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F Guide to Error Calculation in Physics Lab 
 

1.  Definition of Error 

 

1.1 Definition des Fehlers 

 

a) Absolute Error 

Measured values and results calculated from measured values are always subject to 

errors. The absolute error ∆x is the difference between the measured actual value of the 

measured quantity x (measured value) and the true value of the measured quantity xw.  

 

∆x = x - xw . 
The absolute error has the dimension of the measured quantity. 

 

b) Relative Error 

Often, the relative error is also calculated:  

W

absoluter Fehler xRelativer Fehler = =
wahrer Wert x

∆  

Since the true value xw of a measured quantity is never precisely known, the error 

(assuming the error is "sufficiently small") is related to the measured value x: 

 xRelativer Fehler =
x
∆   x(Rel. Fehler in % = • 100)

x
∆  

 

1.2  Systematic Errors 

 

Systematic errors are errors that originate from the measurement system. They are 

reproducible and occur with the same magnitude and direction when the measurement 

is repeated. Systematic errors cause measurements to be incorrect. 

Example: A ruler or measuring instrument has been improperly calibrated. 

This type of systematic error can only be detected through inspection and eliminated by 

recalibrating the measuring devices. 

Systematic errors may also arise due to observer mistakes, the use of inappropriate 

measurement methods, etc. 



            
 

F  2/11 

A significant cause of systematic errors is the "quality" of the measuring instruments. For 

example, with a simple caliper, lengths can only be measured with an accuracy of ±0.1 

mm. 

This type of systematic error can only be reduced by improving the measurement system 

(Caliper >> Micrometer screw gauge). 

 

1.3 Random Errors 

 

Random errors are non-reproducible, meaning they differ in magnitude and amount when 

repeating measurements of a constant quantity with the same measuring instrument. 

Random errors make a measurement inaccurate.  

Example: Measurement of the image distance a’ with the following simple lens 

arrangement. 

 

 

 

 

 

 

 

 

 

 

 

By shifting the screen, the image is focused. Since the sharpness cannot be judged 

exactly, the measured values of a´ scatter. The deviations from the true image distance 

aw´ are generally different in magnitude and direction, as the image is randomly 

recognized as sharp either earlier or later. 

Random errors can be reduced by increasing the number of measurements. They are 

theoretically quantifiable (Gaussian error theory). 

Random errors and systematic errors cannot always be strictly separated. The total error 

usually results from the combination of both types of errors. 
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2. Computational detection of randomly distributed errors 

 

The representation of the relative frequency of errors h(Δx) as a function of the absolute 

error Δx is called the error distribution. 

 

n practice, it is common and also reasonable based on long experience to assume a 

Gaussian distribution (normal distribution) as the distribution form of random errors:

 
21 x- ( )21h( x) = • e

σ • 2

∆
σ∆

π
 

 

2.1  Mean 

 

For measurements affected by random errors, multiple measurements can be taken to 

increase measurement accuracy ≥n 10 . The best value is the arithmetic mean:  

 

 
n_

i
i=1

1x = x
n∑  

 

2.2  Mean error of the individual 

value σ and mean error of the mean 

value ∆x 
 

The mean error of the individual value σ 
(standard deviation) is a measure of the 

deviation of the individual measurement value from the mean value 
_
x  (width of the 

Gaussian bell curve). 
 n number of measurements 

   
_
x  mean value 

 

      xi Individual measurement values 

 

 (σ is also referred to as the sample standard deviation.) 
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The characteristic σ indicates the following: 

 

If any x is measured, it will lie within the limits of  
_

x  ± σ   68,3% 
_
x  ± 2σ  95,4% 
_
x  ± 3σ  99,7% 

for all measurement values. 

 

The mean error of the mean value Δx is smaller than the mean error of the individual 

value σ: 

 
_

2
i(x x )t •x = = t •

n • (n 1)n
−σ

∆
−

∑  

 

For t = 1,2,3 the probability of a repeatedly measured mean 
_
x  falling in the interval     

_
x  ± ∆x is 68,3%, 95,4%, 99,7%, respectively. 

 

In physics and metrology, a statistical confidence of 68.3% is typically considered 

sufficient, so t = 1 is used: 

  

 σx =
n

∆  

 

(In industry, t = 2  is preferred, while in biology, t = 3  is preferred.) 
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2.3  Example for calculating the mean, standard deviation, and standard error of the 

mean. 

