

Zentrum für Angewandte Forschung ZAFH-PHOTONⁿ (2008 – 2013/14)

Multidimensionale Mikroskopie und Photonische Sensorik

Zentrum für <u>Angewandte Forschung ZAFH-PHOTONⁿ</u> HS Aalen, Reutlingen, Mannheim, Furtwangen, Konstanz, Offenburg

- Multidimensionale Mikroskopie
 - Tiefenauflösendes Imaging
 - 3D-Laserpinzette
 - Multispektrales Imaging
- Photonische Sensorik
 - Miniatur-Lasersensor
 - Faseroptischer Gassensor
 - Fabry-Perot-Biosensor
 - 4D-Fertigungsmesstechnik

gefördert durch die Europäische Union, Europäischer Fonds für regionale Entwicklung und das Land Baden-Württemberg

Tiefenauflösung in der Mikroskopie lebender Zellen

Methods:

- Laser-Scanning-Mikroskopie (LSM)

z = 10 µm

z = 15 µm

- Strukturierte Beleuchtung
- Lichtscheibenmikroskopie

- Totalreflexionsmikroskopie

Tiefenauflösende Totalreflexonsmikroskopie

Nanotopologie von Zelloberflächen

Tumorzellen (Glioblastom)

Glioblastomzellen mit Tumorsuppressorgen

http://www.jove.com/video/4133/nanotopology-cell-adhesion

Cells provided by J. Mollenhauer, Dept. of Molecular Oncology, University of South Denmark, Odense

Lichtscheibenmikroskopie an 3D Zellsystemen (CHO-GFP-Mem)

Nur Ebenen im Fokusbereich des Mikroskops werden bestrahlt \rightarrow geringe Lichtdosis

Nekrose nach Inhibierung der Atmungskette (Rotenon: 1 µM, 3 h; CellTox: 2 h; λ_{ex} = 470 nm, $\lambda_{d} \ge$ 515 nm)

Einzelschicht: z = 50 μ m; d \leq 10 μ m

3D Rekonstruktion

Einige Ergebnisse aus 6 Jahren ZAFH – Forschung - Schwerpunkt "Multidimensionale Mikroskopie"

- Etablierung Strukturierte Beleuchtung, 3D Laserpinzette (Laboraufbauten)
- Optimierung und vielfache Nutzung von TIRFM

- Etablierung der Lichtscheibenmikroskopie
 Laboraufbau und Ansatz f
 ür kommerzielles Ger
 ät (ZIM-Projekt)
- Promotionen zu 3D Ratio Imaging (Land BW) und winkelaufgelöster Streulicht-Mikroskopie (BW-Stiftung)
- Neue Forschungsprojekte (u.a. Apoptose in 3D Zellsystemen)

Ratio Imaging von Redox-Zuständen in Tumorzellsphäroiden mittels Lichtscheiben-Fluoreszenz-Mikroskopie

Ratio Imaging: Verhältnis zweier Fluoreszenzbilder

<u>Anwendung:</u> Messung von Änderungen des intrazellulären Redox-Gleichgewichts

Änderungen des Redox-Gleichgewichts...

...wirken sich auf Zellfunktionen aus.

...zeigen sich unter anderem in einer Änderung des Verhältnisses von reduziertem zu oxidiertem Glutathion (GSH/GSSG).

Anregungsspektren von roGFP2

[Dooley et al., 2004 (modifiziert)]

Anregungsspektren von roGFP2

[Dooley et al., 2004 (modifiziert)]

Experimenteller Aufbau

Experimenteller Aufbau

Experimenteller Aufbau

Experiment 1: Änderung des Redox-Gleichgewichts in Zellsphäroiden unter H₂O₂-Zugabe

Experiment 1: Änderung des Redox-Gleichgewichts in Zellsphäroiden unter H₂O₂-Zugabe

Experiment 2: Änderung des Redox-Gleichgewichts in Zellsphäroiden durch Staurosporin-induzierte Apoptose

Experiment 2: Änderung des Redox-Gleichgewichts in Zellsphäroiden durch Staurosporin-induzierte Apoptose

