
> P2P Light Weight Component Model<

1

A Peer-to-Peer Light-Weight Component Model
for Context-Aware Smart Space Applications

Alois Ferscha, Manfred Hechinger, Rene Mayrhofer and Roy Oberhauser

Abstract—Mobile Peer-to-Peer (P2P) computing applications

involve collections of heterogeneous and resource-limited devices
(such as PDAs or embedded sensor-actuator systems), typically
operated in ad-hoc completely decentralized networks and
without requiring dedicated infrastructure support. Short-range
wireless communication technologies together with P2P
networking capabilities on mobile devices are responsible for a
proliferation of such applications, yet these applications are often
complex and monolithic in nature due to the lack of lightweight
component/container support in these resource-constrained
devices. A threatening field of application is “smart space”
control, i.e. software architectures to control various home
appliances and embedded home facilities in a personalized,
spontaneous and intuitive way. Future home environments are
expected to be highly populated by ubiquitous computing
technology, allowing to integrate various aspects of home
activities seamlessly into walls, floors, furniture, appliances, and
even clothing – thus raising the need for lightweight, versatile
and component based software architectures to harness such
technology rich environments.

In this paper we describe our lightweight software component
model P2Pcomp that addresses the development needs for mobile
P2P applications. An abstract, flexible, and high-level
communication mechanism among components is developed via a
ports concept, supporting protocol independence, location
independence, and (a)synchronous invocations; dependencies are
not hard-coded in the components, but can be defined at
deployment or runtime, providing late-binding and dynamic
rerouteability capabilities. Peers can elect to provide services as
well as consume them, services can migrate between containers,
and services are ranked to support Quality-of-Service choices.
Our lightweight container realization leverages the OSGi
platform and can utilize various P2P communication mechanisms
such as JXTA. A “smart space” application scenario
demonstrates how P2Pcomp supports flexible and highly
tailorable mobile P2P applications.

Index Terms—Peer-to-peer computing, pervasive computing,
context awareness, component framework, OSGi, JXTA, smart
spaces.

Manuscript received March 3, 2004. This work was supported by the Peer-

to-Peer Coordination project Nr. J580.0 of the alliance between Siemens AG
and Johannes Kepler University Linz.

A. Ferscha is with the Institut für Pervasive Computing at the Johannes
Kepler University of Linz, Austria (phone: +43-732-2468-8556; e-mail:
ferscha@soft.uni-linz.ac.at)

M. Hechinger is with the Institut für Pervasive Computing at the Johannes
Kepler University of Linz, Austria (e-mail: manfred@soft.uni-linz.ac.at)

R. Mayrhofer is with the Institut für Pervasive Computing at the Johannes
Kepler University of Linz, Austria (e-mail: rene@soft.uni-linz.ac.at)

R. Oberhauser is with Corporate Technology, Siemens AG, Munich,
Germany (e-mail: roy.oberhauser@siemens.com)

I. INTRODUCTION

MALL, mobile communications devices such as PDA’s,
mobile phones, wearable devices, and smart tags are

gaining increasing hardware, networking, software, and user
interaction capabilities. As the pervasiveness of these devices
increases, there is a correlating increase in the both the scale
and the level of heterogeneous integration in these
infrastructures.

Furthermore, the increasing expectations and demands for
greater functionality and capabilities from these devices often
result in greater software complexity for applications.
Because these resource-constrained environments have not
had the rich component and container support commonly
available for enterprise development, the result in this context
has often been a potpourri of “stovepipe" applications with
few opportunities for reuse and unplanned integration without
significant effort. Where functionality modularization was
planned, e.g. with services, these have often been coupled to a
single middleware or communication protocol (e.g. COM
[12], RMI [19], MOM-based JMS [16], SOAP [14], JXTA
[15]).

Thus, there is an increasing need to abstract and encapsulate
the different middleware and protocols used to perform the
interactions from the components involved in the interactions.
Szyperski [26] defines components as “binary units of
independent production, acquisition, and deployment that
interact to form a functioning system." Components consist of
an object or cohesive group of objects with (a) clearly defined
interface(s) that typically provide a service or set of services.
The component model is an abstract description of the
relevant aspects that are common to the components (such as
communication mechanisms, packaging, etc.) as well as the
runtime framework in which they are managed (the container).
Unfortunately component models (such as Java EJB [13],
CORBA CCM [11]) are often tied to a remote protocol, an
inhibiting factor with the wide spectrum of protocols for the
increasingly extensive pervasive applications in this realm.

For mobile P2P applications, however, the classical designs
of component models and architectures either suffer from
extensive resource demands (memory, communication
bandwidth, CPU) or dependencies on the operating system,
protocol, or middleware (e.g. .NET, CORBA ORBs). In
addition, any infrastructure must not significantly diminish the
ability of applications to address the increasing functionality
and complexity demands; otherwise, its adoption would be

S

> P2P Light Weight Component Model<

2

jeopardized. Hence lightweight component models are
needed with containers able to execute on resource-
constrained platforms (PDAs) to enable reusability, the
dynamic distribution and deployment, location transparency -
irrespective of dynamic changes in the peer topology and
combination, platform and middleware independence,
standardized component definitions, hot-swapping, and
optimal tailoring of service configurations. Therefore, a
method for node-transparent and transport-transparent
component interaction could significantly reduce the
development time and costs of distributed component-based
applications in our context.

