup-
port software developers via visualization, diagramming, model-based code genera-
tion, reverse engineering (from code to models), round-trip engineering, model trans-
formation, and support for XML Metadata Interchange (XMI) [4] for transferring
models between tools.

Commonly available 2D modeling depictions in standard modeling tools have limi-
tations, and one can lose insight into the interrelationships across views, diagrams, and

2

relevant model elements as the size of the model and views grows. Evidence includes
[5], who concluded a network graph in VR was three times as good as a 2D diagram.
For 3D UML, X3D-UML [6] determined a clear and measurable benefit in 3D UML
software visualization, while a 3D UML tool case study [7] showed that a 3D perspec-
tive was intuitive and improved model comprehension. A VisAr3D experimental
study with 18 participants [8] showed positive evidence for 3D for UML model un-
derstanding when many elements were present (and the third dimension's contribu-
tion), while showing that precision, efficacy, and time were not negatively affected.

VR could potentially assist with visualizing large and complex software models
and their interrelationships simultaneously while also providing an immersive experi-
ence in the software models. VR is defined as a “real or simulated environment in
which the perceiver experiences telepresence” [9], a mediated visual environment
which is created and then experienced. VR has made inroads in various domains and
become readily accessible as hardware prices have dropped and capabilities improved,
increasing the accessibility and ubiquity of VR-based model visualization. VR-based
visualization of software models for insights could rejuvenate the interest with soft-
ware models in general and UML modeling in particular. In their study with 99 partic-
ipants, [10] showed that VR resulted in better overall learning performance and higher
engagement than textbook or video modes. A new approach via software model im-
mersion could help rejuvenate the software modeling area and help transition from
source-code only comprehension to more integrative use of visual models where it
makes sense. VR offers a unique advantage in the unconstrained 3D space for visual-
izing, conveying, navigating, and analyzing complex and heterogeneous models sim-
ultaneously. As software models grow in complexity, an immersive environment
could provide an additional visualization capability to comprehend the “big picture”
for structurally and hierarchically complex and interconnected software diagrams,
while providing an immersive experience for the UML models in a 3D space viewable
from different perspectives. The sensory immersion of VR can support task focus
during model comprehension while limiting the visual distractions that typical 2D
display surroundings incur.

In prior work, [11] demonstrated the use of various metaphors for a VR immersion
in software structures without the use of UML. VR-BPMN [12] described our solution
concept for visualizing Business Process Model and Notation (BPMN) [13] models in
VR. Next, VR-EA [14] presented a VR solution concept for visualizing, navigating,
annotating, and interacting with ArchiMate [15] Enterprise Architecture (EA) models,
while also describing our generalized VR modeling framework (VR-MF). Subse-
quently, VR-EAT [16] integrated EA tool visualizations into VR, in particular dynam-
ically generated diagrams from the EA tool Atlas and its meta-model [17]. VR permits
the extent of large models to be depicted and navigated visually, while overall interre-
lationships within and between heterogeneous elements, models, and diagrams can be
indicated and considered. This paper extends our prior contributions with our solution
concept VR-UML, which provides a way to visually depict and immersively navigate,
model, and interact with UML-based software models in VR, enhancing these dia-
grams with 3D depth, color, and inter-diagram element followers, while supporting
heterogenous hypermodels in VR.

The remainder of this paper is structured as follows: Section 2 discusses related
work. Section 3 presents our solution concept VR-UML. Section 4 then provides de-

3

tails on our prototype implementation that demonstrates its feasibility. In Section 5
VR-UML is empirically evaluated, and a conclusion follows in Section 6.

2 Related Work

Work on combining VR and UML includes Ozkaya & Erata [18], who propose their
intent for a research framework of a conceptual modeling tool, Virtual Reality Unified
Modeling Language (VRUML), but no VR realization details could be found. That
VR features are not yet commonplace in UML tools is evidenced by Ozkaya [19],
who systematically analyzed 58 different UML modeling tools without any mention
of VR, and Ozkaya & Erata [20] who surveyed 109 practitioners to determine their
UML preferences without any mention of VR. Related 3D (non-VR) UML visualiza-
tion includes the aforementioned X3D-UML [6], VisAr3D [8], and the case study by
Krolovitsch & Nilsson [7].

