
A Machine Learning Approach Towards Automatic
Software Design Pattern Recognition Across Multiple Programming Languages

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract—As the amount of software source code increases,
manual approaches for documentation or detection of software
design patterns in source code become inefficient relative to the
value. Furthermore, typical automatic pattern detection tools
are limited to a single programming language. To address this,
our Design Pattern Detection using Machine Learning
(DPDML) offers a generalized and programming language
agnostic approach for automated design pattern detection
based on Machine Learning (ML). The focus of our evaluation
was on ensuring DPDML can reasonably detect one design
pattern in the structural, creational, and behavioral category
for two popular programming languages (Java and C#). 60
unique Java and C# code projects were used to train the
artificial neural network (ANN) and 15 projects were then
used to test pattern detection. The results show the feasibility
and potential for pursuing an ANN approach for automated
design pattern detection.

Keywords–software design pattern detection; machine
learning; artificial neural networks; software engineering.

I. INTRODUCTION
In the area of software engineering, software design

patterns have been well-documented and popularized,
including the Gang of Four (GoF) [1] and POSA [2]. The
application of documented solutions to recurring software
design problems has been a boon to improving software
design quality and efficiency.

However, as the design patterns are mostly described
informally, their implementation can vary widely depending
on the programming language, natural language, pattern
structure and terminology awareness of the programmer,
experience, and interpretation. The actual detection and
documentation of these software design solution patterns has
hitherto relied on the experience, recollection, and manual
analysis of experts. The pattern books referenced above were
published over 25 years ago, and while many millions of
lines of code have since been programmed, they have not
been subjected to any comprehensive analysis. Furthermore,
any project documentation of applied patterns, if existent,
may be inconsistent with the current source code reality (e.g.,
prescriptive documentation of intentions, adaptations during
development, maintenance changes) and thus not reflected or
necessarily trustworthy. Additionally, known pattern variants
may occur, the patterns may evolve over time with
technology, and in fact new patterns may unknowingly be
developed that the experts may be unaware of. The many
different programming languages used, the different natural

languages of programmers that affect naming, tribal
community effects, the programmer's (lack of) knowledge of
these patterns and use of (proper) naming and notation or
markers, make it difficult to identify pattern usage by experts
or tooling. While many code repositories are accessible to
the public on the web, many more repositories are hidden
within companies or other organizations and are not
necessarily accessible for analysis. While determining actual
pattern usage is beneficial for identifying which patterns are
used where and can help avoid unintended pattern
degradation and associated technical debt and quality issues,
the investment necessary for manual pattern extraction,
recovery, and archeology is not economically viable.

While automated feature extraction of software design
patterns from documentation or code repositories is not yet
commonly available among popular software development
tools, research has attempted to find automated techniques
that work. However, most of the published techniques have
not applied ML to this problem area. One implicit challenge
for most approaches is to demonstrate coverage of all 23 of
the GoF patterns, which very few if any achieve.

This paper contributes Design Pattern Detection using
Machine Learning (DPDML), a generalized and
programming language independent approach for automated
design pattern detection based on ML. Our realization of the
core of the solution approach shows its feasibility, and an
evaluation using 75 unique Java and C# code projects with
three common GoF patterns for training and testing provides
insights into its potential and limitations.

The structure of this paper is as follows: the following
section discusses related work. Section 3 describes our
solution approach. In Section 4, our realization is presented.
This is followed by our evaluation and then a conclusion.

