M1 Maxwell's Wheel

Subiject area: Translational and rotational motion, moment of inertia, physical
pendulum

Experiment goal: To determine the moment of inertia of a Maxwell's wheel in two

ways.
Literature: Lecture manuscript, standard textbooks “physics for engineers”
1. Fundamentals

1.1 Maxwell's Wheel
The Maxwell's wheel shown in Fig. 1 is suspended with its horizontal axis of radius r on

two vertical threads, so that they wind or unwind as the wheel rotates around the axis.
If the wheel is brought to the highest position by winding the threads and then released,
it moves downward under the influence of gravity with constant acceleration. Its motion
consists simply of a combination of translational and rotational motion around its center
of mass. By measuring the translational acceleration, the moment of inertia (in short,
the inertia) with respect to the axis of rotation can be calculated.

Fig.1:
Maxwell’s wheel rolls off two threads

Fig.2:
Maxwell’s wheel as physical pendulum
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Another method to determine the moment of inertia of the Maxwell wheel is to let it swing
around an axis as a physical pendulum and, from the measured oscillation period, first
calculate the moment of inertia with respect to the axis of rotation (see Fig. 2).

The fundamentals necessary to solve the tasks should be sufficiently familiar from the
lecture, but they are briefly summarized again below.

1.2 Translational and Rotational Motion

1.2.1 Translational Motion

A force (F) causes a freely moving body (with mass m) to experience an acceleration
(a). The relationship is given by Newton's second law:

—

F=m-a (1)
f the force and thus the acceleration are constant, the following equations apply

between acceleration, velocity v, displacement s, and time t:

N

v=act+ve (2) s=2.t2 4y, et+so (3)

Here, the velocity y, and displacement g, are at time t=0.

If the body has velocity v, its kinetic energy (specifically translational energy) is:

E

tr

=%.V2 (4)

M1 2/9



1.2.2 Rotational motion

A body with mass mmm rotates around a fixed axis with angular velocity w. To
determine its kinetic energy (specifically rotational energy) Ert, it must be considered
that the mass elements have different velocities. The summation (integration) over the
translational energy of sufficiently small mass elements gives the rotational energy of
the body:

2
E, = — -Irz «dm
2 K

()

The integral extended over all mass elements dm of the body.

J=_|'r2 odm (6)

K
is called the moment of inertia of the body with respect to the given axis of rotation (r =
distance of the mass elements from the axis of rotation).
For example, from equation (6), the moment of inertia of a homogeneous circular disk
with radius r and mass m with respect to its axis of symmetry is calculated as:

1

J.=—emer? 7
= ™

Steiner's theorem:

If m is the mass of a body, and b is the distance of an axis from the parallel axis through
the center of mass (with moment of inertia Js), then the moment of inertia of the body

with respect to that axis is:

J=Jg +meb’ (8)
(Steiner's theorem; see manuscript or textbook).
Thus, if the moment of inertia of a body with respect to its center of mass axis is known,
its moment of inertia with respect to any other axis parallel to this center of mass axis

can be calculated using this equation.
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Dynamic fundamental law of rotation, laws of motion

If a torque acts on a body

N

M=r xF 9)
(Vector product of force F and radius vector r, the vector from the pivot point to the point

of application of the force), the body experiences an angular acceleration a. The

relationship is given by the dynamic fundamental law of rotation:

M=Jea (10)
If the torque is constant, the following equations, analogous to equations (2) and (3),
apply between angular acceleration a, angular velocity w, angular displacement ¢, and

time t:

w=ot+w, (11)
a .
<p=5-t tw,*t+o, (12)

Here, wo is the angular velocity and o is the angular displacement at time t=0.

1.2.3 Application to Maxwell’s wheel

The general motion of a body consists of both translational motion and rotational
motion:

Translational motion:

The center of mass of the body undergoes translation, with its acceleration a
determined by equation (1), as if the resultant force were applied at the center of mass

and the entire mass were concentrated at that point.
Rotational motion:

Additionally, the body undergoes rotational motion around its center of mass, with the

angular acceleration determined by equation (10).
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The resulting motion is generally complex, for example, with free axes. In our problem,
the Maxwell wheel, it is simplified by the fact that the rotation occurs around a fixed axis,
and there is a constraint between the velocity v of the center of mass and the angular
velocity w given by:

VErew (13)
As a starting point for the calculation, the work-energy principle of mechanics can be

used. If the Maxwell wheel falls from rest from a height h, this results in:

%-w2+%-v2=m°g-h (14)
with: v velocity,
® Angular velocity after traveling the height h
g Gravitational acceleration

From equations (2) and (3), it follows:

(15)

J=m-r2-(g—1) mita=22
a t

The same result can be obtained using equations (1) and (10). Two forces act on the

Maxwell wheel: the gravitational force and the tension in the rope (see Fig. 3).