As to VR-based non-UML software model visualization, besides our own afore-
mentioned prior software modeling in VR [11, 12, 14, 16], various metaphors in VR
have been attempted. Schreiber & Misiak [21] and Nafeie & Schreiber [22] use an
island metaphor in VR to represent components, packages, classes, and dependencies.
Vincur et al. [23] applies a city metaphor to software analysis. Schreiber & Brügge-
mann [24] use a modular electrical component system metaphor in VR to visualize
software components.

Regarding hypermodeling work, besides our own prior work, the survey by Bork et
al. [25] comprehensively analyzed eleven visual modeling languages, including UML,
ArchiMate, and BPMN, revealing heterogeneity in the specified modeling language
concepts and techniques employed for concept specification. They found a lack of a
common visual metamodel across various visual modeling languages, incompleteness,
and thus difficulties in providing an overarching metamodel that could be used to
simplify the specification and interrelations between various model types. Towards
harmonizing heterogeneous software models, van den Berg [26] analyzes the various
metamodels for ArchiMate, BPMN, and UML and shows how one might practically
combine the notations across views and diagrams.

In contrast, the VR-UML solution concept realizes a VR-centric visualization of
and immersive experience in UML models, providing automatic layout of views as
stacked 3D hyperplanes, visualizing the reality of inter-view relations and recurrence
of elements, and enabling interactive modeling in VR. Its support for hypermodeling,
e.g., such that UML, ArchiMate, BPMN, and EA tool (Atlas) models can be visual-
ized simultaneously in the same virtual space supports deeper cross-model analysis
across various diagram types and stakeholder concerns. This capability may grow in
importance with increasing digitalization as (automatically extracted) UML-based
software models become more relevant to the business and EA and text-based code
analysis (by non-developers) is no longer efficient or viable.

4

3 Solution Concept

With the upcoming challenges that increasing digitalization and IT infrastructure will
bring to enterprise architecture, rather than viewing models in isolation and in separate
tools, we envision the future of (software) modeling as integrative and holistic, utiliz-
ing and accessing various available models concomitantly. VR provides a unique me-
dium of unlimited space and an immersive environment to support this modeling vi-
sion. Thus, the foundation for our VR-UML solution (shown in blue in Fig. 1) is our
generalized VR Modeling Framework (VR-MF) [14]. It provides a VR-based domain-
independent hypermodeling framework supporting multiple heterogeneous models
while addressing three primary aspects of modeling in VR: visualization, navigation,
interaction, and data retrieval. Relationships between elements can be shown in 3D
space, and related elements can be grouped in 3D layers or views as appropriate. The
capability to simultaneously visualize multiple heterogenous models in VR is a key
principle of our solution concept as realized via VR-MF. As depicted in Fig. 1, prior
work based on VR-MF addressed enterprise architecture (EA) modeling with Archi-
mate in VR called VR-EA [14], business process modeling in VR called VR-BPMN
[12], and integrated EA tool data and visualizations demonstrated with VR-EAT [16]
using the EA tool Atlas. ArchiMate models use a graphical notation consisting of a
collection of concepts (approximately 50) to portray a wide scope of EA elements and
relationships. On the other hand, BPMN models focus on business processes and con-
sist of Business Process Diagrams (BPDs) composed of graphical elements consisting
of flow objects, connecting objects, swim lanes, and artifacts. To meet commercial EA
needs, Atlas, as a representative EA tool, provides access to diverse EA-related data in
a coherent repository and meta-model and is not restricted to certain standards or nota-
tions. Thus, while UML is focused on modeling software structural aspects, Archi-
Mate, BPMN, and other EA models and views can convey other non-software aspects
that may also be of importance to various stakeholders depending on their context and
concern, especially as software becomes an integral part of the overall digital organi-
zations and their processes. Thus, our hypermodeling principle as detailed in our prior
work plays a fundamental role towards supporting heterogenous VR model visualiza-
tion with regard to our VR-UML solution concept.

