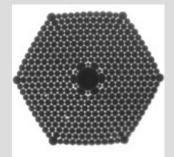

### Faseroptischer Gassensor

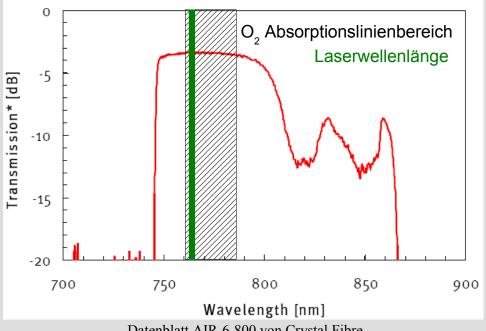
Hochschule Furtwangen University – Photon<sup>n</sup>

Alberto Rodrigues, Volker Lange, Dietrich Kühlke


### **Prinzip und Ziel**

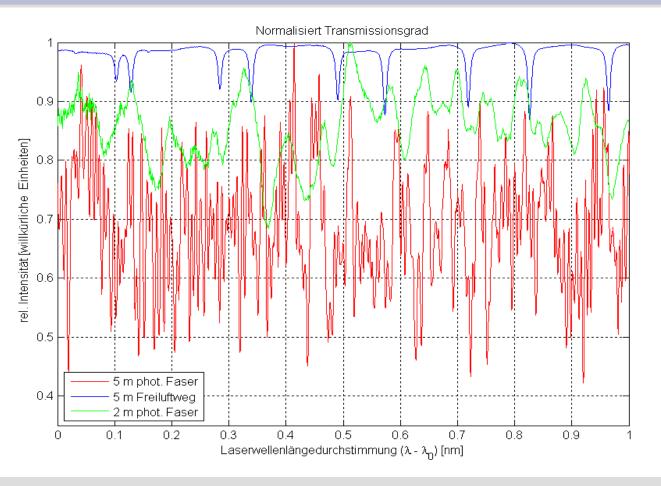
- Nachweis von Sauerstoffkonzentration auf der Grundlage der IR-Spektroskopie ab 0,1% nahezu in Echtzeit (bis zu 30 s) in einer kompakten Sensoreinheit
- Analyse der Eignung von Wellenleitern:
  - PBF (Photonische Bandgap Fasern)
  - Kapillarfaser
  - Microkanal Wellenleiter




### PBF - Eigenschaften

#### Querschnitt PBF AIR-6-800



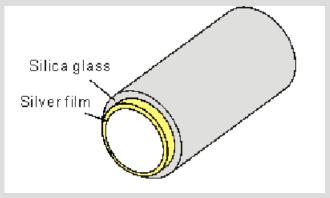

Kerndurchmesser 6 µm < 0,4 dB/m bei 760-800 nm

#### Typisches Transmissionsspektrum (2m-Faser):



Datenblatt AIR-6-800 von Crystal Fibre

## PBF – Messung des spektralen Transmissionsgrads

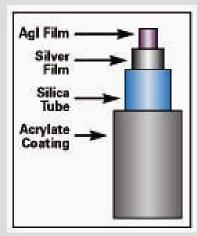



Laser: 763 nm VCSEL 4 mA – 8 mA 0,25 nm/mA Luftdruck

### PBF – Eignung

- PBF sind nur eingeschränkt geeignet für solche Gassensor:
  - Statistische Variationen des spektralen Transmissionsgrads der Bandgapfaser begrenzen die minimal nachweisbare Konzentration (20% O<sub>2</sub> Konzentration in Luft nicht nachweisbar bei 5 m PBF)
  - Relativ lange Befüllungszeit (ca. 22 minuten für die PBF mit 6 µm
     Kerndurchmesser und 2 m Länge bei 0,5 bar Druckunterschied)
- Alternativen:
  - Metallbeschichte Kapillarfaser
  - Mikrokanal Wellenleiter

### Kapillarfaser – Eigenschaften

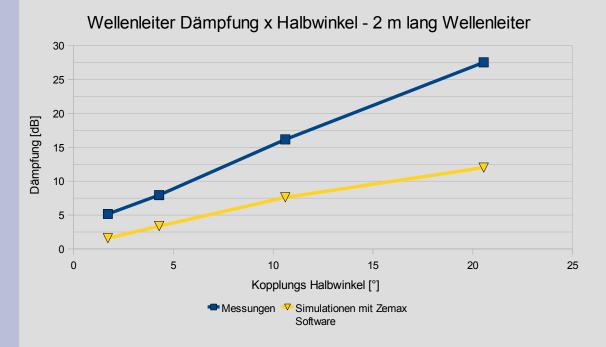



http://do-ko.jp/specs.html (modifiziert)

Durchm. (innen / außen):

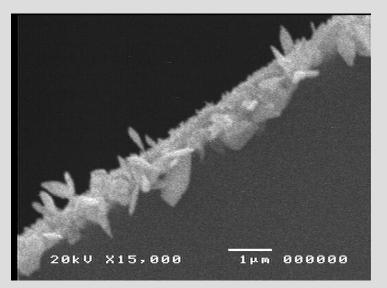
320/450, 530/700, 700/850  $\mu m$  Doko Engineering (links)