 

In the example mentioned under 1.3 for measuring the image distance a', 10 values of 

a' were measured. The following calculation scheme results: 

 [ ]'
ia m  [ ]−' '

i

_
(a a ) m   −  

_
' ' 2 2
i(a a ) m   

 

0,600 1 . 10 - 3 1 . 10 - 6 

0,601 0 0 

0,598 3 . 10 - 3 9 . 10 - 6 

0,605 - 4 . 10 - 3 16 . 10 - 6 

0,603 - 2 . 10 - 3 4 . 10 - 6 

0,600 1 . 10 - 3 1 . 10 - 6 

0,603 - 2 . 10 - 3 4 . 10 - 6 

0,600 1 . 10 - 3 1 . 10 - 6 

0,601 0 0 

0,599 2 . 10 - 3 4 . 10 - 6 

 

 
_
'0,601 m = a                                                                  − −∑

_10
6 2 ' ' 2

i
i=1

40 • 10 m = (a a )                                                   

−∑
_10

' ' 2
i

i = 1
( a a )

σ =
n - 1

   
640 • 10σ = = 0,00210815 m

9

-

  

  

' σa =
n

∆  ∆ ' σa = = 0,000666 m
10

     

 

 

Final result: a´ = (0,601 ± 0,000666)    m 
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3. Error propagation 

 

Frequently, a measurement result y is derived from several measured values xi, which 

are related by a functional relationship:     

 1 2 3y = f(x , x , x , ...)  

The measured values xi are subject to systematic or random errors (Δxi). Since the 

accuracy of the measurement result y often has specific requirements, answering the 

question of how the errors Δxi affect y ("error propagation") is crucial. Only then can it be 

determined which quantities need to be measured with particular care and which can be 

measured with less precision. Both aspects influence the effort required for the 

measurement. 

 

3.1 Fundamentals of error propagation:  

 

Since, in general, the error Δxi of a measured quantity xi is not precisely known, but 

only the error limits ± Δxi, it is often practical, in error propagation, to assume the worst-

case scenario. That is, the case where all occurring errors "add up" rather than 

canceling each other out. 

The mathematical foundation of error propagation (assuming Δxi << xi) is the so-called 

total differential: 

 

 

 1 2
1 2

y yy = • x + • x +
x x

...∂ ∂
∆ ∆ ∆

∂ ∂
 

 

(Absolute values due to maximum estimation) 

If y depends on only one measured value x (y = f(x)), the "differential" is given by:

y = f (x) • x∆ ′ ∆  

However, it is not always necessary to calculate using the general formulas; often, 

applying pre-derived formulas for commonly occurring terms is sufficient (see section 

3.2). 
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3.2 Special calculation rules for error propagation: 

 

 1 2 1 2y = f(x ,x ) = x ± x   1 2y = x + x∆ ∆ ∆  

 

 

Multiplication and division of two measured quantities: 

1 2y = C • x • x  bzw. 1

2

xy = C •
x

  1 2

1 2

x xy = +
y x x

∆ ∆∆
 

 

Power and square root (of a measured quantity): 

   ny = C • x   y x= n •
y x
∆ ∆  

   ny = x   y 1 x= •
y n x
∆ ∆  

 

Power product: 

k m n
1 2 1 2 3y = f(x ,x , ...) = C • x • x • x • ...   1 2

1 2

x xy = k • + m • + ...
y x x

∆ ∆∆
 

hier C = constant 

 

Note: In addition and subtraction, the absolute error is used, while in multiplication, 

division, exponentiation, and rooting, the relative error is applied. The following example 

will demonstrate how, using these simple rules, more complex functions can also be 

handled. 
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3.3 Example 

 

The following relationship between the quantities m, r, and a is given: 

 2 gJ(m,r,a) = m • r • ( 1)
a
−  

Mass m and radius r are measured directly. The acceleration a is calculated from other 

measured quantities and, like m and r, is subject to an error. The gravitational 

acceleration g = 9,81 m/s2 is considered to be error-free. What is the error ΔJ for the 

calculated moment of inertia J? 

  m = (0,515 ± 0,005) kg;    m 0,01= 1%
m
∆

≈  

  r = (0,0028 ± 0,0001) m;    r 0,04 = 4%
r
∆

≈  

  2
ma = (0,121± 0,005) ;
s

   a 0,04 = 4%
a
∆

≈  

 