Fig. 1. Solution concept showing our new VR-UML solution concept within our VR-MF mod-
eling framework, with VR-EAT, VR-EA, and VR-BPMN support.

5

Visualization. UML models use a graphical notation consisting of a collection of
concepts to portray a wide scope of software elements and relationships. The diagram
types can be categorized as structural diagrams (Class, Component, Composite struc-
ture, Deployment, Object, Package, and Profile) and behavioral diagrams (Activity,
Communication, Interaction overview, Sequence, State, Timing, and Use case). These
diagrams can participate in views used to convey information addressing concerns of
specific stakeholders. While many visual options and metaphors can be considered for
VR, diverging too far from the 2D diagrams and UML notations familiar to UML tool
users would reduce diagram comprehension. Yet placing 2D UML images like flat
screens in front of users would provide little added value in the 3D VR space. For
visualizing and differentiating diagrams, planes are used to take advantage of the 3D
space, with each plane representing a diagram. Stacked hyperplanes support viewing
multiple diagrams at once, while allowing the user to quickly see an overview of how
many diagrams of what type are available. Furthermore, stacked hyperplanes allow us
to utilize the concept of a common transparent or invisible backplane to indicate
common elements across diagrams via multi-colored inter-diagram followers. Stacked
diagrams are a scalable approach for larger projects (compared to side-by-side) since
the distance to the VR camera is shorter, and multiple stacks can be used to group
diagrams or delineate heterogeneous models. Diagrams are of interest can be viewed
side-by-side by moving them from the stack via an affordance on a diagram corner we
call anchor spheres, which can also hide or collapse diagrams to reduce visual clutter.

To distinguish UML elements types, generic (customizable) UML icons are placed
on upper right and lower left of the top of the element. Rather than graphically model-
ing each element type separately, this enables us to quickly support many different
element types using a common shallow box approach.

Due to the current lack of a common metamodel and/or inter-model specification
language that can be used when visualizing heterogenous models (cf. [25, 26] in Sec-
tion 2), we resort to a pragmatic approach of providing a basic inter-model annotation
capability in VR.

Navigation. The immersion afforded by VR requires addressing how to intuitively
navigate the space while reducing the likelihood of potential VR sickness symptoms.
Two navigation modes are included in the solution concept: the default uses gliding
controls, enabling users to fly through the VR space and get an overview of the entire
model from any angle they wish. Alternatively, teleporting permits a user to select a
destination and be instantly placed there (i.e., by instantly moving the camera to that
position); this can be disconcerting but may reduce the likelihood of VR sickness that
can occur when moving through a virtual space for those prone to it.

Interaction. VR interaction with VR elements has not yet become standardized. In
our VR concept, user-element interaction is done primarily via the VR controllers and
a virtual tablet. The virtual tablet provides detailed element information with CRUD
(Create, Retrieve, Update, Delete) capabilities specific to each element as well as a
virtual keyboard for text entry via laser pointer key selection. The aforementioned
corner anchor sphere affordance supports moving / hiding / displaying diagrams. In-
ter-diagram element followers can be displayed, hidden, or selected (emphasized).

6

4 Realization

The VR-UML implementation architecture for our prototype is shown in Fig. 2. Due
to its multi-platform support, direct VR integration, popularity, and cost, the Unity
game engine 2020.2.0b4 is used with the SteamVR plugin v2.6.0b4. As shown, Unity
uses various assets such as Models, Scenes, and Scripts, which in turn access external
model files via our plugin adapter interface that parses and converts various model file
formats (e.g., UML, BPMN, ArchiMate) to our internal generic object representation.

Fig. 2. VR-UML implementation architecture.

For text readability, an aspect that is irrelevant for 2D but which VR needs to con-
sider is that the viewing angle from the user to the element (camera angle) can be
dynamic based on the VR camera position in space (which is what is actually moved
to "navigate"), thus the recognition and readability of elements must be considered
from various angles. Thus, in VR-UML the diagrams and any elements they contain
are raised slightly for a 3D effect and these visible side edges utilized for text place-
ment to permit the text to be read from all sides in addition to the top. To support ele-
ment delineation in space, rather than using clear elements with border outlines - as is
typically done in 2D UML representations, in VR-UML a texture/color/material is
used on all sides of an element to give it substance. However, in 3D space if the ele-
ments are opaque, then another element or relation could become hidden (and the user
unaware of this), so a certain degree of transparency for diagram planes and for cer-
tain elements is used to ensure that relations and elements do not completely "disap-
pear" within or behind other elements. Furthermore, a customizable color scheme,
e.g., Coad et al. [27] or the colored layers used in the ArchiMate specification can be
used to help distinguish UML diagrams and elements as models grow, since, in con-
trast to 2D, many elements can be depicted visually in VR.