This leads to: Mea=meg-F, A

Motion of the center of mass: FSeiI
mea=meg-Fg, (16)

Rotation around the center of mass axis: 4L

Jea=re F, (17) \\

The elimination of Fseil from these two relationships, along

l

with equation (13), immediately leads to the result in

3
Q

equation (15) (after which a=ra).

Fig. 3
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1.3  Physical pendulum

A, A body is rotatable about an axis AAA (not

the center of mass axis). The distance from A

to the center of mass S is I. When the body is
displaced by an angle ¢ from its resting

position a restoring torque acts:
j\\ | sing M=—-lemeg-sing (18)

_ S (See Fig. 4.). According to equation (10), the
mg sin 5
9smne A equation of motion then results in:
. d?
_|omogos|n(P=JA ._(zp
dt
K
® and, respectively,
FS=mg

. 2 [ ] [ ]

Flg.4 d(p+| m g'Sin(p=0 (19)

dt?

A
The solution of this nonlinear differential equation results in anharmonic oscillations.

For sufficiently small displacements @, it can be assumed that:

sinp=¢@ (20)

The solution of the linearized differential equation is:

@ =0, *sin(wt+p,) (21)

with

o= [[Img bzw. T=20n( |4
Ja I0m{g
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Here, T is the period of oscillation, and @oand Bo are integration constants. If J is the
moment of inertia about the center of mass axis parallel to the axis of rotation, then

Steiner's Theorem (equation (8)) gives:
J=J, —meP (23)
From equation (22) and equation (23),

Tzolomog

J=
4 o

—meP (24)

By measuring the period of oscillation, the sought moment of inertia J can thus be

determined.

2. Experimental procedure:

2.1 Maxwell’s wheel rolls off two threads.

2.1.1 Suspend Maxwell’s wheel on two equal-length, thin threads that converge
slightly toward the suspension mechanism, with a horizontal axis. Rotate the wheel

(the threads wind onto the axis) until it is raised to height h.

N
-
N

Measurement: The wheel is released, and the time t is measured for it to pass

through the height h. At least 10 individual measurements should be taken.

N
N
w

The moment of inertia can be calculated using equation (15).

N
-
AN

To what extent does the thickness of the thread play a role?
Correct the result.

2.1.5 Assuming thatm, r, t, and h are subject to errors, the maximum relative error is
given by:
AJ _ Am Ar 1 Ah At
= §2e 0 (420 25
J m r 4_2°h ( h t ) (5)
get?

Calculate this and discuss the result.
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2.2  Wheel swinging over edge

2.2.1 Let the wheel swing over the edge. Determine the oscillation period from 50
oscillations. Repeat the experiment twice.

2.2.2 Calculation of the moment of inertia using equation (24).

(According to Figure 2, 1 =r2

2.2.3 Assuming that T, I, and m are subject to errors, the maximum relative error is

obtained as:
— [ ] * 2.
A_J=Am+ 1-2-u -£|+ 2 .| AT mit u=4 n (26)
J  m 1-u | 1] |1 -u 9T’

Calculate this and discuss the result

2.3 Rule of thumb

2.3.1 For the calculation of the moment of inertia, the rule of thumb can be applied.

2 2

J:k.m.nzﬁ (27)

For k =1, the moment of inertia corresponds to that of a thick-walled hollow cylinder.

By setting k < 1, it takes into account that part of the mass of the wheel is located in

the spokes.

2.3.2 Determine the factor k for the Maxwell wheel (based on the measured moment

of inertia).

2.3.3 Calculate the maximum relative error of Kk when m, r1 , r2 and J are error-prone.
Ak _AJ  Am +2-r1 *Ar,+2e°r,*Ar,

/e 28
k J m r? +r,’ (28)
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2.4 Comparison of the Methods

2.4.1 Compare the maximum relative errors from 2.1.5 and 2.2.3.

2.4.2 What error sources, aside from those already considered in the error calculation,
occur? List them.

2.4.3 Which of the two measurement methods is more accurate? Explain why.

3. Questions about the experiment and subject area

3.1 In translational motion, mass is a measure of the body's inertia. Does this also
apply to rotational motion?

3.2 List some examples from everyday life and technology where the moment of
inertia of a body is significant.

3.3 What does Steiner's theorem state? How can it be derived?

3.4 Energy theorem of mechanics: Under what conditions does it apply? What is
neglected in equation (14)?

3.5 Show that equation (15) follows from equations (13) and (14).

3.6 Equation (17): Why does only the rope force create a torque and not the weight
force?

3.7 Explain the terms "mathematical pendulum" and "physical pendulum.”

3.8 How would you explain the sentence on page 6, "...for sufficiently small
displacements, it can be assumed..." in more detail?

3.9 Derive the formulas for the maximum relative error of J from equations (25) and
(26).

3.10 How is the quantity At determined in equation (25)?
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