Zusammenfassung

- Simultane Fluoreszenzdetektion von Proben mit unterschiedlichen Anregungsjedoch gleichen Emissionsspektren
- Messung während der Zugabe eines Wirkstoffs dank Mikrofluidik
- Demonstration der System-Funktionalität anhand zweier Experimente

Ausblick

- Calcium Imaging
- Messung der Fluoreszenzlebensdauer (bei entsprechender Modifikation)

Mikrostrukturanalyse im Gewebeverband

- in Kooperation mit ILM, UIm -

- finanziert durch Baden – Württemberg Stiftung gGmbH -

Ziel des Projekts:

➔ aus Streulichtmessungen an makroskopischen Gewebeproben Informationen über deren Mikrostruktur erhalten z.B. Zellkerngröße

Beispiel: Veränderungen von Zellen bei Apoptose

Winkelabhängige Streulichtmessungen

Winkelabhängige Streulichtmessungen

Winkelabhängige Streulichtmessungen

Elastische Lichtstreuung (Mie Theorie):

- Winkelabhängigkeit der Rückstreuung (Latex Beads) -

Winkelabhängige Rückstreuung (Latex Beads) und Fast Fourier Transformation

			11	_
S	m	1112	ATIC	าท
				/

FFT

Winkelabhängige Rückstreuung

üblicherweise: Messungen an Zellsuspensionen

➔ Detektor wird um Probe herum verfahren

➔ Probe wird gedreht

[Florian Foschum und Alwin Kienle, 2013]

hier: Messung an vitalen Zellen auf Deckgläsern

→ Adaption an konventionelles inverses Mikroskop
→ Beobachtung der Probe möglich

Winkelabhängige Rückstreuung - Experimenteller Aufbau -

Winkelabhängige Rückstreuung - Experimenteller Aufbau -

Probe Θ Aperturblende Tubuslinse Objektebene Aperturebene **Bertrand-Linse** Lochblende

Photomultiplier

Winkelabhängige Streuung: 3T3 Fibroblasten nach Apoptose - Staurosporin 1µM/2h-4h-6h-

Vergleich mit Simulation - Florian Voit, ILM Ulm -

Ausblick: Apoptose bei Sphäroiden - Staurosporin 2µM/6h -

Winkelabhängige Streulicht-Messungen: Perspektiven und Probleme

- Größe der Streupartikel kann abgeschätzt werden;
- Kalibrierung schwierig, da genaue Brechungsindizes unbekannt
- Vergleich mit Simulation schwierig
 - → sehr viele verschiedene Parameter
- Apoptose kann untersucht werden, tritt aber vermutlich
 - in Zusammenhang mit anderen Prozessen auf
 - (z.B. Nekrose)
- 3-dimensionale Proben sollten weiter untersucht werden

Biophotonik - Gruppe (Hochschule Aalen)

(gefördert durch BMBF, Land Baden-Württemberg, Europ. Fonds für regionale Entwicklung, finanziert durch Baden-Württemberg-Stiftung gGmbH)

First Announcement

LAIS 2014

International Conference on Laser Applications In Life Sciences 29 June - 2 July 2014, Ulm, Germany

Topics:

- Biomedical Imaging
- Laser Spectroscopy
- Laser-Tissue Interaction
- Light Microscopy
- Nano-Biophotonics
- Novel Devices and Methods
- Clinical Laser Applications

Plenary and Keynote Speakers Include:

- B. Tromberg (USA), V. Ntziachristos (D),
- P. French (UK), P. Anderson (DK), M. Frenz (CH),
- A.V. Priezzhev (RUS), P. Taroni (I), Q. Luo (China)
- V.V. Tuchin (RUS), J. Lademann (D), J. Popp (D)
- M.R. Hamblin (USA), A. Chiou (Taiwan), V. Vaks (RUS)
- A. Vogel (D), C. Cremer (D), E. Stelzer (D),
- R. Rotomskis (LT), V.B. Loshchenov (RUS),
- S. Andersson-Engels (S), N.M. Shakhova (RUS),
- P. Berlien (D), H. Stepp (D)

Conference Chairs: R. Steiner, R. Hibst, H. Schneckenburger (D) http://lals2014.ilm-ulm.de