One unexpected challenge in the UML visualization area is support for a common
UML diagram interchange format between UML tools that contains positioning and
layout data. While a mechanism for UML model exchange had been specified for
UML 1.x using XMI, it only provides information on the model elements while lack-
ing support for exchanging diagram and element positioning and layout information.
This limitation is due to the UML metamodel lacking a standard way of representing
diagram definitions. While UML Diagram Interchange (UMLDI) [28] was published
in 2006, few UML tool vendors appear to implement and support it. At the time UML
2.0 was published in 2005, UMLDI was unavailable for another year, so vendors may

7

have ignored it and continued with their own proprietary format for maintaining dia-
gram layout information. Most web-based UML tools and various desktop tools we
tried support exporting only common image file formats, while some support export-
ing the model in XMI but lack any positional information. As XML can readily be
converted into a JSON format, rather than relying on the older common XML format
in UML, we wanted to investigate utilizing the newer and more efficient JSON format
for UML model files. Various popular UML tools were analyzed to determine if they
already used or supported a JSON format for UML. As StarUML uses JSON in their
MDJ model files, VR-UML uses its UML JSON file format. In Unity, the JsonDotNet
package was used in combination with quicktype to parse the JSON model file.

As shown in Fig. 3, at the highest level, an MDJ model file contains a single object
of the type Project that includes the project name and ID as well as an array of the
next level of objects. This array contains all saved Model Objects inside the project.
These Model Objects contain another array of objects of different types, of which we
focus on three: Diagram Objects (objects in a diagram and their positional data), Mod-
el Data Objects (objects and their model data including relations and Child Objects),
and Collaboration Objects (all diagram data for sequence diagrams). While further
objects for diagram types such as activity or flowchart would expand the types, they
are similar to the sequence diagram in another object tree branch.

Fig. 3. Model file structure in JSON format.

To evaluate the practicality of the VR-UML solution concept and implementation
prototype, a case study was used. Support is initially limited to the common UML
diagram types: use case, class, sequence, and deployment. The travel agency example
project provided by UML Designer [29] was used as a UML model basis and then
imported to StarUML in order to get an MDJ model in JSON format. The model pro-

8

vides the basic UML diagram types known in the 4+1 view model [30]: a use case
diagram depicting requirements in the scenario view (Fig. 4 left), a sequence diagram
(Fig. 4 right) depicting runtime behavior in the dynamic or process view, a class dia-
gram for depicting the internal structure in the logical view (Fig. 5), and a deployment
diagram (Fig. 6) for depicting the physical view.

Fig. 4. Travel agency use case (left) and sequence (right) diagrams in StarUML.

Fig. 5. Travel agency class diagram in StarUML.

9

Fig. 6. Travel agency deployment diagram in StarUML.

The VR_UML visualization of the travel agency model is shown in Fig. 7, depict-
ing stacked hyperplanes for this model. Colors help differentiate diagram types. Here
the top grey plane shows a sequence diagram, the second purple plan the use case
diagram, the third plane the deployment diagram in green, and the bottom a class dia-
gram in red. Random colored followers along the invisible backplane (currently clos-
est to the camera) are automatically generated between recurring elements across dia-
grams to follow participating elements across views (e.g., Customer (purple), Reserva-
tion (aqua) and Customer (light green), which recur in the class and sequence dia-
grams with details shown later), and can be used to quickly recognize recurring ele-
ments in other diagrams. Anchor spheres on the corner of each diagram act as af-
fordances that supports expanding, collapsing, and moving a diagram.

Fig. 7. VR-UML stacked hyperplane visualization of travel agency model.