The emerging trends of embedding information technology
like tiny computers, sensors and actuators into objects and
spaces like homes, offices, cars, trains, stations, airports, etc.
will lead to future daily life situations where people and
environments are mediated by various invisible computers,
interaction devices, sensors and technology rich objects of
everyday use. Due to the most recent technological
developments, smart environment scenarios appear possible,
in which almost every object in our everyday environment
will be equipped with embedded processors, wireless
communication facilities and embedded software to perform
and control a multitude of tasks and functions. Many of these
objects will be able to communicate and interact with the
background infrastructure (e.g. the Internet), but also with
each other [5]. Terms like “context-aware” smart spaces have
appeared in the literature to refer to such technology-rich
environments, which intelligently monitor the objects of a real
world (like persons, things, places), and interact with them in
a situative, pro-active, autonomous, sovereign, responsible
and user-authorized way [6].

Among the most important issues in such computer
mediated daily lives is the provision of context-awareness,
and the integration of physical and virtual spaces to reduce
interaction complexity and to customize the behavior of the
environment to the users preferences, habits or even emotions.
In smart “home” spaces with a dramatically growing number
embedded devices therefore, middleware has to be designed
and implemented in order to cope with a large number of
different home appliances – all of them with very limited
computational, memory and communication resources, to
coordinate their concerted interaction, the seamless movement
of a user in those spaces, and the personalization of the
control depending on the users situation. We refer to
middleware built for the purpose of controlling home
environments “roomware”. Challenged by the goal of a
seamless configuration and control of home appliances
according to each user’s preference and situation – for which
traditional approaches based on Jini and HAVi have turned
out to be merely successful – we have designed and
implemented a framework that strictly follows (i) the Peer-to-
peer interaction concept, that (ii) adopts standard protocols as
much as possible to ensure the interoperability among
components and commercial products, that can be (iii)
configured wirelessly from anywhere, by any user, at any

place. P2Pcomp has been built to support the implementation
of roomware services in smart spaces [2] [3]. Opposed to
centralized approaches in smart space middleware, P2Pcomp
has been rigorously designed as a P2P framework, and
implemented on top of JXTA. Comparable home environment
networking approaches are [20], [21] and [23].

In this paper we motivate and present our component

framework P2Pcomp, designed and implemented at the
confluence of open standards compliance (OSGi) and the
restrictions of limited resource platforms (PDAs and mobile
appliances). P2Pcomp aims to ease and support the
development of pervasive computing applications based on
spontaneous interaction of mobile peers.

A central motivation for P2Pcomp was infrastructural
support for context awareness in mobile P2P applications [8]-
[10]. Thus the design goals for P2Pcomp were concerned with
(i) supporting the description, gathering, transforming,
interpretation and dissemination of context information within
ad-hoc, highly dynamic and frequently changing computing
environments, (ii) dynamically discovering, inspecting,
composing and aggregating software components in order to
identify, control and extend context, as well as overcome
context barriers (like time, position, user preference, etc.), and
(iii) allow for dynamic interactions among software
components in a scalable fashion while satisfying special
requirements such as fidelity, QoS, fault-tolerance, reliability,
safety and security, etc.

The rest of this paper is organized as follows: in Section 2

we introduce the basic concepts of P2Pcomp, relate those to
comparable concepts in the service-oriented container OSGi,
and describe why our solution was necessary. Conceptual
details of P2Pcomp for ports and containers, together with
implementation and syntactical issues are presented in Section
3. Section 4 – in the frame of an application scenario – gives
empirical evidence for P2Pcomp being truly lightweight. Our
work is compared with other approaches in the literature in
Section 5, and conclusions are drawn in Section 6.

II. GENERAL CONCEPT

For rapid application development of distributed

applications in this domain, we can identify two key elements:
P2P as a communication paradigm and component-based
programming for code reuse. For P2P coordination, the
language-independent JXTA framework has established itself
as a quasi-standard, but provides no component model. As a
component model, the OSGi specification provides a
component model geared for resource-constrained devices but
lacks support for distributed components.

In our work, we build upon these two technologies and
combine them to simplify the development of distributed,
component-based applications. In OSGi terminology, a
container will be used for managing components (Fig. 1); this

> P2P Light Weight Component Model<

3

includes installing, starting, stopping and removing
components as well as checking dependencies between
components. In addition to these basic features of an OSGi-
conformant container, it should also communicate with other
containers and offer installed components a simple way of
communicating with components instantiated in remote
containers. In OSGi terminology, a component offers services
to other components and is packaged as a bundle. Interaction
between bundles is only possible via defined services.