II. RELATED WORK
Various approaches have been used for software design

pattern detection, and they can be categorized based on
different analysis styles, such as structural, behavioral, or
semantic, with some utilizing a combination of styles. Many
approaches include some form of structural analysis for
pattern detection. Within this style, ML approaches use
classification, decision tree, Artificial Neural Networks
(ANNs), or support vector machines (SVMs), mapping the
pattern detection problem to a learning problem. Examples
include MARPLE-DPD [3], Galli et al. [4], and Ferenc et al.
[5]. Wang et al. [6] uses a reason-based approach based on
matrices. Examples of rule-based approaches include

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Sempatrec [7] and FiG [8], which use an ontology
representation. Metric-based approaches include MAPeD [9]
and PTIDEJ [10]. Fontana et al. [11] describe a micro-
structure-based structural analysis approach. In the
behavioral analysis style, graph-based approaches include:
DPIDT [12] that analyzes subpatterns in UML, and a UML
semantic graph by Mayvan and Rasoolzadegan [13]. An
example semantic-analysis style approach is Issaoui et al.
[14], which uses an XML representation. DP-Miner [15] is a
matrix-based approach using UML that involves structural,
behavioral, and semantic analysis. Uchiyama et al. [16] uses
a metric-based approach that involves both structural and
behavioral analysis.

The styles and approaches used are quite fractured and
none has reached a mature and high-quality result with an
accessible and executable implementation that we could
evaluate. We are not aware of any approach yet that can
automatically and reliably detect all 23 GoF design patterns.
Most have some limitation or drawback, and the success rate
reported among the approaches varies tremendously. We
conclude further investigation and research in this area is
essential to enhancing the knowledge surrounding this area.
Our solution approach is unique in offering: 1) a generalized
code-centric approach that combines available data (rather
than focusing on only one category of information) without
necessarily requiring behavioral analysis, 2) being
programming language-independent to support multiple
popular programming languages, and 3) leveraging ML.

III. SOLUTION
Our full holistic DPDML solution approach is shown in

Figure 1, indicating the realized DPDML-C core subset. It is
based on the following principles:

Figure 1. General DPDML comprehensive solution approach with
realized core DPDML-C (shown in grey).

ML model: by utilizing ML to analyze sample data, the
model learns how to classify new unknown data, in our case
to differentiate design patterns. Our realization may apply or
combine any ML model that suites the situation. Currently,
an ANN is used because we were interested in investigating
its performance, and intend in future work to detect a wide
pattern scope, pattern variants, and new patterns. From our
standpoint, alternative non-ML methods such as creating a
rule-based system by hand would require labor and expertise
as the number of patterns increases and new undiscovered
patterns should be detected. With an appropriate ML model,
these should be learned automatically and be more readily
detected.

Programming language-independent: the source code is
converted into an abstracted common format for further
processing. For this, in our realization we currently utilize
srcML [17], thus our realization can currently support any
programming languages that have a mapping to the srcML
XML-based format, including C, C++, Java, and C#. If other
abstract syntax formats are standardized and available for
analysis, these also can be considered. Our main purpose is
to extract various metrics in a common fashion from the
source code.

Semantic analysis: common pattern signal words in the
source code can be used as an indicator or hint for specific
pattern usage. Additional natural languages can be supported
to detect usage of pattern names or their constituent
components in case they were coded in other languages. Our
realization supports German, Russian, and French.

Static code metric extraction: various static code metrics
are utilized to detect and differentiate design patterns.

Graph analysis: code repositories are analyzed using
graph-based tools like jQAssistant and metrics extracted.

Dynamic analysis: tracing runtime code behavior can
detect behavioral similarities in event sequencing, especially
for the creational or behavior patterns. From these traces
event and related runtime metrics can be extracted.

UML structural analysis: in case a UML model exists,
the XMI structures can be analyzed and indicators extracted,
such as signal words or other structural metrics. If no UML
diagrams or XMI exist, they could be generated by reverse
engineering UML tools and structural metrics extracted.
Furthermore, a convolutional network could analyze UML
images for similarities to support pattern classification.

Metric normalization: the value ranges of metrics are
normalized to a scale of 0-1 to improve ANN performance.

The hypothesis driving our DPDML solution and
investigation is that by utilizing all available data and more
specifically metrics related to the design patterns, and
feeding this input into an ANN or other ML models, we can
achieve suitable classification accuracy. From a practicality
standpoint, this could reduce the overall manual labor
involved in identifying potential patterns, classifying them,
and can potentially assist developers, maintainers, or experts
involved in software archeology.