10

A virtual tablet is provided in VR-UML to support interaction and modeling and to
provide detailed information about an element. We chose this method since tablet
usage is common and intuitive (less VR training needed), and other VR-based af-
fordances are not yet standardized for providing detailed context-specific information
for an element. Fig. 8 shows the ability to add a new class to a diagram including a
keyboard where each key is picked via a virtual laser pointer. Fig. 9 shows the inter-
face for creating a new relation and indicating the type of relation (e.g., association,
aggregation, etc.) and its multiplicity. Fig. 10 shows the ability to edit class attributes,
e.g., the type, multiplicity, and visibility.

Fig. 8. VR-UML create class modeling support with virtual tablet and virtual keyboard.

Fig. 9. VR-UML create relation modeling support with virtual tablet.

Fig. 10. VR-UML attribute modeling support via virtual tablet.

11

As exemplified in Fig. 11, visual clutter can be reduced via the anchor sphere af-
fordance to collapse (hide) a diagram (which then displays the hidden diagram type).

Fig. 11. VR-UML stacked plane view with two hidden / collapsed diagrams.

Fig. 12 shows side-by-side and offset diagram placement via anchor spheres.

Fig. 12. VR-UML side-by-side and offset diagram placement.

Fig. 13 shows the VR-MF hypermodeling capability for heterogeneous models in
VR (e.g., here UML and ArchiMate); related elements can be annotated across models
to support analysis.

12

Fig. 13. Hypermodeling example showing a VR-UML and VR-EA ArchiMate model.

5 Evaluation

To assess VR-UML empirically, a convenience sample of seven computer science
students from sophomore through master students participated, despite the currently
very restrictive COVID-19 pandemic situation and university contact policies. While
the group is not large enough to be statistically significant, the results can provide
insights to inform and guide future research. The subjects used an HTC Vive room
scale VR set with a head-mounted display and two wireless handheld controllers
tracked by two base stations. Each subject worked individually with a supervisor who
provided instructions and timed the tasks. A Likert five-point scale was used for

13

range-based responses. All had some familiarity with UML and had used Sparx Sys-
tems Enterprise Architect before; only two had used StarUML, and all but one had
used VR.

The hypotheses that guided our tasks and questions were: while VR-UML will like-
ly be less efficient than 2D modeling in general, (1) VR-UML is advantageous and
efficient for more complex and multi-diagram models; and (2) users will subjectively
enjoy the VR immersion experience in UML models more that the 2D models.

5.1 Quantitative Analysis

The subjects were timed for the following tasks in non-VR (using StarUML) and VR-
UML:

1. Multi-diagram elements: which elements with the same name recur in multiple
diagrams and how often?

2. Change the attribute "email" in the Customer class from public to private.
3. Change the relation multiplicity between Customer to Shopping Cart to 1-1.
4. Create the Model-View-Controller (MVC) pattern in the class diagram in non-

VR (see Fig. 14) and VR-UML (Fig. 15). In non-VR a paper copy was acces-
sible as a reference, in VR they had to remember or verbally ask questions
while wearing the headset.

Fig. 14. MVC pattern task example in StarUML.

Fig. 15. MVC pattern task example in VR-UML.

14

Fig. 16 shows the task duration results. On average, VR took 344% longer for Task
1, 141% longer for Task 2, and 43% longer for Task 4. For Task 3, when dealing with
multi-diagram elements, VR was 14% more efficient on average - because VR-UML's
ability to visualize multiple diagrams and highlight inter-diagram elements. We see
this result as providing support for hypothesis (1). Note that for Task 2, 3, and 4, the
ranges show a large degree of overlap, which can be interpreted that VR can perform
better than non-VR to depending on the user's UML and VR competency.

Three possible reasons for the longer VR results are: 1) the VR interface is more
cumbersome to control for modeling vs. a 2D mouse-based interface with which the
subjects have been trained, 2) text entry via virtual laser pointer keypad selection (re-
sembling one finger typing using a laser pointer) instead of the non-VR physical key-
board (enabling touch typing), and 3) time spent in VR navigating through 3D space
to see or interact with the object of interest (vs. in 2D moving the mouse on a screen).
As VR keyboards become commonplace, this could reduce this factor's efficiency
influence.