Fig. 1. P2PComp containers/components

With plain OSGi containers, components have to
implement communication channels to remote components
themselves; the container can only return references to other
local components instantiated inside the same container. Thus,
the present paper introduces the ports concept: a port is one
endpoint of a communication channel and can be used by
components to communicate with others. From the component
view, only the port is visible, the underlying communication
channel is not; this encapsulates, e.g., the protocol or protocol
APIs from the component. When ports are used as a general
concept of connecting to a service offered by another
component, local and remote services can be accessed
similarly. The container offers ports as a unified interface to
inter-component communication for local as well as remote
components, relieving component developers from the task of
managing communication with remote components (cf.
Portsmanager in Fig. 1).

III. APPROACH
In the sequel, after introducing the main features of Oscar

OSGi, we will present our P2Pcomp ports concept and
introduce provide ports as a means to offer services to other
components, and uses ports as points of connection for
components to access those services.

A. Oscar OSG
As an OSGi implementation, the open source package

Oscar [18] was used. It is compliant to the OSGi specification
and implements most major functionality of OSGi 1.0. Its aim
is to provide a fully compliant OSGi 2.0 framework and some
of the major elements are already implemented, specifically
the:

• Package Admin service
• System Bundle

• Service Tracker
• Service properties and selection algorithm
• Filter class and related framework methods

Although this aim has not yet been completely achieved and

some minor compliance issues still have to be resolved, it has
many advantages for the development of our ports concepts
and for the deployment in resource-constrained systems:

• very lightweight – can easily be embedded in

applications
• can fetch bundles (components) from a remote

host
• offers an optional shell for interactive commands
• already has some (syntactical) parts of our ports

concept (see below for details)
• supports dependencies between bundles
• each bundle is loaded in its own class loader

(important for security)
• under an open source license (GPL)

Our code implementing the ports concept is independent of

the specific OSGi framework implementation. Although Oscar
supports dynamic class loading, it was apparently not
designed to support remote services the way it is implemented
by our PortsManager, since classes which are exported by a
bundle may not be loaded by any other object but by Oscar
itself. To override this, and enable the PortsManager to load
and instantiate the exported classes, a new Interface
PortsManager.ExportedClassFetcher has been created. The
interface is implemented by a very small wrapper class for
Oscar. While the functionality of the class is small, it was
deliberately split into a class and interface; thus, the presented
ports concept is usable with any OSGi container implementing
this interface (possibly via a wrapper class as it has been done
for Oscar).

While the OSGi framework is a good solution to run
services within a container, operation is restricted to a single
local node since there is no direct support for interoperation
with other containers running on remote nodes. Each
component that wishes to interact with other nodes must
implement the network functionality and the invocation of
remote services (see Fig. 2).

Fig. 2. Remote component interaction in OSGi

B. The Ports Concept
For making the implementation of interdependent

components as simple as possible, a ports concept is

> P2P Light Weight Component Model<

4

introduced as an abstract, flexible, protocol-independent, and
high-level communication mechanism (see Fig. 3). The main
design goal is that the communication should be completely
transparent to the actual components; whether it is
communication with local or remote components or OSGi-
independent Web Services should not be known inside the
component. This concept has the additional advantage that
dependencies are not hard-coded in the components, but can
be defined by the component deployer or at runtime to support
very late binding.

Fig. 3. P2Pcomp ports concept

C. Provides Ports
A component may have zero or more provides-ports (see

Fig. 3). A provides-port is a "service" that is "provided" to
other components or to the framework and is defined in terms
of a Java interface. When offering a provides-port, a
component simply implements a Java interface and “exports”
it via an entry in the deployment descriptor. From the
component view, it is then up to the container to add this
“service” to its internal registry and to advertise it other
containers via P2P mechanisms. The container is also
responsible for calling the interface methods on behalf of the
“service users” when they are unable (or not configured) to
call them directly.

In the case that a component is providing ports to two or
more other "user" components, there is no prescribed
scheduling behavior for the order in which the external
invocations are served. It is up to the component
implementation to determine this. Each component should
supply a "data sheet" that defines any special runtime
execution behavior that is required for its correct execution.

D. Uses Ports
A uses-port can be viewed as a connection point on the

surface of the component where the framework can attach
(connect) references to provides-ports provided by other
components or the framework (see Fig. 3). Viewed from the
inside of the component, a uses-port is simply the Java
interface the component needs to use. The component makes
calls on uses-port references to "use" the "provided" services.
A component may have zero or more uses-ports. These ports
are named in the code, but the XML descriptor for the
component provides a mapping to the actual name used in the
system, which can vary from the name used at the time of the
component implementation. This supports “very late binding”

of components by the deployer.

E. Access Ports
An access-port is a connection point at the boundary of a

container and is used for connections to other containers (see
Fig. 3). It can use any available communication technology,
e.g. JXTA, WSDL-based Web Services, SOAP, custom XML
over UDP or TCP/IP, RMI, etc. to link local with remote
provides- and uses-ports. For components, access ports are
invisible because they only use provides- and uses-ports to
communicate with other components.

F. Implementation
The goal of our ports concept is that an invocation of the

service implementation on a remote container is, for the
programmer of the components, as simple as in the case of
local invocation and completely transparent with regard to the
location of the service implementation. Even syntactically, the
invocation of a remote service should be equal to calling a
(local) implementation of the interface.