IV. (PARTIAL) REALIZATION
For our realization to apply ML, a sufficient data set of

different and realistic projects was needed to support
supervised learning. Not all portions of the full solution
approach could yet be realized due various unexpected
obstacles and project resource constraints, and we plan to
address the complete DPDML realization in future work.

A. Comprehensive DPDML Challenges
UML structural analysis: most of the 60 design pattern

code repositories we used did not contain any or sufficient
UML for us to use in supervised training or testing. If they
contained UML, it would be time-consuming to manually
verify the code to determine if they are correspondingly valid
UML diagrams. If they were created manually rather than
generated, they may contain some additional information or

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

signal words not necessarily available in the code. If,
however, round-trip UML tools were used, then the code
reflects the information found in the diagrams, and thus the
diagrams hold no additional information. While UML can be
helpful for human analysis and verification because it distills
code structure visually, they are difficult to automatically
verify against code and machine-based analysis does not
necessarily benefit from or need the simplification. If UML
diagrams were generated directly from the code by a UML
tool triggered by DPDML, little additional value would
currently be gained, since the basis is the code itself, and no
structural information not already contained or derivable
from the code is created. Given a common UML generator,
structural visual image comparison techniques could be
applied with a convolutional network to determine if it helps
with classification. Lacking a UML training and testing
dataset of sufficient size, this portion of our solution concept
will be evaluated in future work.

Dynamic analysis: many available code projects have
different runtime environments, languages, libraries,
concurrent processing, and require specialized tooling to
acquire behavior tracing data, which is very computing
resource intensive, time consuming to manually setup and
acquire, and requires specialized automated analysis tools,
since no formats or tool standards exist in this area. In the
tracing, one would have to ensure that the patterns are
actually substantially executed, which can be issue for larger
projects. Furthermore, creating sufficiently large training sets
for ML would be challenging. For most users of the
approach we are seeking, requiring this level of analysis
would perhaps be an academic exercise and could improve
our understanding, but it is neither practical nor
economically viable for continued usage, and we thus did not
realize this portion of our solution concept.

Graph analysis: Analysis of code repositories using
graph-based tools such as jQAssistant could be used, but
similar to the dynamic analysis issues, tools such as
jQAssistant require compiled binaries for analysis. Given
this, it could be used to query various aspects and enhance
our classification results and can be used to assist with
manual verification. However, since our training data did not
consist wholly of compiled code, we intend to address the
realization of this aspect in future work.

Various analysis tools could potentially improve the
results, but these are usually developed with a certain
purpose that influences the interaction modes and the output.
For instance, plugins for the Eclipse IDE are often focused
on Java, are primarily graphical to help a developer analyze
the current project, but are not designed for automated
analysis of many projects in various languages from the
command line. Since we chose to include both Java and C#
support, no IDE-specific tooling was utilized. Beyond IDE
tools, reverse-engineering tools such as Imagix 4D or code
analysis tools like SourceMeter require either commercial
licenses or are missing a command-line mode, and are
limited in how they can be used for automated analysis
situations in our context.

B. Core DPDML-C Implementation
A key aspect of our investigation was to determine if the

core of the DPDML solution, metrics-based ML using an
ANN, works as intended. Also, since source code should
usually be readily available, whereas other information
(binaries may not build, instrumentation and UML may not
exist), our prototype realization effort focused on the source
code analysis, known as the core DPDML-C as shown in
grey in Figure 1. Due to resource and time constraints, we
initially focused on having the network learn to detect one
pattern out of each of three pattern categories: from the
structural category, Adapter; from the creational patterns,
Factory; and from the behavioral patterns, Observer. This
pattern scope could then be expanded in future work if the
outcome is positive.

Python was used to implement our prototype due to its
versatility and the available libraries to support the
implementation of ANNs. TensorFlow was chosen along
with Keras as a top-layer API.