Fig. 16. VR and Non-VR task duration range and average (blue dot) in seconds.

Table 1. UML familiarity (1 to 5, 5= very familiar, 1=unfamiliar) vs. error frequency.

UML Familiarity Non-VR Errors VR Errors Total Errors
2 1 3 4
3 0 0 0
3 2 0 2
4 0 2 2
4 0 0 0
4 0 2 2
4 0 5 5

Table 1 shows the errors made. We note that in two cases no errors were made in

either mode, in one case fewer errors were made in VR, while in four cases errors
increased in VR. Since VR relied on subjects' memory of the pattern and subjects

15

could not compare their model to a reference model on paper as they did in non-VR,
we do not weight VR errors strongly. Due to the relatively minor error rate differ-
ences, we interpret the results to indicate that with additional training and familiarity
with VR-UML, the error rate in VR could be equivalent to that of 2D and that it is not
inherently more error prone for all cases and all subjects.

5.2 Qualitative Analysis

In the qualitative responses shown in Fig. 17, all agreed VR-UML to be intuitive and
43% more so than non-VR. 86% agreed that VR-UML provided a clear model struc-
ture. As to changing an element, 71% found them equivalent while 29% found non-
VR easier. For finding recurring elements across diagrams, 86% strongly agreed that it
was easy in VR-UML compared to 43% for non-VR. In general, VR did not fare
worse than non-VR on these qualitative aspects, and often even better.

Fig. 17. Qualitative comparison of VR and Non-VR.

Additionally, 71% stated that they liked VR-UML better than non-VR. We inter-
pret this as support for hypothesis (2). VR-UML advantages explicitly mentioned
included: VR provided a better overview of diagrams and how they relate to each
other, the layered 3D hyperplane stack makes comprehension of architecture easier,
better visualization in general - and specifically for relations, VR is more intuitive, the
VR user interface simpler than a menu system, and VR provides better focus due to
immersion. Disadvantages mentioned included: efficiency to perform tasks, text input
takes much longer via virtual keyboard with laser pointer, and the potential for VR
sickness for sensitive users. Suggested improvements included: voice input or other
text input alternative for VR.

5.3 Discussion

While our small sample size is not statistically significant, we believe there is still
sufficient value from the results to infer trends and to inform future research. The
study showed evidence that VR can indeed support modeling for certain scenarios.
We hypothesized that VR would be advantageous relative to 2D for more complex
structures or inter-diagram scenarios which VR can better depict simultaneously due
to its 3D nature. As shown in Fig. 16, recurring elements across multiple diagrams
were indeed found more quickly (16% on average), due primarily to our VR-based
support for visually depicting these same elements, supporting hypothesis (1).

16

Factors that affected our study included: the COVID-19 policies to reduce interac-
tions and interaction time, such that no preparation, training, or warm-up was given
(no VR training nor VR-UML app training). In contrast, all participants had used 2D
UML tools beforehand. Furthermore, VR app interaction and controls are not yet
standardized and familiar, so subjects may not automatically know how to achieve
some goal in VR – compared with professional 2D tools where common expectations
exists as to where one will likely find menu items to achieve some task. Another as-
pect is cognitive stimulus: VR visualization takes up much more visual processing that
is still relatively new and unfamiliar as yet to these subjects and can be disconcerting
or initially affect efficiency (i.e., a new world to explore effect).

Threats to validity include: the small convenience sample size; the self-assessed
UML competency (vs. a UML competency test); lack of experienced software devel-
oper UML competency or certification; VR tasks were performed directly rather than
after a VR warm-up phase; users lacked a MVC reference image in VR (non-VR had
a paper copy), thus subjects had to recall the MVC pattern from memory - which some
may be better at than others - or verbally ask questions; lack of prior training with the
VR-UML app, leading to inefficiencies and errors that may not actually depend on VR
as a medium, but are caused by unfamiliarity with such an app and its interface (due to
COVID-19 the evaluation time was minimized and training time cancelled).