To accomplish this, a component called PortsManager has
been developed as an implementation of the ports concept and
is packaged as an OSGi bundle. All components may fetch
services via the PortsManager component. If a requested
service is not locally available, the PortsManager component
interacts with the respective PortsManager on other
containers, thus enabling transparent interaction between
services, regardless if they are remote or local.

An additional component, the P2PService, is an
implementation of access ports for P2Pcomp, implementing
JXTA and alternatively a special transport using XML
messages over UDP broadcasts and TCP connections. The
PortsManager component uses this simple interface for
sending messages to other containers and is notified of
incoming messages and of devices (peers) entering and
leaving spatial proximity (i.e. remote containers becoming
available or unavailable). The PortsManager component can
use arbitrary implementations of access ports (e.g. for
interacting with Web Services) as long as this simple interface
is implemented.

The PortsManager component has a number of features
which make it appealing for mobile application development:

Service fetching:

Local and remote service references can be queried via the

PortsManager, which will in turn query the services from
those OSGi containers that manage the requested service and
forward them to the caller. In addition to the service interface,
a filter string resembling an LDAP search filter according to
RFC 1960 can be used for fetching a service. Additionally, a
specific service reference for a single service implementation
can be fetched if hot-swapping (see below) is undesirable for
a specific application.

> P2P Light Weight Component Model<

5

Service ranking:

According to OSGi, every service may be given a certain

rank which describes its quality, importance, etc. depending
on the services context. A services rank can be set within the
bundles activator class and usually stays the same while a
bundle is in the “active” state. If there is more than one
matching service available, the PortsManager decides upon
each service’s rank which to load first. Should a service
become unavailable for some reason and the service has not
been fetched by service reference, then the PortsManager
automatically tries to locate the next highest ranked service.

Hot swapping:

If the matching service which was used during service

fetching disappeared because it was either locally or remotely
uninstalled or the specific remote peer is no longer reachable,
the PortsManager will automatically try to regain a matching
service. The service reacquisition order is the same as if it is
fetched initially, i.e. depending on the service’s rank. This
behavior enables the PortsManager to allow exchange of
equivalent stateless services during run-time, i.e. perform “hot
swapping”. To detect service transitions (i.e. new availability
of a service, removal of a service or change of service
properties), the PortsManager implements the OSGi
ServiceListener interface. This extends the standard OSGi
local functionality to remote service change notifications.

Synchronous remote invocations:

If a service reference returned to a calling component points

to a remote device, then the invocation of methods on this
service will be done remotely. Input parameters will be
transparently forwarded over the network, the remote
component method will be invoked and the return value will
be transferred back while the client is blocked. Thus, the
syntax and semantic of calling a method on a service that has
been fetched via the PortsManager are, from the caller’s point
of view, equal to calling a method of a local Java object.

Asynchronous remote invocations:

For P2P interactions, asynchronous object-oriented

invocations provide enhanced application development vs.
lower-level messaging. The PortsManager component offers
the asyncInvoke method (Fig. 4), which takes the service
reference, the method name and its parameters as input
arguments and returns a token for retrieving the remote
method’s result value when the remote method has terminated.
The method of the remote component is then invoked
asynchronously without blocking the caller – the status of the
method can be queried using the returned token or the caller
can register to receive an event when it terminates.

Fig. 4. An asynchronous invocation

G. Method call syntax with PortsManager

Provides-ports are Java interfaces that are implemented by
the components and registered with the container by listing
them in the deployment descriptor. When requesting a service
via the PortsManager, the requesting component connects its
uses port to the provides port of the service. The
PortsManager component is responsible for returning the
correct Java object when the uses-port is requested by a
component; it is a stub object (i.e. a generic dynamic proxy)
which either calls the respective methods of the locally
available service implementation object or translates the Java
method calls to messages, sends them to a remote container,
waits for remote execution and then returns the value
contained in the received message.

To dynamically generate stub objects that implement the

required Java interface for arbitrary services, a Java Dynamic
Proxy [19] (available since JDK 1.3) is used. To process
incoming requests (e.g. Java RMI, SOAP, JXTA) and
appropriately call interface implementations of local
components, the container interprets received messages and
calls the respective component (which must be known to the
container’s registry) methods via standard Java reflection.

Fig. 5a. Retrieving a service reference and invoking a service: plain OSGi vs.
PortsManager

Fig. 5a shows a standard OSGi container-local service

invocation while Fig. 5b shows the same invocation with the
use of our PortsManager.

> P2P Light Weight Component Model<

6

Fig. 5b. Retrieving a service reference and invoking a service: PortsManager

As can be seen, in addition to first fetching the

PortsManager (within a container-independent OSGi bundle),
the only change is to retrieve the service reference via the
PortsManager service instead of the OSGi BundleContext
object. Since calls on a service reference are equivalent,
existing components can be easily adapted to use the
PortsManager. The overhead in code size for using the
PortsManager is insignificant and the run-time overhead is
marginal, because Java dynamic proxies are used and the hot
swapping feature (which dynamically checks service
availability) can be deactivated if necessary.

