F  Guide to Error Calculation in Physics Lab
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Definition of Error

—
-_—

Definition des Fehlers

a) Absolute Error

Measured values and results calculated from measured values are always subject to

errors. The absolute error Ax is the difference between the measured actual value of the

measured quantity x (measured value) and the true value of the measured quantity Xw.

AX =X = Xw .

The absolute error has the dimension of the measured quantity.

b) Relative Error

Often, the relative error is also calculated:

absoluter Fehler _ Ax
wahrer Wert Xy

Relativer Fehler =

Since the true value xw of a measured quantity is never precisely known, the error
(assuming the error is "sufficiently small") is related to the measured value x:
AX

Relativer Fehler = Ax (Rel.Fehler in % = *100)
X

1.2  Systematic Errors

Systematic errors are errors that originate from the measurement system. They are
reproducible and occur with the same magnitude and direction when the measurement
is repeated. Systematic errors cause measurements to be incorrect.

Example: A ruler or measuring instrument has been improperly calibrated.

This type of systematic error can only be detected through inspection and eliminated by
recalibrating the measuring devices.

Systematic errors may also arise due to observer mistakes, the use of inappropriate

measurement methods, etc.
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A significant cause of systematic errors is the "quality" of the measuring instruments. For
example, with a simple caliper, lengths can only be measured with an accuracy of £0.1
mm.

This type of systematic error can only be reduced by improving the measurement system
(Caliper >> Micrometer screw gauge).

1.3 Random Errors

Random errors are non-reproducible, meaning they differ in magnitude and amount when
repeating measurements of a constant quantity with the same measuring instrument.
Random errors make a measurement inaccurate.

Example: Measurement of the image distance a with the following simple lens

arrangement.

WIIYOS

By shifting the screen, the image is focused. Since the sharpness cannot be judged
exactly, the measured values of a” scatter. The deviations from the true image distance
aw are generally different in magnitude and direction, as the image is randomly
recognized as sharp either earlier or later.

Random errors can be reduced by increasing the number of measurements. They are
theoretically quantifiable (Gaussian error theory).

Random errors and systematic errors cannot always be strictly separated. The total error

usually results from the combination of both types of errors.
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2. Computational detection of randomly distributed errors

The representation of the relative frequency of errors h(Ax) as a function of the absolute

error Ax is called the error distribution.

n practice, it is common and also reasonable based on long experience to assume a
Gaussian distribution (normal distribution) as the distribution form of random errors:

1 -3 (AXp2
h(AX)=———+e 2 ©
(Ax) o 2

2.1 Mean

For measurements affected by random errors, multiple measurements can be taken to

increase measurement accuracyn >10. The best value is the arithmetic mean:

h(Ax) X =

S|=

55 2.2 Mean error of the individual

value o and mean error of the mean

value Ax

The mean error of the individual value o
(standard deviation) is a measure of the

deviation of the individual measurement value from the mean value X (width of the
Gaussian bell curve).

Zx 2 n number of measurements
i
Z( i n } _

- X
=’,Z(xi—x) = X mean value
n-1 n-1

Xi Individual measurement values

(o is also referred to as the sample standard deviation.)
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The characteristic o indicates the following:

If any x is measured, it will lie within the limits of

X to 68,3%
X +2c 95,4%
X *3c 99,7%

for all measurement values.

The mean error of the mean value Ax is smaller than the mean error of the individual

_t‘G_ . Z(Xi_)_()2
Y e

For t = 1,2,3 the probability of a repeatedly measured mean x falling in the interval

value o:

X + AX is 68,3%, 95,4%, 99,7%, respectively.

In physics and metrology, a statistical confidence of 68.3% is typically considered

sufficient, sot = 1 is used:

Ax:l

n

(Inindustry, t = 2 is preferred, while in biology, t = 3 is preferred.)

4/11



2.3 Example for calculating the mean, standard deviation, and standard error of the

mean.

In the example mentioned under 1.3 for measuring the image distance a', 10 values of

a' were measured. The following calculation scheme results:

a;[m] (a,—a')[m] (a,-a')*[m?]
0,600 1-10-3 1-10-6
0,601 0 0

0,598 3:-10-3 9-10-8
0,605 -4-10-3 16-10-6
0,603 -2-10-3 4-10-8
0,600 1-10-3 1-10-6
0,603 -2-10-3 4-10-8
0,600 1-10-3 1-10-8
0,601 0 0

0,599 2-10-3 4-10-5

Aa' = i
Jn
Final result:

a =(0,601 + 0,000666)

o4 -6
o= ,/% =0,00210815 m

Aa'=

=0,000666 m

9
V10

m

0 , -
40+10° m?=>(a,-a )?
i=1
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3. Error propagation

Frequently, a measurement result y is derived from several measured values xi, which
are related by a functional relationship:
y =f(x,, X,, X, ...)

The measured values xi are subject to systematic or random errors (Axi). Since the
accuracy of the measurement result y often has specific requirements, answering the
question of how the errors Ax; affect y ("error propagation”) is crucial. Only then can it be
determined which quantities need to be measured with particular care and which can be
measured with less precision. Both aspects influence the effort required for the

measurement.