Metric-based matching: The ElementTree parser was
used to traverse srcML and count the specific XML-tags.
The metric values were not separated by roles or classes, but
are merged and evaluated as a whole. The metrics used were
inspired by Uchiyama et al. [16] and are shown in Table I.

TABLE I. OVERVIEW OF METRICS

Abbreviation Description
NOC Number of classes
NOF Number of fields
NOSF Number of static fields
NOM Number of methods
NOSM Number of static methods
NOI Number of interfaces
NOAI Number of abstract interfaces

Semantic-based matching: An obvious approach to

pattern detection is naming. If a developer already used
common design pattern terminology in the code, then this
should be utilized as a pattern detection indicator. For our
signal word detection, we translated the signal words to
German, French, and Russian to improve results for non-
English code.

Semantic variations: To determine if other signal words
beyond the design pattern name were used in
implementations, we analyzed several examples of
implemented design patterns and any UML diagrams, if
provided. 12 additional signal words were selected, four for
each pattern as shown in Table II.

TABLE II. SIGNAL WORDS FOR DESIGN PATTERNS

Pattern Signal Words
Adapter Adapter adaptee target adapt
Factory Factory create implements type
Observer observer state update notify

Internationalization: To test internationalization, the

Python library translate was used to translate the signal
words to German, French, and Russian. Rather than
extending the list of metrics passed to the ANN, a match
with a translated word is counted in the same input parameter

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

as the original English words. Applying Natural Language
Processing (NLP) to reduce words by stemming or creating
lemmas to compare to a defined word list would also be
possible, and may improve or deteriorate the results, if for
instance the input array contained further zeros when no
signal words were found.

C. Artificial Neural Network (ANN)
Based on our realization scope, since the input array is

not multidimensional, deep neural networks (DNNs) with
additional layers would not necessarily yield improved
results. We thus chose to realize one input layer, two hidden
layers, and one output layer as shown in Figure 2. We
created the network with the Keras API with the TensorFlow
Python library.

Figure 2. ANN model overview created with Keras.

The input layer size matches the data points, and as there
are 7 metrics and 12 semantic match values, this makes 19
input values total. The input model structure is a numpy
array as follows:
[NOC, NOF, NOSF, NOM, NOSM, NOI, NOAI, ASW1,
ASW2, ASW3, ASW4, FSW1, FSW2, FSW3, FSW4,

OSW1, OSW2, OSW3, OSW4]
The first 7 values correspond to Table I while the rest

indicate the number of signal word matches from Table II.
SW=Signal Word, A=Adapter, F=Façade, and O=Observer,
1-4 implies the corresponding table column. Only 7 metric
values are utilized when no signal words exist.

The first hidden layer is a dense layer (with each neuron
fully connected to the neurons in the prior layer) consisting
of 32 neurons. The activation function was a rectified linear
unit (ReLU). The second layer is a dense layer with 16
neurons. This conforms with the general guideline to
gradually decrease the neurons as one approaches the output
layer. The output layer consists of three neurons to match the
three design patterns that should be detected. The "Softmax"
activation method is used, which is often used in
classification problems and supports identifying the
confidence of the network in its decision. The "Adam"
algorithm is a universal optimizer that is recommended in a
wide assortment of papers and guides. As no specialized
optimizer was needed, "Adam" with its default values was
chosen as defined in [18]. No regularization was applied in
each layer. Adam automatically adjusts and optimizes the

learning rate. Sparse categorical crossentropy was applied as
the loss function for this multi-class classification task.

The size of the ANN should fit the size of the problem.
Small adjustments to the ANN structure showed no
significant performance impact, whereas significantly
increasing the neuron count or layer count negatively
impacted results. With two hidden layers and 48 neurons, the
first layer contains 640 parameters, the second layer 528, and
the output layer 51, resulting in 1219 parameters that are
adjusted during training.

