ZAFH Photonⁿ, 4. Photoniktag Aalen 2012

Höchstauflösende Optische Metrologie

Ruven Spannagel, Thilo Schuldt, Martin Gohlke, Ulrich Johann, Dennis Weise, Wolfgang Kronast, Ulrich Mescheder, Josep Sanjuan, Matthias Franz, and Claus Braxmaier

Outline

- Motivation: LISA, GRACE-FO...
- Measurement Principle and Dilatometry
- Optical Setup
 - Heterodyne Interferometer
 - Cavity-stabilized laser
 - Iodine-stabilized laser
- Mechanical Setup
- Measurements
 - Zerodur
 - Clearceram
- Summary
- Outlook

Motivation LISA

- Laser Interferometer Space
 Antenna
- Weltraum-gebundener Gravitationswellendetektor im Frequenzbereich zwischen 30 µHz und 1 Hz
- Start vorgesehen für 2020
- 3 Satelliten bilden ein Interferometer mit einer Armlänge von etwa 5 mio km
- Endspiegel des Interferometers sind durch frei-fliegende Testmassen realisiert

Motivation GRACE-FO

- Gravity Recovery and Climate Experiment - Follow-on
- Extremely high precision gravity measurements
- Construction of gravity field models
- GRACE consists of two satellites (A, B) serving one mission
- 200km distance between the Satellites
- Sub-nm measurement accuracy

Motivation

- Highly temperature stable structural materials are needed for space missions such as
 - NGO/LISA,
 - GRACE-FO,
 - ...
- Up to pm path length stability
- Materials:
 - Zerodur
 - ULE
 - Clearceram
 - CFRP

Motivation

- Lightweight and stable structures
- Highly stable CFRP triple mirror assembly for GRACE-FO laser ranging (nm dimensional stability)

500mm

Ø = 490mm

 Zerodur-CFRP-sandwich breadboard for e.g. LISA (sub-nm dimensional stability)

Measurement Principle

- The device under test (DUT) is a cylindrical tube
- Reference mirror (RM) and measurement mirror (MM) clamped in the DUT
- Pt100 sensors are glued to the sample

Optical Setup – Heterodyne Interferometer

- Differential wavefront sensing (DWS) enables tip- and tiltmeasurement simultaneous to translation measurement
- Demonstrated sensitivity
 - pm at translation measurement
 - nrad at tip- and tilt measurement

Optical Setup – Reference Cavity

- Cavity-stabilized laser as reference (PDH)
- The unequal armelengths of the Interferometer causes the most dominant noise source
- Frequency noise of the dilatometer laser is measured in the beatsignal and subtracted in post-processing
- The frequency noise can be converted to a translation noise:

Optical Setup – Reference Iodine

- hyperfine transition in molecular iodine taken as reference (a10 component of R(56)32-0 near 532nm)
 - \rightarrow strong absorption
 - → small natural linewidth (380kHz)
- frequency stability of 10⁻¹⁵ @ h
- 1s in 30 Mio a
- Al technologie for Space developed

Mechanical Setup I

- DUT support made out of Zerodur minimizes the tilt of the sample tube
- Mirror mounts made out of Invar36 with thermally neutral plane at the reflective surface

Mechanical Setup II

Tests bei Betriebstemperatur von –70°C :

- LN2 Reservoir eingebaut im Vakuum Tank
- Heizelemente und Temperatursensoren für die Regelung der Temperatur im Vakuumtank
- Schwingungsisolierung im Tank zur Verringerung der Vibrationen im Teleskop
 thermal shield on top

Measurement Setup III

 Measuring the stability of respective structures of GRACE-FO or LISA (NGO)

Measurements: Zerodur Tube

- Measurement of a Zerodur sample
- Converted laser frequency noise used for correction of the translation measurement
- Small temperature variations applied

→ T= (30 ± 1.34)°C

→ Measured CTE: -1.75·10⁻⁸ K⁻¹

→ CTE by SCHOTT: $0\pm3\cdot10^{-8}$ K⁻¹

Measurements: Clearceram Tube

- Measurement of a Clearceram sample
- Translation measurement performed with frequency stabilized laser
- Very small temperature variations applied

→ T= (29 ± 0.8)°C

→ Measured CTE: -3.205·10⁻⁸ K⁻¹ ± 0.0039·10⁻⁸ K⁻¹

 \rightarrow CTE by OHARA: 0 ± 2.10⁻⁸ K⁻¹

Summary

• Investigated Materials:

Material	Measured CTE [K ⁻¹]	Expected CTE [K ⁻¹]
CFRP	(-3.1 ± 0.1)·10 ⁻⁶	2.5·10 ⁻⁶
CFRP (Meteosat 2nd Gen)	(-0.519 ± 0.024)·10 ⁻⁶	-0.647·10 ⁻⁶
Zero-CTE CFRP	(-0.335 ± 0.004)·10 ⁻⁶	~10 ⁻⁸
C-SiC (BepiColombo)	-0.05 · 10 ⁻⁶	-
CFRP	(-0.2 ± 0.02)·10 ⁻⁶	-
Zerodur	-1.75·10 ⁻⁸	0±3·10 ⁻⁸
Clearceram	(-3.205 ± 0.039)·10 ⁻⁸	0±2·10 ⁻⁸

Outlook

- New optical setup with at least the same sensitivity using multiple beam interferometry (Fabry-Perot) to compare the measurement principles
- Setup of a cryogenic (~150K) measurement facility for CTE tests at the specific operating temperature
- Compare our measurement facility with a calibrated facility
- Characterization of low-CTE materials like Zerodur, Clearceram, ULE, CFRP, C-SiC, C/C-SiC,...

Lieber Herbert...

Danke sehr für die wunderbare ZAFH-Zeit...!

In der Hoffnung es gibt neue Zusammenarbeit...

"Die Wissenschaft ist immer auf dem Wege und nie am Ziel…" Pichler

ZAFH-Photonⁿ

Project funded by Europe Union European Regional Development Fund and the state of Baden- Württemberg

gefördert durch die Europäische Union Europäischer Fonds für regionale Entwicklung und das Land Baden-Württemberg

