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Abstract—As the amount of software source code increases, 
manual approaches for documentation or detection of software 
design patterns in source code become inefficient relative to the 
value. Furthermore, typical automatic pattern detection tools 
are limited to a single programming language. To address this, 
our Design Pattern Detection using Machine Learning 
(DPDML) offers a generalized and programming language 
agnostic approach for automated design pattern detection 
based on Machine Learning (ML). The focus of our evaluation 
was on ensuring DPDML can reasonably detect one design 
pattern in the structural, creational, and behavioral category 
for two popular programming languages (Java and C#). 60 
unique Java and C# code projects were used to train the 
artificial neural network (ANN) and 15 projects were then 
used to test pattern detection. The results show the feasibility 
and potential for pursuing an ANN approach for automated 
design pattern detection. 

Keywords–software design pattern detection; machine 
learning; artificial neural networks; software engineering. 

I. INTRODUCTION 
In the area of software engineering, software design 

patterns have been well-documented and popularized, 
including the Gang of Four (GoF) [1] and POSA [2]. The 
application of documented solutions to recurring software 
design problems has been a boon to improving software 
design quality and efficiency.  

However, as the design patterns are mostly described 
informally, their implementation can vary widely depending 
on the programming language, natural language, pattern 
structure and terminology awareness of the programmer, 
experience, and interpretation. The actual detection and 
documentation of these software design solution patterns has 
hitherto relied on the experience, recollection, and manual 
analysis of experts. The pattern books referenced above were 
published over 25 years ago, and while many millions of 
lines of code have since been programmed, they have not 
been subjected to any comprehensive analysis. Furthermore, 
any project documentation of applied patterns, if existent, 
may be inconsistent with the current source code reality (e.g., 
prescriptive documentation of intentions, adaptations during 
development, maintenance changes) and thus not reflected or 
necessarily trustworthy. Additionally, known pattern variants 
may occur, the patterns may evolve over time with 
technology, and in fact new patterns may unknowingly be 
developed that the experts may be unaware of. The many 
different programming languages used, the different natural 

languages of programmers that affect naming, tribal 
community effects, the programmer's (lack of) knowledge of 
these patterns and use of (proper) naming and notation or 
markers, make it difficult to identify pattern usage by experts 
or tooling. While many code repositories are accessible to 
the public on the web, many more repositories are hidden 
within companies or other organizations and are not 
necessarily accessible for analysis. While determining actual 
pattern usage is beneficial for identifying which patterns are 
used where and can help avoid unintended pattern 
degradation and associated technical debt and quality issues, 
the investment necessary for manual pattern extraction, 
recovery, and archeology is not economically viable.  

While automated feature extraction of software design 
patterns from documentation or code repositories is not yet 
commonly available among popular software development 
tools, research has attempted to find automated techniques 
that work. However, most of the published techniques have 
not applied ML to this problem area. One implicit challenge 
for most approaches is to demonstrate coverage of all 23 of 
the GoF patterns, which very few if any achieve. 

This paper contributes Design Pattern Detection using 
Machine Learning (DPDML), a generalized and 
programming language independent approach for automated 
design pattern detection based on ML. Our realization of the 
core of the solution approach shows its feasibility, and an 
evaluation using 75 unique Java and C# code projects with 
three common GoF patterns for training and testing provides 
insights into its potential and limitations.  

The structure of this paper is as follows: the following 
section discusses related work. Section 3 describes our 
solution approach. In Section 4, our realization is presented. 
This is followed by our evaluation and then a conclusion. 

II. RELATED WORK 
Various approaches have been used for software design 

pattern detection, and they can be categorized based on 
different analysis styles, such as structural, behavioral, or 
semantic, with some utilizing a combination of styles. Many 
approaches include some form of structural analysis for 
pattern detection. Within this style, ML approaches use 
classification, decision tree, Artificial Neural Networks 
(ANNs), or support vector machines (SVMs), mapping the 
pattern detection problem to a learning problem. Examples 
include MARPLE-DPD [3], Galli et al. [4], and Ferenc et al. 
[5]. Wang et al. [6] uses a reason-based approach based on 
matrices. Examples of rule-based approaches include 
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Sempatrec [7] and FiG [8], which use an ontology 
representation. Metric-based approaches include MAPeD [9] 
and PTIDEJ [10]. Fontana et al. [11] describe a micro-
structure-based structural analysis approach. In the 
behavioral analysis style, graph-based approaches include: 
DPIDT [12] that analyzes subpatterns in UML, and a UML 
semantic graph by Mayvan and Rasoolzadegan [13]. An 
example semantic-analysis style approach is Issaoui et al. 
[14], which uses an XML representation. DP-Miner [15] is a 
matrix-based approach using UML that involves structural, 
behavioral, and semantic analysis. Uchiyama et al. [16] uses 
a metric-based approach that involves both structural and 
behavioral analysis.  