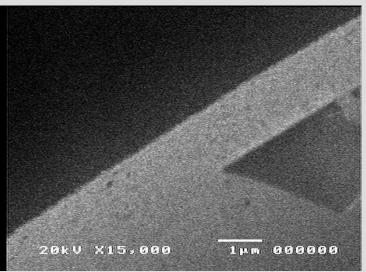
300/750, 500/850, 750/1200, 1000/1600 μm Polymicro Technologies, LLC (rechts)




http://www.polymicro.com/products/opticalfibers/products opticalfibers hw.htm

Minimaler Biegeradius der Doko Kapillarfaser mit 700 µm Außendurchmesser: 8 cm

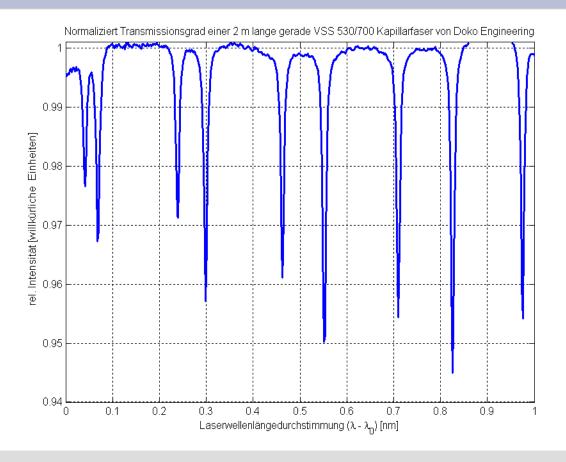

### Kapillarfaser – Dämpfung


| Messergebnisse          |            |          |            |               |               |                     |           |
|-------------------------|------------|----------|------------|---------------|---------------|---------------------|-----------|
| Kapillarfaser-<br>model | Länge [cm] | Dämpfung |            |               |               |                     |           |
|                         |            | Gerade   |            | L-förmig      | U-förmig      | Ringförmig gebogene |           |
|                         |            | [dB]     | [dB/m]     | gebogene [dB] | gebogene [dB] | [dB]                | [dB/m]    |
| VSS 320/450             | 39         | 4.0 dB   | 10.26 dB/m | 4.5 dB        | 5.0 dB        | 6.5 dB              | 16.6 dB/m |
| HWCA 300/750            | 50         | 9.9 dB   | 19.8 dB/m  | 11.3 dB       | 12.8 dB       | 13.5 dB             | 27.0 dB/m |



- Faktor 2 zwischen
  Simulationen und Messungen
- Höhere Dämpfung für größere Kopplungswinkel
- Höhere Dämpfung für kleinere Innendurchmesser

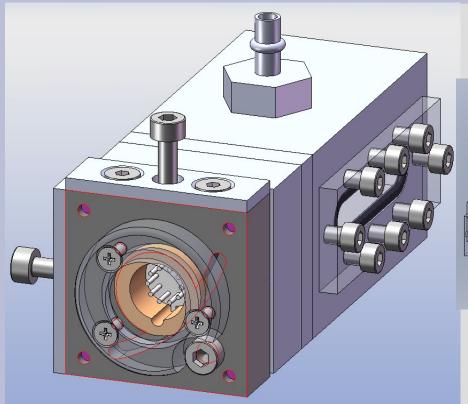
### Kapillarfaser – Streuung

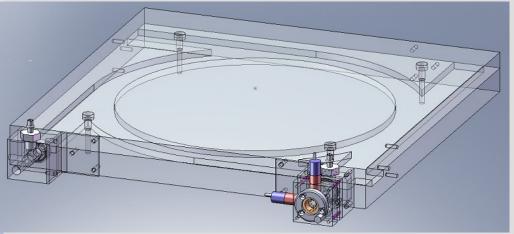





SEM-Abbildung der inneren Grenzfläche der HWEA 300/750 Kapillarfaser von Polymicro Technologies (links) und der VSS 320/450 Kapillarfaser von Doko Engineering (rechts)

