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M1 Maxwell's Wheel 
 

Subject area:          Translational and rotational motion, moment of inertia, physical  
  pendulum 
 
Experiment goal: To determine the moment of inertia of a Maxwell's wheel in two 

ways. 
 
Literature:          Lecture manuscript, standard textbooks “physics for engineers” 
 
1.   Fundamentals 
 
1.1  Maxwell's Wheel 
The Maxwell's wheel shown in Fig. 1 is suspended with its horizontal axis of radius 𝑟𝑟 on 
two vertical threads, so that they wind or unwind as the wheel rotates around the axis. 
If the wheel is brought to the highest position by winding the threads and then released, 
it moves downward under the influence of gravity with constant acceleration. Its motion 
consists simply of a combination of translational and rotational motion around its center 
of mass. By measuring the translational acceleration, the moment of inertia (in short, 
the inertia) with respect to the axis of rotation can be calculated. 
 
 
 
 

 

 
 Fig.1: 
 Maxwell´s wheel rolls off two threads 

 
Fig.2: 
Maxwell´s wheel as physical pendulum 
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Another method to determine the moment of inertia of the Maxwell wheel is to let it swing 

around an axis as a physical pendulum and, from the measured oscillation period, first 

calculate the moment of inertia with respect to the axis of rotation (see Fig. 2). 

The fundamentals necessary to solve the tasks should be sufficiently familiar from the 

lecture, but they are briefly summarized again below. 

 

1.2   Translational and Rotational Motion 

 

1.2.1  Translational Motion 

 

A force (

F) causes a freely moving body (with mass m) to experience an acceleration 

( a). The relationship is given by Newton's second law: 

     F = m • a
→ →

      (1) 

f the force and thus the acceleration are constant, the following equations apply 

between acceleration, velocity 
v , displacement s , and time t: 

  0v = a • t + v
→ → →

      (2)          2
00

as = • t + v • t + s
2

→
→ → →

             (3) 

Here, the velocity  0v  and displacement  0s are at time t=0. 

If the body has velocity v, its kinetic energy (specifically translational energy) is: 

 

    2
tr

mE = • v
2

       (4) 
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1.2.2  Rotational motion 

 

A body with mass mmm rotates around a fixed axis with angular velocity ω. To 

determine its kinetic energy (specifically rotational energy) Erot, it must be considered 

that the mass elements have different velocities. The summation (integration) over the 

translational energy of sufficiently small mass elements gives the rotational energy of 

the body: 

    
2

2
rot

K

ωE = • r • dm
2 ∫      

 (5) 

The integral extended over all mass elements dm of the body.   

 

 

   2

K

J = r • dm∫                   (6) 

is called the moment of inertia of the body with respect to the given axis of rotation (r = 

distance of the mass elements from the axis of rotation). 

For example, from equation (6), the moment of inertia of a homogeneous circular disk 

with radius r and mass m with respect to its axis of symmetry is calculated as: 

    2
S

1J = • m • r
2

      (7) 

 
Steiner's theorem: 
 
If m is the mass of a body, and b is the distance of an axis from the parallel axis through 

the center of mass (with moment of inertia Js), then the moment of inertia of the body 

with respect to that axis is: 

 

    2
SJ = J + m • b       (8) 

(Steiner's theorem; see manuscript or textbook). 

Thus, if the moment of inertia of a body with respect to its center of mass axis is known, 

its moment of inertia with respect to any other axis parallel to this center of mass axis 

can be calculated using this equation.
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Dynamic fundamental law of rotation, laws of motion 

If a torque acts on a body 

    
→ → →

M = r x F        (9) 

(Vector product of force 

F  and radius vector 


r , the vector from the pivot point to the point 

of application of the force), the body experiences an angular acceleration α. The 

relationship is given by the dynamic fundamental law of rotation: 

  

 M = J •
→ →

α  (10) 

If the torque is constant, the following equations, analogous to equations (2) and (3), 

apply between angular acceleration α, angular velocity ω, angular displacement φ, and 

time t: 

 0ω = • t + ωα  (11) 

 2
0 0

α= • t + ω • t +
2

ϕ ϕ  (12) 

Here, ω0  is the angular velocity and ϕ0  is the angular displacement at time t=0. 

 

1.2.3  Application to Maxwell´s wheel 

 

The general motion of a body consists of both translational motion and rotational 

motion: 

Translational motion: 

The center of mass of the body undergoes translation, with its acceleration 
→

a  

determined by equation (1), as if the resultant force were applied at the center of mass 

and the entire mass were concentrated at that point. 

 

Rotational motion: 

Additionally, the body undergoes rotational motion around its center of mass, with the 

angular acceleration determined by equation (10). 
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The resulting motion is generally complex, for example, with free axes. In our problem, 

the Maxwell wheel, it is simplified by the fact that the rotation occurs around a fixed axis, 

and there is a constraint between the velocity v of the center of mass and the angular 

velocity ω given by: 

 v = r • ω  (13) 

As a starting point for the calculation, the work-energy principle of mechanics can be 

used. If the Maxwell wheel falls from rest from a height h, this results in: 

 2 2J m• ω + • v = m • g • h
2 2

 (14) 

with: v velocity, 

 ω Angular velocity after traveling the height h 

 g Gravitational acceleration 

 

From equations (2) and (3), it follows:

 2
2

g 2 • hJ = m • r • ( 1)     mit a =
a t
−  (15) 

The same result can be obtained using equations (1) and (10). Two forces act on the 

Maxwell wheel: the gravitational force and the tension in the rope (see Fig. 3). 