The network is trained in epochs, wherein the complete
training set is sent through the network with weights
adjusted. As the weights and metrics change per epoch, an
early-stopping callback stops the training if the accuracy of
the network decreases over more than 10 epochs, saving the
network that had the best accuracy. A validation dataset is
typically used during training to monitor results on unlearned
data after each epoch, but as our training set was limited, we
used a prepared testing dataset with known labels.

D. Training Datasets
As to possible design pattern training sets, the Pattern-

like Micro-Architecture Repository (P-MARt) includes a
collection of microstructures found in different repositories
such as JHotdraw and JUnit. However, because these
patterns are intertwined with each other, they do not provide
isolated example specimens for training the ANN. The
Perceptrons Reuse Repositories could theoretically provide
many instances of design patterns for a training dataset, but
no results were provided on the website during the timeframe
of our realization, and while the source code analyzer is free,
the servers could not be reached.

We did manage to find training data as detailed in the
next section. Since our initial intent for DPDML was a much
broader scope for data pattern mining, and because we
expected a large supply of sample data, we focused on an
ANN realization. We were also interested in determining if
we could train an ANN to detect these patterns with
relatively few samples. However, due to unexpected
additional resource and time constraints involved in finding
pattern samples manually, we had to reduce the number of
design patterns involved, and could not compare the ANN
with alternative classification schemes such as Naïve Bayes,
Decision Tree, Logistic Regression, and SVMs, but this will
be considered in future work.

V. EVALUATION
The evaluation corresponds to the three patterns that

were the focus of the realization: from the structural
category, Adapter; from the creational patterns, Factory; and
from the behavioral patterns, Observer. The reason for
choosing these three is that each represents a different
pattern category and these are popular patterns. Furthermore,
the number of While such simple design patterns might well
be better detected with other ML models, our overall
DPDML is much more ambitious, and we thus wanted to
validate that an ANN would still work suitably (perhaps not
optimally) in a more constrained low-data case.

30Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

A. Dataset
As shown in Figure 3, the dataset consisted of 75 small

single-pattern code projects from public repositories, 49 in
Java and 26 in C# (mostly from github and the rest from
pattern book sites, MSDN, etc.), evenly distributed into 25
unique code projects per pattern. They were specifically
labeled as examples of these patterns, and manually verified.
These popular languages are supported by srcML, and the
mix permits us to demonstrate the programming language
independent principle. The inequality between language
examples is likely due to the language popularity and age.

Figure 3. Pattern-specific datasets in columns with programming
language specific training sets on the top rows and test sets on the bottom.

Training data: Of the 75 projects, 20 per pattern category
(60 total) were selected for training the ANN, with between
60-75% of the code projects being in Java (green) and the
remainder in C# (blue) as shown in the upper section of
Figure 3.

Test data: The remaining 15 projects of the 75 (five per
pattern category with 3 in Java and 2 in C#) were used for
the test dataset. In order to test whether signal word pattern
matching significantly impacts the ANN results, these
projects were duplicated and their signal words removed or
renamed, resulting in 6 Java (orange) and 4 C# (purple)
projects per pattern/category as shown in the lower section of
Figure 3. This resulted in 10 test projects per pattern.

B. Supervised Training
As shown in Figure 4, during training the accuracy

improves from 47% to 95% in the first seven epochs,
thereafter fluctuating between 85-95% with a peak of 96.7%
in the 27th epoch. The network loss metrics are shown in
Figure 4. The loss value drops from an initial 1.0841 to
0.2816 in epoch 17 before small fluctuations begin, with the
trend continuing downward. The loss value of 0.1995 in
epoch 27 is an adequate prerequisite for detecting patterns in
unknown code projects, and we saw little value in increasing
the training epochs. The early stopping callback was not
triggered since the overall accuracy of the network is still
increasing despite the fluctuations, indicating a positive
learning behavior and implying that with the given data
points, it is finding structures and values that allow it to
differentiate the three design patterns from each other. We
thus chose to stop the training at 30 epochs, which took 2-45

seconds depending on the underlying hardware environment
(any Graphical Processing Unit (GPU) with CUDA support
will improve processing times).