The styles and approaches used are quite fractured and 
none has reached a mature and high-quality result with an 
accessible and executable implementation that we could 
evaluate. We are not aware of any approach yet that can 
automatically and reliably detect all 23 GoF design patterns. 
Most have some limitation or drawback, and the success rate 
reported among the approaches varies tremendously. We 
conclude further investigation and research in this area is 
essential to enhancing the knowledge surrounding this area. 
Our solution approach is unique in offering: 1) a generalized 
code-centric approach that combines available data (rather 
than focusing on only one category of information) without 
necessarily requiring behavioral analysis, 2) being 
programming language-independent to support multiple 
popular programming languages, and 3) leveraging ML. 

III. SOLUTION 
Our full holistic DPDML solution approach is shown in 

Figure 1, indicating the realized DPDML-C core subset. It is 
based on the following principles: 

 
Figure 1.  General DPDML comprehensive solution approach with 
realized core DPDML-C (shown in grey). 

ML model: by utilizing ML to analyze sample data, the 
model learns how to classify new unknown data, in our case 
to differentiate design patterns. Our realization may apply or 
combine any ML model that suites the situation. Currently, 
an ANN is used because we were interested in investigating 
its performance, and intend in future work to detect a wide 
pattern scope, pattern variants, and new patterns. From our 
standpoint, alternative non-ML methods such as creating a 
rule-based system by hand would require labor and expertise 
as the number of patterns increases and new undiscovered 
patterns should be detected. With an appropriate ML model, 
these should be learned automatically and be more readily 
detected. 

Programming language-independent: the source code is 
converted into an abstracted common format for further 
processing. For this, in our realization we currently utilize 
srcML [17], thus our realization can currently support any 
programming languages that have a mapping to the srcML 
XML-based format, including  C, C++, Java, and C#. If other 
abstract syntax formats are standardized and available for 
analysis, these also can be considered. Our main purpose is 
to extract various metrics in a common fashion from the 
source code. 

Semantic analysis: common pattern signal words in the 
source code can be used as an indicator or hint for specific 
pattern usage. Additional natural languages can be supported 
to detect usage of pattern names or their constituent 
components in case they were coded in other languages. Our 
realization supports German, Russian, and French. 

Static code metric extraction: various static code metrics 
are utilized to detect and differentiate design patterns. 

Graph analysis: code repositories are analyzed using 
graph-based tools like jQAssistant and metrics extracted. 

Dynamic analysis: tracing runtime code behavior can 
detect behavioral similarities in event sequencing, especially 
for the creational or behavior patterns. From these traces 
event and related runtime metrics can be extracted. 

UML structural analysis: in case a UML model exists, 
the XMI structures can be analyzed and indicators extracted, 
such as signal words or other structural metrics. If no UML 
diagrams or XMI exist, they could be generated by reverse 
engineering UML tools and structural metrics extracted. 
Furthermore, a convolutional network could analyze UML 
images for similarities to support pattern classification. 

Metric normalization: the value ranges of metrics are 
normalized to a scale of 0-1 to improve ANN performance. 

The hypothesis driving our DPDML solution and 
investigation is that by utilizing all available data and more 
specifically metrics related to the design patterns, and 
feeding this input into an ANN or other ML models, we can 
achieve suitable classification accuracy. From a practicality 
standpoint, this could reduce the overall manual labor 
involved in identifying potential patterns, classifying them, 
and can potentially assist developers, maintainers, or experts 
involved in software archeology. 