Wellenlänge der Sauerstoffabsorptionslinien: 763 nm


# Kapillarfaser – Messung des spektralen Transmissionsgrads

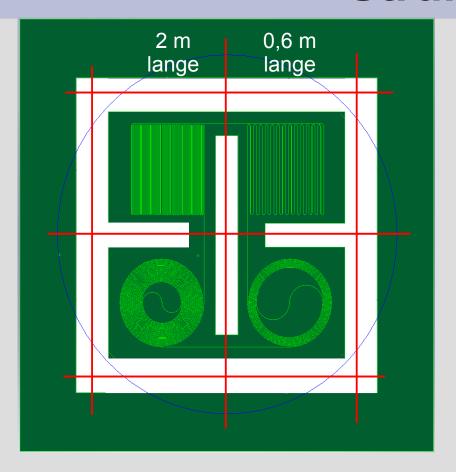


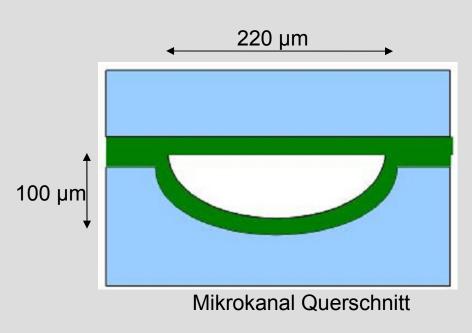

- Messalgorithmus entwickelt in MATLAB™
- Automatische
   Linienerkennung und
   Konzentrationsberechnung
   mit der HITRAN Datenbank
   [5]
- Getestet für CO<sub>2</sub> mit
   Multipaßzelle

Statistische Variationen des spektralen Transmissionsgrads spielen keine Rolle

### Kapillarfaser – Sensorprototyp







Sensoreinheit

Kopplungseinheit

27 cm x 32 cm (durch den minimalen Biegeradius der Kapillarfaser begrenzt)

## Mikrokanal - Struktur





### Zusammenfassung [1]

- PBF (photonische Bandgap-Fasern)
  - Statistische Variationen des spektralen Transmissionsgrads beschränken die Nachweisempfindlichkeit für Sauerstoff
  - Relativ lange Befüllungszeit
- Kapillarfaser
  - Transmission mit relativ wenig Dämpfung und Rauschen
  - Kürze Befüllungszeit
  - Sensorgröße bestimmt durch den minimalen Biegeradius

### Zusammenfassung [2]

- Mikrokanal Wellenleiter
  - Relativ einfacher Prozess (eine Maske, wenige Prozessschritte)
  - Hohe Anforderung an Prozessreinheit (Partikelwahrscheinlichkeit)
- Messalgorithmus
  - Algorithmus entwickelt in MATLAB™

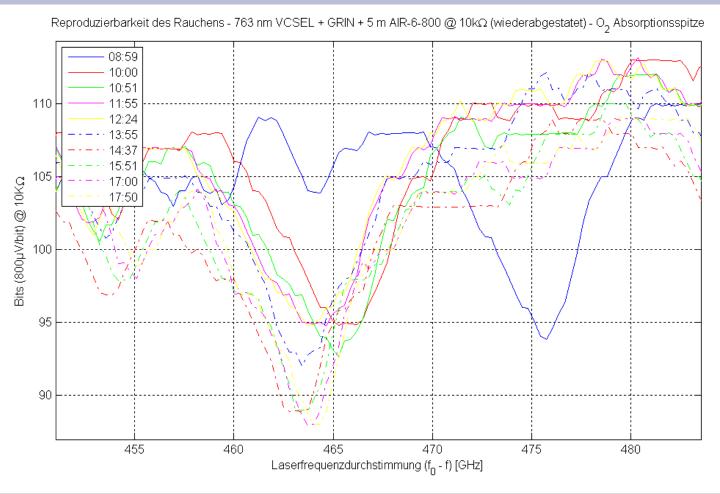
### Restliche Aufgaben

- Kapillarfasern
  - Testen und Performanceverifikation des neuen Prototyps
  - Sensorkalibrierung

- Mikrokanal Wellenleiter
  - Goldbedampfung des Wafers
  - Test der Funktionsfähigkeit

### Danke für die Aufmerksamkeit




von http://www.yead.dk/conference/

Fragen ???

#### Literatur

- [1] ZAFH PHOTON<sup>n</sup> PHOTONische Verfahren in neuen Dimensionen, Forschungsbericht 2008
- [2] Polymicro Technologies, LLC, "The Book on the technologies of Polymicro" and product catalogue, 2005
- [3] Hollow glass fibres for infrared lasers, http://do-ko.jp/specs.html, accessed on February 2009.
- [4] R.W. Tjerkstra, "Isotropic etching of silicon in fluoride containing solutions as a tool for micromachining", Doctoral Thesis, Universiteit Twente, 23rd of September, 1999.
- [5] Rothman, L.S. et al, "The HITRAN 2004 molecular spectroscopic database", Journal of Quantitative Spectroscopy and Radiative Transfer 96, 139-204 (2005)
- [6] S. Hartwig, A. Lambrecht, Charakterisierung von Hohlfasern für kompakte Infrarot-Gasmesszellen, Technisches Messen 75 (2008) 10, 555-564
- [7] V. Schewtschenko, Bachelor Thesis, Hochschule Furtwangen, 2009
- [8] T. Ritari, J. Tuominen, H. Ludvigsen, "Gas sensing using air-guiding photonic bandgap fibers", Optics Express 12, 4080-4087, 23<sup>rd</sup> of August, 2004.
- [9] ZAFH PHOTON<sup>n</sup> PHOTONische Verfahren in neuen Dimensionen, Forschungsbericht 2009

# PBF – Reproduzierbarkeit der spektralen Variationen