If even more transparency of the PortsManager is required,
the BundleContext context instantiated by the container can be
modified. For most OSGi containers it should be possible to
modify the class factory so that it returns a wrapper as the
BundleContext, which will directly use the PortsManager for
normal components. This would allow unmodified, OSGi
conformant components to use the PortsManager features.

Thus for smart spaces, a mobile user could retrieve the
presentation service reference once and use it at any location
where such a service is available without reconfiguring the
presentation client. In an auditorium, a powerful
PresentationService implementation with overhead projector
and audio system might be available. When leaving the
auditorium and presenting a few more details in a cafeteria, a
normal notebook computer could offer a less powerful
PresentationService implementation (with lower service
ranking). The client application, running on the user’s PDA,
does not need to notice this service transition, because method
calls on the service reference will be resolved dynamically
when the initial service becomes unavailable. Hot-swapping
combined with service ranking greatly supports users on the
move by fully exploiting the possibilities of ad-hoc
environments.

IV. A SMART SPACE SCENARIO

To point out the benefits of the ports concept and its means
for service ranking and hot swapping for real world
applications, we describe the following smart space scenario.
This scenario consists of two major entities (peers): a mobile
user with a wearable computer and micro-optical display and a
smart room with a wall interface [Simon]. With his wearable
acting as personal agent for communication, the user is

capable of receiving email enriched with video messages
(video mail). While he is one the move, the wearable display
incoming video mail on the user’s micro-optical display (See
Fig. 6).

Fig. 6. Video-mail perceived via a micro-optical display

Although this allows mobility, the display resolution and

color depth are intrinsically limited. When the current user’s
situation allows using better means for displaying video mails,
a switch to these means could be performed automatically and
without explicit user interaction. The ports concept naturally
allows such convenience.

Such an application would require two services: The video
mail agent service is responsible for receiving video mails
using arbitrary communication media1, whereas the presenter
service can be used to display arbitrary content to the user. As
depicted in Fig. 7, the video mail agent service utilizes a
presenter service for playback of video messages upon receipt.

Fig. 7. Video mail agent service utilizing a local presenter service and a
communication service

While on the move, the only instance of a presenter service
available is the one using the directly connected, local micro-
optical display. Both services are running on the wearable;
thus, the video mail agent service could directly access the
micro-optical presenter service by simply invoking
appropriate methods. However, using the ports manager as a
lightweight component middleware between services offers a
significant advantage while having minimal impact on
implementation efforts. Namely, the video mail agent service
is then decoupled from the specific presenter service, allowing
the presenter service to be exchanged on the fly -– the video
mail agent service does not even have to be aware of any
changes. As soon as the user enters the smart room, the

> P2P Light Weight Component Model<

7

wearable peer detects the smart room peer due to spatial
proximity. Therefore, the wearable immediately finds another
instance of a presenter service, implemented by the smart
room with its integrated data projector. Since the wall
interface is of higher quality than the micro-optical display
(i.e. it is more convenient), it is assigned a higher service rank.
As a consequence, the ports manager will automatically select
the superior presenter service for requests by the video mail
agent service (hot swapping), as shown in Fig. 8.

Fig. 8. Video mail agent service utilizing a remote presenter service and a
communication service

While the user is located inside the smart room, all received

video mails will automatically be played on the wall interface
using the data projector (see Fig. 9). When the additional
presenter service becomes unavailable because the user leaves
the smart room, the ports manager will automatically fall back
to the locally available micro-optical presenter service, thus
further received video mails will be played on the micro-
optical display.

Fig. 9. Video-mail perceived on the wall interface in the smart room

To summarize, the particular benefits of the ports concept
for challenges posed by smart space applications or alike
scenarios are that it

• is lightweight and thus suitable for a wide range of

devices
• does not require any central infrastructure

component, but is fully decentralized and designed
for ad-hoc situations which are typically
encountered in smart space environments. The lack
of a central infrastructure allows the ports concept

to be used in smart environments without
expensive infrastructure installations.

• allows easy and transparent invocation of local and
remote services independently of their location and
implementation

• provides ideal support for changing environments
through automatic hot swapping of services. This
feature can significantly improve fault-tolerance of
the overall system in loosely coupled, peer-to-peer
environments

• supports automatic selection of the best service
available, based upon a simple ranking mechanism

• simplifies dynamic installation of applications
upon spatial proximity

V. EVALUATION

A. Performance and Scalability
A performance case study for the P2Pcomp implementation

has been conducted in order to demonstrate feasibility and
scalability of P2Pcomp for different devices (Table 1). To test
method invocation overhead with a few parameters, echoInt
service is used (int result = echoInt(int a,int b)). The
echoString service (String result = echoString(String data))
tests the parameter marshalling code and scalability regarding
varying parameter sizes of the Portsmanager by passing in and
returning a string using sizes varying from 10 to 105 bytes.
Both services actually do nothing except returning the input
parameters, since we do not want to measure the performance
of the services itself but the performance of the invocation,
passing in and returning different parameter sizes. Both
services have been invoked in the following settings: a)
without component indirection (monolithic), b) invoking the
service via Oscar, c) using Portsmanager to access the service
on the local device d) using Portsmanager to access the
service on a remote device. Table 2-4 show the test results for
settings a), b) and c). The values specified represent the
average duration for invoking the corresponding service.