As to counter-scenarios, VR-UML is likely not suitable or recommended for small
and simple UML models or single-diagram models from and efficiency or effective-
ness perspective. However, despite this, VR-UML could provide qualitative im-
provements which could possibly create (or rejuvenate) excitement for UML model-
ing.

In summary, we see various positive indicators from this study that VR-UML can
show advantages where more complex and multi-diagram models are involved (and
by inference hypermodeling); that the immersive experience of UML models in VR
adds qualitative aspects that users prefer; and that any task inefficiencies in VR are
probably tolerable (as shown be the task duration range overlap). VR-UML efficiency
could be improved with explicit VR-UML training and text entry alternatives.

6 Conclusion

With our VR-UML contribution we have provided an immersive UML model experi-
ence for visually depicting and navigating UML diagrams of software models in VR.
The solution concept and guiding principles were described, and its feasibility demon-
strated with a VR prototype, with which we empirically evaluated our solution. Based
on our VR hyperplane principle, it enhances UML diagrams with 3D depth, color, and
automatically generated inter-diagram element followers based on our backplane con-
cept. Modeling and interaction are supported via a virtual tablet and virtual keyboard.
By leveraging the unlimited space in VR, the overall extent of multiple diagrams and
large models can be depicted and navigated visually, while overall interrelationships
within and between heterogeneous elements, diagrams, and models can be indicated
and analyzed. Furthermore, our VR modeling framework VR-MF contributes a gener-
alized hypermodeling approach for loading and visualizing different model types in
VR whereby UML and EA-related models such as ArchiMate, BPMN, and Atlas can

17

be visualized and analyzed simultaneously. The sensory immersion of VR can support
task focus during model comprehension and increase modeling enjoyment, while lim-
iting the visual distractions that typical 2D display surroundings incur. Most subjects
preferred VR-UML overall.

Various UML tools support reverse-engineering models directly from the code
(Ozkaya 2019). By leveraging today's processors and cloud computing, they can rap-
idly provide just-in-time reverse-engineered models to document and visually convey
the real software model based on the actual codebase both efficiently and without
model-to-code inconsistencies. In combination with VR-UML, visualization, analysis,
and immersion in software models could rejuvenate UML-based software modeling in
the face of rapidly evolving codebases and in support of software maintenance of
legacy systems. Future work includes adding support for additional UML diagram and
elements types, enhancing the VR interface, adding additional inter-model annotation
and informational capabilities, optimizing the model storage format, and a compre-
hensive empirical study.

Acknowledgements. The authors would like to thank Marie Baehre and Stefan
Wehrenberg for their assistance with the implementation and evaluation.

References

1. Brooks, F. P. Jr.: The Mythical Man-Month. Boston, MA: Addison-Wesley Longman Publ.
Co., Inc. (1995)

2. Kemerer, C. F., Paulk, M. C.: The impact of design and code reviews on software quality:
An empirical study based on PSP data. IEEE Trans. on Software Engineering, vol. 35, no.
4, pp. 534-550 (2009)

3. OMG: Unified modeling language version 2.5.1 (2019)
4. OMG: XML Metadata Interchange (XMI) Specification Version 2.5.1 (2015)
5. Ware, C., Franck, G.: Viewing a graph in a virtual reality display is three times as good as

a 2D diagram. In Proceedings of 1994 IEEE Symposium on Visual Languages (pp. 182-
183). IEEE (1994).

6. McIntosh, P.: X3D-UML: user-centered design, implementation and evaluation of 3D
UML using X3D. Ph.D. dissertation, RMIT University (2009)

7. Krolovitsch, A., Nilsson, L.: 3D Visualization for Model Comprehension: A Case Study
Conducted at Ericsson AB. University of Gothenburg, Sweden (2009)

8. Rodrigues, C. S. C., Werner, C. M., Landau, L.: VisAr3D: an innovative 3D visualization
of UML models. In 2016 IEEE/ACM 38th International Conference on Software Engineer-
ing Companion (ICSE-C) (pp. 451-460). IEEE (2016).