This leads to:    Seilm • a = m • g F−  

Motion of the center of mass: 

  Seilm • a = m • g F−     (16) 

Rotation around the center of mass axis: 

 SeilJ • = r • Fα     (17) 

The elimination of FSeil from these two relationships, along 

with equation (13), immediately leads to the result in 

equation (15) (after which a=rα). 

 

 

 
Fig. 3 
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1.3  Physical pendulum 

 

A body is rotatable about an axis AAA (not 

the center of mass axis). The distance from A 

to the center of mass S is l. When the body is 

displaced by an angle φ from its resting 

position a restoring torque acts: 

  M = l • m • g • sin− ϕ  (18) 

(See Fig. 4.). According to equation (10), the 

equation of motion then results in:

 
2

A 2
dl • m • g • sin = J •
dt

− ϕ
ϕ

  

and, respectively,    

    
2

2
A

d l • m • g+ • sin = 0
dt J
ϕ

ϕ  (19) 

The solution of this nonlinear differential equation results in anharmonic oscillations. 

For sufficiently small displacements φ, it can be assumed that: 

   sin ϕ ≈ ϕ        (20) 

 

The solution of the linearized differential equation is: 

  0 0= • sin (ωt + β )ϕ ϕ       (21) 

with 

    (22) 

  A

A

Jl m g=         bzw.   T = 2
J l m g

π
 

 
 

ω  

 

 
Fig. 4 
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Here, T is the period of oscillation, and ϕ0 and β0  are integration constants. If J is the 

moment of inertia about the center of mass axis parallel to the axis of rotation, then 

Steiner's Theorem (equation (8)) gives: 

 2
AJ = J   m • l−       (23) 

From equation (22) and equation (23),  

 
2

2
2

T • l • m • gJ = m • l
4 •

−
π

     (24) 

By measuring the period of oscillation, the sought moment of inertia J can thus be 

determined. 

 

2.   Experimental procedure: 

 

2.1  Maxwell´s wheel rolls off two threads. 

 
2.1.1  Suspend Maxwell´s wheel on two equal-length, thin threads that converge 

slightly toward the suspension mechanism, with a horizontal axis. Rotate the wheel 

(the threads wind onto the axis) until it is raised to height h. 

 

2.1.2 Measurement: The wheel is released, and the time t is measured for it to pass 

through the height h. At least 10 individual measurements should be taken. 

2.1.3  The moment of inertia can be calculated using equation (15). 

2.1.4  To what extent does the thickness of the thread play a role? 

 Correct the result. 

2.1.5  Assuming that m, r, t, and h are subject to errors, the maximum relative error is 

given by:  

  J m r 1 h t= + 2 • + • ( + 2 • )2 • hJ m r h t1 2g • t

∆ ∆ ∆ ∆ ∆

−
   (25) 

 

Calculate this and discuss the result.
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2.2  Wheel swinging over edge 

 

2.2.1  Let the wheel swing over the edge. Determine the oscillation period from 50 

oscillations. Repeat the experiment twice. 

2.2.2 Calculation of the moment of inertia using equation (24). 

(According to Figure 2, l = r2 

2.2.3  Assuming that T, l, and m are subject to errors, the maximum relative error is 

obtained as:  
           

2

2
J m 1  2 • u l 2 T 4 • • l =  +   • +   •     mit   u = 

J m 1  u l 1  u T g • T
∆ ∆ − ∆ ∆

− −
π       (26) 

Calculate this and discuss the result

  

2.3  Rule of thumb 

 

2.3.1  For the calculation of the moment of inertia, the rule of thumb can be applied.  

 
2 2
1 2 + r rJ = k • m •

2
     (27) 

For k = 1, the moment of inertia corresponds to that of a thick-walled hollow cylinder. 

By setting k < 1, it takes into account that part of the mass of the wheel is located in 

the spokes. 

2.3.2  Determine the factor k for the Maxwell wheel (based on the measured moment 

of inertia). 

2.3.3  Calculate the maximum relative error of k when m, r1 , r2 and J are error-prone. 

  1 1 2 2
2 2

1 2

2 • r • Δr + 2 • r • Δ rΔk ΔJ Δm= + +
k J m r + r

    (28) 
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2.4 Comparison of the Methods 

 
2.4.1 Compare the maximum relative errors from 2.1.5 and 2.2.3. 
 
2.4.2 What error sources, aside from those already considered in the error calculation, 
occur? List them. 
 
2.4.3 Which of the two measurement methods is more accurate? Explain why.
 
 
 
3.  Questions about the experiment and subject area 
 
3.1 In translational motion, mass is a measure of the body's inertia. Does this also 
apply to rotational motion? 
 
3.2 List some examples from everyday life and technology where the moment of 
inertia of a body is significant. 
 
3.3 What does Steiner's theorem state? How can it be derived? 
 
3.4 Energy theorem of mechanics: Under what conditions does it apply? What is 
neglected in equation (14)? 
 
3.5 Show that equation (15) follows from equations (13) and (14). 
 
3.6 Equation (17): Why does only the rope force create a torque and not the weight 
force? 
 
3.7 Explain the terms "mathematical pendulum" and "physical pendulum." 
 
3.8 How would you explain the sentence on page 6, "...for sufficiently small 
displacements, it can be assumed..." in more detail? 
 
3.9 Derive the formulas for the maximum relative error of J from equations (25) and 
(26). 
 
3.10 How is the quantity Δt determined in equation (25)? 
 