Considering that the worst case of random guessing
would result in an accuracy of 33%, the accuracy result of
97% is significantly better and shows the potential of the
approach.

Figure 4. Network accuracy and loss over 30 epochs of training.

The training results show that not only is the ANN
learning to differentiate the patterns, its confidence for these
determinations increases during the training. By epoch 27
with an accuracy of 96.7% and a loss of 0.1995, only two out
of the 60 total code projects spread evenly across the three
design patterns are incorrectly classified.

C. Testing
Recall from Section V.A. that for the test dataset, 15

unique code projects were taken (five unique projects per
pattern), and these were then duplicated and their signal
words removed, resulting in 30 code projects. By removing
the signal words, we can determine the degree of dependence
of the network on these signal words.

During testing, the reported accuracy dropped to 83.3%,
meaning 25 of the 30 patterns were correctly identified.
Furthermore, the loss went to 0.4060, meaning a loss in
confidence of its determination. A deterioration in these
values is to be expected when working with unfamiliar data.

The results show that the network was able to use its
learned knowledge in training to correctly classify a majority
of unknown projects (25 out of 30).

TABLE III. CONFUSION MATRIX BASED ON 30 CODE PROJECTS

Predicted
Labels

True Labels Accuracy Precision F1 Score
Factory Adapter Observer

Factory 7 0 0 90% 100% 0.82
Adapter 1 9 1 90% 81% 0.86
Observer 2 1 9 86.7% 75% 0.82

Recall 70% 90% 90%

The confusion matrix is shown in Table III. The

precision column indicates how many of the predicted labels
are correct, while the recall row indicates how many true
labels were predicted correctly. Fewer false positives
improve the precision, while fewer false negatives improve
the recall value. All the code projects predicted to be Factory
were correct (a precision of 100%), while the remaining 30%
of the Factory pattern projects were incorrectly classified as
another pattern (these false negatives result in a recall of
70%). This indicates that the Factory is more easily confused

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

with the other patterns, a possible explanation being that the
metrics we used may better differentiate more involved
(more complex) patterns. The other patterns had less
precision (81% or 75%), but a better recall of 90%. The
overall F1 score is 0.83.

As to the influence of signal words, our hypothesis that
signal words would improve the results proved hitherto
unfounded. The classification precision was not affected by
signal words, with 12 projects with signal words and 13
without being correctly classified. Additional test runs
showed similar results (+/- one project). However, in future
work we will investigate this further as we increase the
statistical basis.

The results show suitable accuracy of the DPDML-C,
and we believe a generalization of the DPDML approach
across the GoF and further patterns to be promising.

VI. CONCLUSION
This paper presented our DPDML solution approach, a

generalized and source code-based but programming
language-independent approach for automated design pattern
detection based on ML. Our realization of the core DPDML-
C shows its feasibility for source code-based analysis. An
evaluation using 60 unique Java and C# code projects for
training and then 15 code projects for testing. With an
accuracy of 83% and loss of 0.4060 during testing, the
results show the feasibility and potential for pursuing an
ANN approach for automated design pattern detection as
well as some of the limitations. Furthermore, no cost-
intensive behavioral analysis was involved to achieve this
result. Our results for the three patterns did not show that
signal words substantially improve results, indicating that
other pattern characteristics can potentially suffice as
indicators. While our initial focus on three fundamental
patterns is obviously not of practical use yet, it shows
promise for extending it to others.

Future work will investigate the inclusion of additional
pattern properties and key differentiators to improve the
results even further. This includes analyzing the network
classification errors in more detail to further optimize the
network accuracy, adding support for the remaining GoF
patterns, utilizing semantic analysis with NLP capabilities on
the code for additional natural languages, supporting
additional programming languages such as C++, and
extending our prototype realization to include additional
code metrics, UML structural analysis (if UML is available),
graph-based analysis, and dynamic behavioral analysis if
traces are provided. Also, we intend to evaluate pattern
detection when they are intertwined with other patterns and
evaluate accuracy, performance, and practicality on large
code bases. We will also investigate the detection of new
design patterns and variants to the traditional patterns.
Furthermore, we intend to apply cross-validation and
consider alternative classification schemes such as Naïve
Bayes, Decision Tree, Logistic Regression, and SVMs.
Thereafter, we intend to do an empirical industrial case
study.