IV. (PARTIAL) REALIZATION 
For our realization to apply ML, a sufficient data set of 

different and realistic projects was needed to support 
supervised learning. Not all portions of the full solution 
approach could yet be realized due various unexpected 
obstacles and project resource constraints, and we plan to 
address the complete DPDML realization in future work. 

A. Comprehensive DPDML Challenges 
UML structural analysis: most of the 60 design pattern 

code repositories we used did not contain any or sufficient 
UML for us to use in supervised training or testing. If they 
contained UML, it would be time-consuming to manually 
verify the code to determine if they are correspondingly valid 
UML diagrams. If they were created manually rather than 
generated, they may contain some additional information or 
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signal words not necessarily available in the code. If, 
however, round-trip UML tools were used, then the code 
reflects the information found in the diagrams, and thus the 
diagrams hold no additional information. While UML can be 
helpful for human analysis and verification because it distills 
code structure visually, they are difficult to automatically 
verify against code and machine-based analysis does not 
necessarily benefit from or need the simplification. If UML 
diagrams were generated directly from the code by a UML 
tool triggered by DPDML, little additional value would 
currently be gained, since the basis is the code itself, and no 
structural information not already contained or derivable 
from the code is created. Given a common UML generator, 
structural visual image comparison techniques could be 
applied with a convolutional network to determine if it helps 
with classification. Lacking a UML training and testing 
dataset of sufficient size, this portion of our solution concept 
will be evaluated in future work. 

Dynamic analysis: many available code projects have 
different runtime environments, languages, libraries, 
concurrent processing, and require specialized tooling to 
acquire behavior tracing data, which is very computing 
resource intensive, time consuming to manually setup and 
acquire, and requires specialized automated analysis tools, 
since no formats or tool standards exist in this area. In the 
tracing, one would have to ensure that the patterns are 
actually substantially executed, which can be issue for larger 
projects. Furthermore, creating sufficiently large training sets 
for ML would be challenging. For most users of the 
approach we are seeking, requiring this level of analysis 
would perhaps be an academic exercise and could improve 
our understanding, but it is neither practical nor 
economically viable for continued usage, and we thus did not 
realize this portion of our solution concept. 

Graph analysis: Analysis of code repositories using 
graph-based tools such as jQAssistant could be used, but 
similar to the dynamic analysis issues, tools such as 
jQAssistant require compiled binaries for analysis. Given 
this, it could be used to query various aspects and enhance 
our classification results and can be used to assist with 
manual verification. However, since our training data did not 
consist wholly of compiled code, we intend to address the 
realization of this aspect in future work. 

Various analysis tools could potentially improve the 
results, but these are usually developed with a certain 
purpose that influences the interaction modes and the output. 
For instance, plugins for the Eclipse IDE are often focused 
on Java, are primarily graphical to help a developer analyze 
the current project, but are not designed for automated 
analysis of many projects in various languages from the 
command line. Since we chose to include both Java and C# 
support, no IDE-specific tooling was utilized. Beyond IDE 
tools, reverse-engineering tools such as Imagix 4D or code 
analysis tools like SourceMeter require either commercial 
licenses or are missing a command-line mode, and are 
limited in how they can be used for automated analysis 
situations in our context. 

B. Core DPDML-C Implementation 
A key aspect of our investigation was to determine if the 

core of the DPDML solution, metrics-based ML using an 
ANN, works as intended. Also, since source code should 
usually be readily available, whereas other information 
(binaries may not build, instrumentation and UML may not 
exist), our prototype realization effort focused on the source 
code analysis, known as the core DPDML-C as shown in 
grey in Figure 1. Due to resource and time constraints, we 
initially focused on having the network learn to detect one 
pattern out of each of three pattern categories: from the 
structural category, Adapter; from the creational patterns, 
Factory; and from the behavioral patterns, Observer. This 
pattern scope could then be expanded in future work if the 
outcome is positive. 

Python was used to implement our prototype due to its 
versatility and the available libraries to support the 
implementation of ANNs. TensorFlow was chosen along 
with Keras as a top-layer API. 

Metric-based matching: The ElementTree parser was 
used to traverse srcML and count the specific XML-tags. 
The metric values were not separated by roles or classes, but 
are merged and evaluated as a whole. The metrics used were 
inspired by Uchiyama et al. [16] and are shown in Table I. 