3.1 Fundamentals of error propagation:

Since, in general, the error Axi of a measured quantity xi is not precisely known, but
only the error limits * AXx;, it is often practical, in error propagation, to assume the worst-
case scenario. That is, the case where all occurring errors "add up" rather than
canceling each other out.

The mathematical foundation of error propagation (assuming Axi << xi) is the so-called

total differential:

oy

1

Ay = +

* AX,

(Absolute values due to maximum estimation)

If y depends on only one measured value x (y = f(x)), the "differential" is given by:
Ay =|f'(x) * Ax|

However, it is not always necessary to calculate using the general formulas; often,

applying pre-derived formulas for commonly occurring terms is sufficient (see section
3.2).
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3.2  Special calculation rules for error propagation:

y =f(x,,x,)=x, £ x, Ay =|Ax,| +|Ax,|

Multiplication and division of two measured quantities:

A AX AX
y=CeXx, X, bzw. y=C-ﬁ 2Y _ 2%4] 4 |2X2
x2 y x1 xz
Power and square root (of a measured quantity):
y=Cox“ ﬂ=|n.AX
y X
y = \/; ﬂ - 1 ° g
y |n| |x
Power product:
m n Ay - AX AX
Y =X, X ) S X X X Ve S

hier C = constant

Note: In addition and subtraction, the absolute error is used, while in multiplication,
division, exponentiation, and rooting, the relative error is applied. The following example
will demonstrate how, using these simple rules, more complex functions can also be
handled.
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3.3 Example

The following relationship between the quantities m, r, and a is given:
J(m,r,a)=mer?e (g—1)
a

Mass m and radius r are measured directly. The acceleration a is calculated from other
measured quantities and, like m and r, is subject to an error. The gravitational
acceleration g = 9,81 m/s? is considered to be error-free. What is the error AJ for the

calculated moment of inertia J?
Am

m = (0,515 % 0,005) kg; ? ~0,01=1%
Ar

r =(0,0028 £ 0,0001) m; T ~ 0,04 =4%

a=(0,121£0,005) mz; E ~ 0,04 =4%
s a

Substituting the numerical values (without errors) into the formula gives:

m
9,81
J=0,515 kg* 0,0028* m? ¢« (——S—-1)=3,23 +10* kg m*
0,121
a) Error calculation with special formulas:
wobeiu(m,r,a)=mer?e 9
J(myy,a)=u(m,r,a)+v(r,m) a

undv(m,r)= -me r?

u and v can be treated according to the rules for a power product:

£=A_m+2.£+£ und £=A_m+2.£

u m r a \" m r
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For further processing, the sum rule is used for J (u,v) = u + v. Before that, the absolute
, Au Av .
errors are calculated from the relative errors — und — , as the sum rule requires the
u v

use of absolute errors.

Au

AV
U= Au; eV =AvV
u \"%
Am Ar A Am Ar
AJ=Au+Av=u-( +2-—+—a)+v0(—+2°—)
m r a m r

A simplification often occurs when the relative error is calculated before substituting the

numerical values.

A_J= u Q(A_m+2.£+£)+ v .(A_m+2.£)
J u+tv m r a u+v m r
=A_m+20£+ g OE

m r g-a a

~ 0,01 +0,08 +0,04=0,13=13%

Final result: J=(3,2310,42) - 10 > kg m?

b) Error calculation with the total differential:

J(m,y,a)=m- rz-(%-1)

oJd
om

QoAr

or

QoAa

oa

Ad = e Am| + +

-morzog
a2

=r2-(g-1)-Am+2-m°r-(g-1)°Ar+ * Aa
a a
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For simplicity, the relative error is again calculated.

AJ rzo(g—1) Zomoro(g_‘l) (morzo%)oAa
— = a * Am + Q___«Ar+ a
J m-r2°(g-1) m-r2°(g-1) m-r2°(g-1)
a a a
=A_m+2.£+ g oAa
m r g-a a

It turns out that the largest contribution to the error, namely 8%, comes from the
measurement of r This is where efforts should primarily be focused if a significant
reduction in error is desired (caliper >> micrometer screw gauge). The error in mass

determination (Am = 5g) contributes only 1% to the total error.

4. Linear regression (least squares line)

There is a linear relationship between the directly measurable quantities x and y in the
absence of measurement errors:

y=ax+b
The values of a and b are to be determined by measuring n pairs of values (xi,yi) (with
random errors in Xi,Yi). The best values of a and b are then given by the following

formulas:

“’inyi'in‘Zyi _ Z;yi‘z;xiz-z;xpz;xiyi
i=1 i=1 i=1 b= i= i= i= i=

n-i“xf-(ixi)2 n';x?-(;xi)z

a-=-=

The mean error of the individual measurement is obtained from the deviations

Vi =¥ =b=alX 55 follows:
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The mean errors Ma of aand mp of bare given by:

Such calculations are typically performed electronically today. In our laboratory practice,
these steps are also carried out by a computer.
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