Since the overhead for method invocation on remote
devices heavily depends on the used transport technology,
setting d) has been conducted using TCP with XML messages
(Table 5) and then with JXTA (Table 6) with 100Mb/s
Ethernet and 11 Mb/s WLAN. Measurements using JXTA on
the IPAQ were not possible.

TABLE 1. USED DEVICES

Device CPU RAM OS Java VM
Note-
book

P3, 850 MHZ 256
MB

WinXP Sun 1.4.1

Server P4, 2.4 GHZ 1.0 GB Linux 2.4.22 Blackdown
1.4.1

IPAQ StrongArm206

MHZ
64 MB Familiar

Linux 0.7.1
Blackdown

1.3.1
TABLE 2. AVERAGE CALL DURATION, SETTING A)

in µsec Notebook Server IPAQ
echoInt 0.04 0.036 8.725

> P2P Light Weight Component Model<

8

str(102) 0.04 0.032 7.203
str(104) 0.05 0.033 7.480
str(105) 0.06 0.038 10.372

TABLE 3. AVERAGE CALL DURATION, SETTING B)

In µsec Notebook Server IPAQ
echoInt 0.05 0.036 8.718
str(102) 0.04 0.031 7.217
str(104) 0.05 0.031 7.692
str(105) 0.06 0.044 10.146

TABLE 4. AVERAGE CALL DURATION, SETTING C)

in µsec Notebook Server IPAQ
echoInt 1.41 0,62 428.36
str(102) 0.8 0,43 247.30
str(104) 0.8 0,43 252.44
str(105) 1.0 0,45 275.94

Tables 1-4 show that the invocation of the echoString

service is faster than the invocation of the echoInt service if
the string is small enough. The reason for this is that the Java
dynamic proxy code is faster for small strings than for integer
variables. The invocation in setting c) is slower than in setting
a) and b) since the calls are running “through” the
Portsmanager and the Java dynamic proxy code.

TABLE 5. AVG. CALL DURATION FOR TCP, SETTING D)

in millisec Notebook
Server/Ethernet

Notebook
Server/Wlan

IPAQ
Server/Wlan

echoInt 8.51 15.72 242.89
str(102) 6.51 15.02 268,37
str(104) 31.85 78.82 3,073.75
str(105) 533.57 916.61 28,622.40

Table 5 and 6 shows the performance of our

implementation for invoking remote methods using various
parameter sizes. The measured values show that invocation
duration is comparable to other means of remote method
invocations.

The TCP transport used for the measurements in table 5
could be improved to speed up remote method invocations, for
example by sending raw data instead of XML messages,
leading to shorter invocation duration. The results also show
that our implementation scales well regarding the size of the
input parameter at least for local invocations. When invoking
methods remotely, scalability heavily depends on the transport
technology’s parameters (throughput, latency, frame size …).

TABLE 6. AVG. CALL DURATION FOR JXTA, SETTING D)
in millisec Notebook

Server
(100Mbit,
Ethernet)

Notebook
Server (11Mbit,

Wlan)

IPAQ
Server/Wlan

echoInt 39.56 47.07 n.a.
str(102) 30.15 41.36 n.a.
str(104) 62.99 119.17 n.a.
str(105) 626.40 1,111.60 n.a.

VI. COMPARISON WITH RELATED WORK
Expeerience [21] is a middleware layer over JXTA that

addresses issues with JXTA with regard to intermittent
connections in adhoc environments. It supports code mobility
and service migration, including state to the extent of support
for mobile agent systems. Expeerience does not, however,
address the component models issue with JXTA nor protocol
exchangeability as P2Pcomp does.

With regard to the combination of OSGi and JXTA, the
advantages of extending OSGi with JXTA for Virtual Home
Environments are described in [20]. It does not address a
distributed component model, protocol exchangeability, and
QoS for adhoc environments.

OSGi component-related work includes Beanome [1], a
lightweight component model and framework on top of OSGi
to support complex applications. While Beanome includes
component descriptors, factories, a registry, and introspection
capabilities, it does not address various issues that P2Pcomp
does, such as remote communication, “transparent”
asynchronous and synchronous remote invocation, OSGi peer
discovery, protocol independence, dynamic binding,
dependability, etc.

In the area of component communication, [7] presents a
lightweight XML-based middleware based on a ports concept.
While addressing protocol exchangeability with various
transport channels and integration via XSLT-based
connectors, it uses a generative approach that may limit
runtime flexibility vis-à-vis P2Pcomp and does not address
containers and component lifecycles.

The JavaPorts framework [22] aims to simplify multi-
threaded distributed P2P applications with a component
model. While it uses a location-independent ports concept
and supports asynchronicity, it appears to be primarily
focused on parallel computing and does not address the issues
of mobile adhoc environments.