TABLE I.  OVERVIEW OF METRICS 

Abbreviation Description 
NOC Number of classes 
NOF Number of fields 
NOSF Number of static fields 
NOM Number of methods 
NOSM Number of static methods 
NOI Number of interfaces 
NOAI Number of abstract interfaces 

 
Semantic-based matching: An obvious approach to 

pattern detection is naming. If a developer already used 
common design pattern terminology in the code, then this 
should be utilized as a pattern detection indicator. For our 
signal word detection, we translated the signal words to 
German, French, and Russian to improve results for non-
English code. 

Semantic variations: To determine if other signal words 
beyond the design pattern name were used in 
implementations, we analyzed several examples of 
implemented design patterns and any UML diagrams, if 
provided. 12 additional signal words were selected, four for 
each pattern as shown in Table II. 

TABLE II.  SIGNAL WORDS FOR DESIGN PATTERNS 

Pattern Signal Words 
Adapter Adapter adaptee target adapt 
Factory Factory create implements type 
Observer observer state update notify 

 
Internationalization: To test internationalization, the 

Python library translate was used to translate the signal 
words to German, French, and Russian. Rather than 
extending the list of metrics passed to the ANN, a match 
with a translated word is counted in the same input parameter 
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as the original English words. Applying Natural Language 
Processing (NLP) to reduce words by stemming or creating 
lemmas to compare to a defined word list would also be 
possible, and may improve or deteriorate the results, if for 
instance the input array contained further zeros when no 
signal words were found. 

C. Artificial Neural Network (ANN) 
Based on our realization scope, since the input array is 

not multidimensional, deep neural networks (DNNs) with 
additional layers would not necessarily yield improved 
results. We thus chose to realize one input layer, two hidden 
layers, and one output layer as shown in Figure 2. We 
created the network with the Keras API with the TensorFlow 
Python library. 

 
Figure 2.  ANN model overview created with Keras. 

The input layer size matches the data points, and as there 
are 7 metrics and 12 semantic match values, this makes 19 
input values total. The input model structure is a numpy 
array as follows: 
[NOC, NOF, NOSF, NOM, NOSM, NOI, NOAI, ASW1, 
ASW2, ASW3, ASW4, FSW1, FSW2, FSW3, FSW4, 

OSW1, OSW2, OSW3, OSW4] 
The first 7 values correspond to Table I while the rest 

indicate the number of signal word matches from Table II. 
SW=Signal Word, A=Adapter, F=Façade, and O=Observer, 
1-4 implies the corresponding table column. Only 7 metric 
values are utilized when no signal words exist. 

The first hidden layer is a dense layer (with each neuron 
fully connected to the neurons in the prior layer) consisting 
of 32 neurons. The activation function was a rectified linear 
unit (ReLU). The second layer is a dense layer with 16 
neurons. This conforms with the general guideline to 
gradually decrease the neurons as one approaches the output 
layer. The output layer consists of three neurons to match the 
three design patterns that should be detected. The "Softmax" 
activation method is used, which is often used in 
classification problems and supports identifying the 
confidence of the network in its decision. The "Adam" 
algorithm is a universal optimizer that is recommended in a 
wide assortment of papers and guides. As no specialized 
optimizer was needed, "Adam" with its default values was 
chosen as defined in [18]. No regularization was applied in 
each layer. Adam automatically adjusts and optimizes the 

learning rate. Sparse categorical crossentropy was applied as 
the loss function for this multi-class classification task. 

The size of the ANN should fit the size of the problem. 
Small adjustments to the ANN structure showed no 
significant performance impact, whereas significantly 
increasing the neuron count or layer count negatively 
impacted results. With two hidden layers and 48 neurons, the 
first layer contains 640 parameters, the second layer 528, and 
the output layer 51, resulting in 1219 parameters that are 
adjusted during training. 

The network is trained in epochs, wherein the complete 
training set is sent through the network with weights 
adjusted. As the weights and metrics change per epoch, an 
early-stopping callback stops the training if the accuracy of 
the network decreases over more than 10 epochs, saving the 
network that had the best accuracy. A validation dataset is 
typically used during training to monitor results on unlearned 
data after each epoch, but as our training set was limited, we 
used a prepared testing dataset with known labels. 