ACKNOWLEDGMENT
The author thanks Florian Michel for his assistance with

the design, implementation, evaluation, and diagrams.

REFERENCES
[1] E. Gamma, Design patterns: elements of reusable object-

oriented software. Pearson Education India, 1995.
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal, Pattern-oriented software architecture: a system of
patterns, Vol. 1. John Wiley & Sons, 2008.

[3] M. Zanoni, F. A. Fontana, and F. Stella, "On applying
machine learning techniques for design pattern detection," J.
of Systems & Software, 2015, vol. 103, no. C, pp. 102-117.

[4] L. Galli, P. Lanzi, and D. Loiacono, "Applying data mining to
extract design patterns from Unreal Tournament levels,"
Computational Intelligence and Games. IEEE, 2014, pp. 1-8.

[5] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, "Design pattern
mining enhanced by machine learning," 21st IEEE Int'l Conf.
on Softw. Maintenance (ICSM'05), IEEE, 2005, pp. 295-304.

[6] Y. Wang, H. Guo, H. Liu, and A. Abraham, "A fuzzy
matching approach for design pattern mining," J. Intelligent &
Fuzzy Systems, vol. 23, nos. 2-3, pp. 53-60, 2012.

[7] A. Alnusair, T. Zhao, and G. Yan, "Rule-based detection of
design patterns in program code," Int'l J. on Software Tools
for Technology Transfer, vol. 16, no. 3, pp. 315-334, 2014.

[8] M. Lebon and V. Tzerpos, "Fine-grained design pattern
detection," IEEE 36th Annual Computer Software and
Applications Conference, IEEE, pp. 267-272, 2012.

[9] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection
approaches," Innovations in Systems and Software
Engineering, vol. 11, no. 1, pp. 39-53, 2015.

[10] Y. G. Guéhéneuc, J. Y. Guyomarc’h, and H. Sahraoui,
"Improving design-pattern identification: a new approach and
an exploratory study," Software Quality Journal, vol. 18, no.
1, pp. 145-174, 2010.

[11] F. A. Fontana, S. Maggioni, and C. Raibulet, "Understanding
the relevance of micro-structures for design patterns
detection," Journal of Systems and Software, vol. 84, no. 12,
pp. 2334-2347, 2011.

[12] D. Yu, Y. Zhang, and Z. Chen, "A comprehensive approach
to the recovery of design pattern instances based on sub-
patterns and method signatures," Journal of Systems and
Software, vol. 103, pp. 1-16, 2015.

[13] B. B. Mayvan and A. Rasoolzadegan, "Design pattern
detection based on the graph theory," Knowledge-Based
Systems, vol. 120, pp. 211-225, 2017.

[14] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection
approaches. Innovations in Systems and Software
Engineering," vol. 11, no. 1, pp. 39-53, 2015.

[15] J. Dong, Y. Zhao, and Y. Sun, "A matrix-based approach to
recovering design patterns," IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39,
no. 6, pp. 1271-1282, 2009.

[16] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo,
"Design pattern detection using software metrics and machine
learning," First International Workshop on Model-Driven
Software Migration (MDSM 2011), p. 38-47, 2011.

[17] M. Collard, M. Decker, and J. Maletic, "Lightweight
transformation and fact extraction with the srcML toolkit,"
IEEE 11th international working conference on source code
analysis and manipulation, IEEE, 2011, pp. 173-184.

[18] D. Kingma and J. Ba, "Adam: A method for stochastic
optimization," arXiv preprint arXiv:1412.6980, 2014.

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