9. Steuer, J.: Defining virtual reality: Dimensions determining telepresence. Journal of com-
munication, 42(4), 73-93 (1992)

10. Allcoat, D., von Mühlenen, A.: Learning in virtual reality: Effects on performance, emo-
tion and engagement. Research in Learning Technology, 26 (2018)

11. Oberhauser, R., Lecon, C.: Virtual reality flythrough of program code structures.
In Proceedings of the Virtual Reality International Conference-Laval Virtual 2017, pp. 1-4.
ACM (2017) http://dx.doi.org/10.1145/3110292.3110303

18

12. Oberhauser, R., Pogolski, C., Matic, A.: VR-BPMN: visualizing bpmn models in virtual
reality. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 83–97. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94214-8_6

13. OMG: Business Process Model and Notation (BPMN) Version 2.0.2 (2014)
14. Oberhauser, R., Pogolski, C.: VR-EA: virtual reality visualization of enterprise architecture

models with ArchiMate and BPMN. In: Shishkov, B. (ed.) BMSD 2019. LNBIP, vol. 356,
pp. 170–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24854-3_11

15. Open Group: ArchiMate 3.1 Specification. The Open Group (2019)
16. Oberhauser R., Sousa P., Michel F.: VR-EAT: Visualization of Enterprise Architecture

Tool Diagrams in Virtual Reality. In: Shishkov B. (eds) Business Modeling and Software
Design. BMSD 2020. Lecture Notes in Business Information Processing, vol 391. Spring-
er, Cham (2020). https://doi.org/10.1007/978-3-030-52306-0_14

17. Sousa, P.; Leal, R.; Sampaio, A.: Atlas: The Enterprise Cartography Tool. In: 18th Enter-
prise Engineering Working Conference Forum, Vol. 2229. CEUR-WS.org (2018).

18. Zhang, B., Chen, Y. S.: Enhancing UML Conceptual Modeling through the Use of Virtual
Reality. In Proceedings of the 38th Annual Hawaii International Conference on System
Sciences (pp. 11b-11b). IEEE (2005)

19. Ozkaya, M.: Are the UML modelling tools powerful enough for practitioners? A literature
review. IET Software, 13: 338-354 (2019). https://doi.org/10.1049/iet-sen.2018.5409

20. Ozkaya, M., Erata, F.: A survey on the practical use of UML for different software archi-
tecture viewpoints, Information and Software Technology, Volume 121, 2020, 106275,
ISSN 0950-5849 (2020). https://doi.org/10.1016/j.infsof.2020.106275.

21. Schreiber, A., Misiak, M.: Visualizing software architectures in virtual reality with an is-
land metaphor. In International Conference on Virtual, Augmented and Mixed Reality (pp.
168-182). Springer, Cham (2018).

22. Nafeie, L., Schreiber, A.: Visualization of software components and dependency graphs in
virtual reality. In Proceedings of the 24th ACM Symposium on Virtual Reality Software
and Technology, pp. 1-2. ACM (2018) https://doi.org/10.1145/3281505.3281602

23. Vincur, J., Navrat, P., Polasek, I.: VR city: Software analysis in virtual reality environment.
In 2017 IEEE international conference on software quality, reliability and security compan-
ion (QRS-C) (pp. 509-516). IEEE (2017)

24. Schreiber, A., Brüggemann, M.: Interactive visualization of software components with vir-
tual reality headsets. In 2017 IEEE Working Conference on Software Visualization
(VISSOFT) (pp. 119-123). IEEE (2017)

25. Bork, D., Karagiannis, D., Pittl, B.: A survey of modeling language specification tech-
niques. Information Systems, 87, 101425 (2020)

26. van den Berg, M.: ArchiMate, BPMN and UML: An approach to harmonizing the nota-
tions. Orbus Software white paper (2012)

27. Coad, P., Lefebvre, E., De Luca, J.: Java Modeling in Color with UML: Enterprise Com-
ponents and Process, Prentice Hall (1999) ISBN 0-13-011510-X

28. OMG: UML Diagram Interchange (UMLDI) 1.0 (2006)
29. UML Designer (2021). http://www.umldesigner.org
30. Kruchten, P.: Architectural Blueprints - The “4+1” View Model of Software Architec-

ture. IEEE Software 12 (6), pp. 42-50 (1995)