D. Training Datasets 
As to possible design pattern training sets, the Pattern-

like Micro-Architecture Repository (P-MARt) includes a 
collection of microstructures found in different repositories 
such as JHotdraw and JUnit. However, because these 
patterns are intertwined with each other, they do not provide 
isolated example specimens for training the ANN. The 
Perceptrons Reuse Repositories could theoretically provide 
many instances of design patterns for a training dataset, but 
no results were provided on the website during the timeframe 
of our realization, and while the source code analyzer is free, 
the servers could not be reached. 

We did manage to find training data as detailed in the 
next section. Since our initial intent for DPDML was a much 
broader scope for data pattern mining, and because we 
expected a large supply of sample data, we focused on an 
ANN realization. We were also interested in determining if 
we could train an ANN to detect these patterns with 
relatively few samples. However, due to unexpected 
additional resource and time constraints involved in finding 
pattern samples manually, we had to reduce the number of 
design patterns involved, and could not compare the ANN 
with alternative classification schemes such as Naïve Bayes, 
Decision Tree, Logistic Regression, and SVMs, but this will 
be considered in future work. 

V. EVALUATION 
The evaluation corresponds to the three patterns that 

were the focus of the realization: from the structural 
category, Adapter; from the creational patterns, Factory; and 
from the behavioral patterns, Observer. The reason for 
choosing these three is that each represents a different 
pattern category and these are popular patterns. Furthermore, 
the number of While such simple design patterns might well 
be better detected with other ML models, our overall 
DPDML is much more ambitious, and we thus wanted to 
validate that an ANN would still work suitably (perhaps not 
optimally) in a more constrained low-data case. 
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A. Dataset 
As shown in Figure 3, the dataset consisted of 75 small 

single-pattern code projects from public repositories, 49 in 
Java and 26 in C# (mostly from github and the rest from 
pattern book sites, MSDN, etc.), evenly distributed into 25 
unique code projects per pattern. They were specifically 
labeled as examples of these patterns, and manually verified. 
These popular languages are supported by srcML, and the 
mix permits us to demonstrate the programming language 
independent principle. The inequality between language 
examples is likely due to the language popularity and age.  

 
Figure 3.  Pattern-specific datasets in columns with programming 
language specific training sets on the top rows and test sets on the bottom. 

Training data: Of the 75 projects, 20 per pattern category 
(60 total) were selected for training the ANN, with between 
60-75% of the code projects being in Java (green) and the 
remainder in C# (blue) as shown in the upper section of 
Figure 3. 

Test data: The remaining 15 projects of the 75 (five per 
pattern category with 3 in Java and 2 in C#) were used for 
the test dataset. In order to test whether signal word pattern 
matching significantly impacts the ANN results, these 
projects were duplicated and their signal words removed or 
renamed, resulting in 6 Java (orange) and 4 C# (purple) 
projects per pattern/category as shown in the lower section of 
Figure 3. This resulted in 10 test projects per pattern. 

B. Supervised Training 
As shown in Figure 4, during training the accuracy 

improves from 47% to 95% in the first seven epochs, 
thereafter fluctuating between 85-95% with a peak of 96.7% 
in the 27th epoch. The network loss metrics are shown in 
Figure 4. The loss value drops from an initial 1.0841 to 
0.2816 in epoch 17 before small fluctuations begin, with the 
trend continuing downward. The loss value of 0.1995 in 
epoch 27 is an adequate prerequisite for detecting patterns in 
unknown code projects, and we saw little value in increasing 
the training epochs. The early stopping callback was not 
triggered since the overall accuracy of the network is still 
increasing despite the fluctuations, indicating a positive 
learning behavior and implying that with the given data 
points, it is finding structures and values that allow it to 
differentiate the three design patterns from each other. We 
thus chose to stop the training at 30 epochs, which took 2-45 

seconds depending on the underlying hardware environment 
(any Graphical Processing Unit (GPU) with CUDA support 
will improve processing times). 

Considering that the worst case of random guessing 
would result in an accuracy of 33%, the accuracy result of 
97% is significantly better and shows the potential of the 
approach.  

  
Figure 4.  Network accuracy and loss over 30 epochs of training. 