SEESCOA [24] supports dynamic reconfiguration and
evolution of components in embedded systems by leveraging
ports to reroute messages between components. However, the
intent is not aimed at supporting P2P application interactions
and protocol independence. Lightweight component models
for embedded systems are discussed in [25], including the use
of a ports concept. For our context, however, these models
incorporate restrictions such as domain-specific languages
while footprint and performance measurements are
unavailable.

In general, embedded systems development is a different
paradigm class from that of mobile P2P applications. While
both are resource constrained, mobile P2P applications often
are primarily focused on (i) distributed, heterogeneous and
spontaneous communication, (ii) dynamic extensibility, and
(iii) user interaction capabilities.

While agent systems appear to have a similar focus or be
appropriate for this environment, the code development and
runtime paradigm usually requires additional skills versus a
component developer. P2Pcomp does not require code to be
designed as an agent or to be mobile, but allows the container
to manage the interactions between components in such an
environment. Components can be passive, whereas agents are

> P2P Light Weight Component Model<

9

usually designed to be active.
P2Pcomp has been built to support the implementation of

roomware services in smart spaces [2] [3]. Due to the most
recent technological developments, smart environment
scenarios appear possible, in which almost every object in our
everyday environment will be equipped with embedded
processors, wireless communication facilities and embedded
software to perform and control a multitude of tasks and
functions. Many of these objects will be able to communicate
and interact with the background infrastructure (e.g. the
Internet), but also with each other [5]. Terms like “context-
aware” smart spaces have appeared in the literature to refer to
such technology-rich environments, which intelligently
monitor the objects of a real world (like persons, things,
places), and interact with them in a situative, pro-active,
autonomous, sovereign, responsible and user-authorized way
[6]. Opposed to centralized approaches in smart space
middleware, P2Pcomp has been rigorously designed as a P2P
framework, and implemented on top of JXTA. Comparable
home environment networking approaches are [20], [21] and
[23].

Smart space scenarios (such as roomware, smart homes)
along with their underlying mobile, resource-constrained P2P
applications will continue to challenge software architecture
on various points, including QoS, performance, footprint,
flexibility, extensibility, manageability, heterogeneity,
updateability, testability, scalability, availability, etc.

VII. CONCLUSION
In this paper, we have discussed the new challenges posed

by mobile, completely decentralized, ad-hoc P2P applications
to the design of component-based distributed software
systems. As the devices representing peers in such
applications are usually heterogeneous and resource-
constrained, there is the need for an appropriate, lightweight
component model. With our OSGi-compliant P2P framework
P2Pcomp, we have integrated a minimal set of component
model concepts (containers and ports for component
interaction, location-independence, protocol-independence,
dynamic deployment and binding of components, lifecycle
management, packaging and distribution, etc.) on a very small
software footprint. Our framework, P2Pcomp, thus represents
an operational runtime environment that is both conceptually
and physically lightweight, addresses the unique development
needs in this context, and enables flexible and highly
tailorable component-based, distributed, mobile P2P
applications.

ACKNOWLEDGMENTS
We wish to express our thanks to Thomas Köckerbauer and

Michael Kumar for their implementation support of the Ports
concept.

REFERENCES
[1] Cervantes, H., and Hall, R. Beanome: A Component Model for the OSGi

Framework, in Software Infrastructures for Component-Based
Applications on Consumer Devices, Lausanne, September 2002.

[2] Streitz, N. A. et al.: Roomware: Towards the Next Generation of
Human-Computer: Interaction based on an Integrated Design of Real
and Virtual Worlds. In J. A. Carroll (Ed.): Human-Computer Interaction
in the New Millenium, Addison Wesley, pp. 551-- 576. 2001.

[3] Phillips, P., Friday, A. and Cheverst, K.: Understanding Existing Smart
Environments: A brief classification, In Workshop on Ubiquitous
Computing in Domestic Environments, pages 1--4., Sept. 2001.
Lancaster University.

[4] Open Management Group: Unified Modeling Language version 1.4
specification, “formal/01-09-67”, 2001.

[5] Mills. K.: AirJava: Networking for Smart Spaces, National Institute of
Standards and Technology, US.

[6] Fox, A., Johanson, B., Winograd, T., and Hanrahan, P.: Integrating
Information Appliances Into an Interactive Workspace,IEEE Computer
Graphics & Applications (special issue: "Off the Desktop"), May/June
2000.

[7] Löwe, W., and M.L. Noga: “A Lightweight XML-based Middleware
Architecture”, 20th IASTED International Multi-Conference Applied
Informatics (AI), 2002.

[8] Dey, A. K.: Understanding and Using Context. Personal and Ubiquitous
Computing, Special Issue on Situated Interaction and Ubiquitous
Computing, 5(1), 2001.

[9] Ferscha, A.: Contextware: Bridging Virtual and Physical Worlds.
Reliable Software Technologies, AE 2002. Springer Verlag, LNCS
2361, pp 51-64, 2002.