 

Substituting the numerical values (without errors) into the formula gives: 

 

 

 

 

 

a) Error calculation with special formulas: 
 

J ( m ,r ,a ) = u ( m ,r ,a ) + v ( r ,m ) 
 

 

 

u and v can be treated according to the rules for a power product: 

 

 

 

2
2 22 -4

2

m9,81
J = 0,515 kg • m • ( 1) = 3,23 • 10 kg0,0028 mm0,121

s -

s

 

 

2

2

gwobei u ( m ,r ,a ) = m • r •
a

und v ( m ,r ) = m •- r
 

 

 u m r a v m r =  + 2 •  +   und   =  + 2 •
u m r a v m r
∆ ∆ ∆ ∆ ∆ ∆ ∆  
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For further processing, the sum rule is used for J (u,v) = u + v. Before that, the absolute 

errors are calculated from the relative errors u
u
∆   und v

v
∆  , as the sum rule requires the 

use of absolute errors. 

 

 

 

 

 

 

 

A simplification often occurs when the relative error is calculated before substituting the 

numerical values.  

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆

≈

J u m r a v m r =  • (  + 2 •  + ) +  • (  + 2 • )
J u + v m r a u + v m r

m r g a  =  + 2 •  + •
m r g a a

   0,01 + 0,08 + 0,04 = 0,13 = 13%

-
 

 

Final result:  - 3 2J = (3,23 ± 0,42) • 10  kg m  

 

b) Error calculation with the total differential: 

 

 

 

 

 

 

 

 

 

 

 

 

 

u v• u = u;  • v = v
u v

m r a m r J = u + v = u • (  + 2 •  + ) + v • (  + 2 • )
m r a m r

∆ ∆
∆ ∆

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆

 

 

2 gJ ( m ,r ,a ) = m • r • ( 1)
a

-  
 

 
2

2
2

J J JJ = • m  + • r  + • a
m r a

g g m • r • g    = • ( 1) • m + 2 • m • r • ( 1) • r + • ar a a a
-- -

∂ ∂ ∂
∆ ∆ ∆ ∆

∂ ∂ ∂

∆ ∆ ∆
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For simplicity, the relative error is again calculated. 

 

 

 

 

 

 

 

 

It turns out that the largest contribution to the error, namely 8%, comes from the 

measurement of r This is where efforts should primarily be focused if a significant 

reduction in error is desired (caliper >> micrometer screw gauge). The error in mass 

determination (∆m = 5g) contributes only 1% to the total error. 

 

4. Linear regression (least squares line) 

There is a linear relationship between the directly measurable quantities x and y in the 

absence of measurement errors: 

  y = ax + b 
The values of a and b are to be determined by measuring n pairs of values (xi,yi) (with 

random errors in xi,yi). The best values of a and b are then given by the following 

formulas: 

 

 

 

 

 

 

 

 

The mean error of the individual measurement is obtained from the deviations
_ _

i i iv = y b a x− −   as follows: 

 

∆
∆

∆ ∆

∆ ∆ ∆

22
2

2 2 2

gg g ( • ) • am • r• ( 1) 2 • m • r • ( 1)rJ a a a = • m + • r + g g gJ • ( 1) • ( 1) • ( 1)m • r m • r m • r
a a a

m r g a=  + 2 •  + •
m r g - a a

- -

- - -

 

 

 

nn n

ii i i
i = 1 i = 1i = 1

n n
2 2
i i

i = 1 i = 1

n •  •x y yx
a = 

n •   (x x )

-

-

∑∑ ∑

∑ ∑
 

 

 

n n n n
2

ii i i i
i = 1 i = 1 i = 1 i = 1

n n
22

i i
i = 1 i = 1

•   •y x x yx
b = 

n •   ( )x x

-

-

∑ ∑ ∑ ∑

∑ ∑
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The mean errors ma of 
_
a and mb of 

_
bare given by: 

 a n n
2 2
i i

i = 1 i = 1

n = m •m
n •   (x x )-∑ ∑

 

 

 

n
2
i

i = 1
b n n

2 2
ii

i = 1 i = 1

x
 = m •m

n •   (x )x-

∑

∑ ∑
 

 

 

Such calculations are typically performed electronically today. In our laboratory practice, 
these steps are also carried out by a computer.  
  

 

 

 

n
2
i

i = 1
v

m = 
n - 2

∑
 