The training results show that not only is the ANN 
learning to differentiate the patterns, its confidence for these 
determinations increases during the training. By epoch 27 
with an accuracy of 96.7% and a loss of 0.1995, only two out 
of the 60 total code projects spread evenly across the three 
design patterns are incorrectly classified.  

C. Testing 
Recall from Section V.A. that for the test dataset, 15 

unique code projects were taken (five unique projects per 
pattern), and these were then duplicated and their signal 
words removed, resulting in 30 code projects. By removing 
the signal words, we can determine the degree of dependence 
of the network on these signal words. 

During testing, the reported accuracy dropped to 83.3%, 
meaning 25 of the 30 patterns were correctly identified. 
Furthermore, the loss went to 0.4060, meaning a loss in 
confidence of its determination. A deterioration in these 
values is to be expected when working with unfamiliar data. 

The results show that the network was able to use its 
learned knowledge in training to correctly classify a majority 
of unknown projects (25 out of 30). 

TABLE III.  CONFUSION MATRIX BASED ON 30 CODE PROJECTS 

Predicted 
Labels 

True Labels Accuracy Precision F1 Score 
Factory Adapter Observer    

Factory 7 0 0 90% 100% 0.82 
Adapter 1 9 1 90% 81% 0.86 
Observer 2 1 9 86.7% 75% 0.82 

Recall 70% 90% 90%    
 
The confusion matrix is shown in Table III. The 

precision column indicates how many of the predicted labels 
are correct, while the recall row indicates how many true 
labels were predicted correctly. Fewer false positives 
improve the precision, while fewer false negatives improve 
the recall value. All the code projects predicted to be Factory 
were correct (a precision of 100%), while the remaining 30% 
of the Factory pattern projects were incorrectly classified as 
another pattern (these false negatives result in a recall of 
70%). This indicates that the Factory is more easily confused 
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with the other patterns, a possible explanation being that the 
metrics we used may better differentiate more involved 
(more complex) patterns. The other patterns had less 
precision (81% or 75%), but a better recall of 90%. The 
overall F1 score is 0.83. 

As to the influence of signal words, our hypothesis that 
signal words would improve the results proved hitherto 
unfounded. The classification precision was not affected by 
signal words, with 12 projects with signal words and 13 
without being correctly classified. Additional test runs 
showed similar results (+/- one project). However, in future 
work we will investigate this further as we increase the 
statistical basis. 

The results show suitable accuracy of the DPDML-C, 
and we believe a generalization of the DPDML approach 
across the GoF and further patterns to be promising.  

VI. CONCLUSION 
This paper presented our DPDML solution approach, a 

generalized and source code-based but programming 
language-independent approach for automated design pattern 
detection based on ML. Our realization of the core DPDML-
C shows its feasibility for source code-based analysis. An 
evaluation using 60 unique Java and C# code projects for 
training and then 15 code projects for testing. With an 
accuracy of 83% and loss of 0.4060 during testing, the 
results show the feasibility and potential for pursuing an 
ANN approach for automated design pattern detection as 
well as some of the limitations. Furthermore, no cost-
intensive behavioral analysis was involved to achieve this 
result. Our results for the three patterns did not show that 
signal words substantially improve results, indicating that 
other pattern characteristics can potentially suffice as 
indicators. While our initial focus on three fundamental 
patterns is obviously not of practical use yet, it shows 
promise for extending it to others. 

Future work will investigate the inclusion of additional 
pattern properties and key differentiators to improve the 
results even further. This includes analyzing the network 
classification errors in more detail to further optimize the 
network accuracy, adding support for the remaining GoF 
patterns, utilizing semantic analysis with NLP capabilities on 
the code for additional natural languages, supporting 
additional programming languages such as C++, and 
extending our prototype realization to include additional 
code metrics, UML structural analysis (if UML is available), 
graph-based analysis, and dynamic behavioral analysis if 
traces are provided. Also, we intend to evaluate pattern 
detection when they are intertwined with other patterns and 
evaluate accuracy, performance, and practicality on large 
code bases. We will also investigate the detection of new 
design patterns and variants to the traditional patterns. 
Furthermore, we intend to apply cross-validation and 
consider alternative classification schemes such as Naïve 
Bayes, Decision Tree, Logistic Regression, and SVMs. 
Thereafter, we intend to do an empirical industrial case 
study. 
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