[10] Ferscha, A.: Collaboration and Coordination in Pervasive Computing
Environments. Proceedings of the 12th International Workshops on
Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE 2003), IEEE Computer Society Press, pp 3-9, 2003.

[11] Corba Specification. OMG, http://www.omg.org/
 technology/documents/formal/corbaiiop.html.

[12] Component Object Model. Microsoft, http://www.microsoft.com/com/.
[13] Enterprise JavaBeans Specification. SUN Microsyst.

 http://java.sun.com/products/ejb/docs.html.
[14] Simple Object Access Protocol (SOAP),

 http://www.w3.org/2000/xp/Group/.
[15] Project JXTA. http://www.jxta.org.
[16] Java Message Service (JMS). SUN Microsystems,

 http://java.sun.com/products/jms.
[17] Open Services Gateway Initiative (OSGi), http://www.osgi.org.
[18] Open Service Container Architecture (Oscar), http://oscar-

osgi.sourceforge.net/.
[19] Java 2 Platform, Standard Edition, http://java.sun.com/j2se/.
[20] Loeser, C., W. Mueller, F. Berger, and H. Eikerling: “Peer-to-Peer

Networks for Virtual Home Environments”, Proceedings of the 36th
Hawaii International Conference on System Sciences (HICSS’03), 2003.

[21] Bisignano, M., A. Calvagna, G. Di Modica, and O. Tomarchio:
“Expeerience: a JXTA middleware for mobile ad-hoc networks”,
Proceedings of the Third International Conference on Peer-to-Peer
Computing, 2003, pp. 214-5.

[22] Manolakos, E.S., Galatopoullos, D. and Funk, A.: “Component-Based
Peer-to-Peer Distributed Processing. Heterogeneous Networks Using
JavaPorts”, IEEE International Symposium on Network Computing and
Appl., 2001, pp. 234-7.

[23] Alda, S.: “Adaptability in Component-Based Peer-to-Peer Applications”,
2nd International Conference on Peer-to-Peer Computing (P2P'02),
2002.

[24] Vandewoude, Y. and Berbers, Y.: “Run-time Evolution for Embedded
Component-Oriented Systems”, Int. Conf. on Software Maintenance
(ICSM'02), 2002.

[25] H. John Reekie and Edward A. Lee: “Lightweight Component Models
for Embedded Systems”. Technical report, Electronics Research
Laboratory, University of California at Berkeley, UCB ERL M02/30,
October, 2002.

[26] Clemens Szyperski. Component Software. Addison-Wesley, 1998.

Alois Ferscha received his Mag. degree in 1984, and a PhD degree in

business informatics in 1990, both from the University of Vienna, Austria.

> P2P Light Weight Component Model<

10

From 1986 through 2000 he was with the Department of Applied
Computer Science at the University of Vienna at the levels of assistant and
associate professor. In 2000 he joined the University of Linz as full professor
where he is now head of the Institut für Pervasive Computing. He has served
on the committees of several conferences like Pervasive Computing,
UMBICOMP, WWW, PADS, DIS-RT, SIGMETRICS, MASCOTS, TOOLS,
PNPM, ICS, etc. and was the program chair for the PERVASIVE 2004
conference.

Manfred Hechinger received bakk. techn. in computer science from the

Johannes Kepler University Linz, Austria in 2004.
He is currently working on his diploma thesis in the area of Peer-to-Peer

Systems and employed in a research project on fully distributed Peer-to-Peer
systems at the Johannes Kepler University Linz, Austria. Major interests are
distributed computing, embedded systems and computer networks.

Rene Mayrhofer received his Dipl.-Ing. degree in computer science from

the Johannes Kepler Universität Linz, Austria in 2002
He is currently working on his PhD on context prediction, also at Johannes

Kepler Universität Linz. In 2002, he joined the Institut für Pervasive
Computing as an assistant His research interests include context awareness,
embedded systems, artificial intelligence with specialization on spiking neural
networks and security. He has served on the committee of PERVASIVE 2004
and is a contributing developer of the Debian GNU/Linux project.

Roy Oberhauser received his B.S. in electronic engineering from

California Polytechnic State University San Luis Obispo in 1990, and an M.S.
in computer science from National Technological University, USA in 1999.

He is currently a senior research scientist for Siemens AG in the Software
Architecture department, Software and Engineering, Corporate Technology in
Munich, Germany. He has worked in the computer industry since 1990,
including Zitel Corp., Network Peripherals, and Hewlett-Packard, and is
named on four U.S. patents.

Mr. Oberhauser is on the program committee of ECOWS, NODE, and
GSEM. His current research interests include software engineering,
distributed computing, service-oriented architectures, web services, peer-to-
peer, grid, domain-specific languages, platforms, and a plethora of related
technologies.

	INTRODUCTION
	General Concept
	Approach
	Oscar OSG
	The Ports Concept
	Provides Ports
	Uses Ports
	Access Ports
	Implementation
	Method call syntax with PortsManager

	A Smart Space Scenario
	Evaluation
	Performance and Scalability

	Comparison with Related Work
	Conclusion

