Skip to main content
Log in

An Investigation of the Deep Drawing Behavior of Automotive Aluminum Alloys at Very Low Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sheet metal aluminum alloys in the 5000 and 6000 series show increased formability if deformed at sub-zero temperatures which is beneficial for processing industries using sheet metals where evermore highly complex-shaped components are produced. In order to evaluate a cryogenic forming process, the temperature-dependent forming limits of the selected materials need to be known. For this determination, a device has been developed which allows deep drawing operations with circular specimens at cryogenic temperatures. The limiting drawing ratio (LDR) of the commercial aluminum alloys EN AW-5182 and EN AW-6016 are investigated in a temperature range from 298 K to 77 K. It is shown that the deep drawing behavior of both materials is generally enhanced at very low temperatures, although the LDR of the EN AW-6016 alloy increases only at temperatures T ≤ 77 K. Furthermore, using mathematical formulations and numerical (finite element) simulations the influence of friction on the punch forces could be predicted. The calculated results and experimental data are compared, and then subsequently discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Ref. [20]

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M. White: Projekt C-X75-Hybrid Sportwagen mit innovativer Karosseriestruktur. Karosserietage Bad Nauheim. www.automotive-circle.com, 2013. Accessed 13 October 2013

  2. Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A., Vieregge, A.: Mater. Sci. Eng. A, 2000, vol. 280, pp. 37-49.

    Article  Google Scholar 

  3. Schlosser, J., Schneider, R., Rimkus, W., Kelsch, R., Gerstner, F., Harrison, D. K., Grant, R. J.: J. Phys. Conf. Ser, 2017, vol. 896, art. no. 012091, https://doi.org/10.1088/1742-6596/896/1/012091

    Article  CAS  Google Scholar 

  4. Anyasodor, G., Koroschetz Ch.: Mater. Sci. Eng. Conf. Ser., 2018, vol. 418, art. no. 012023, https://doi.org/10.1088/1757-899X/418/1/012023

    Article  Google Scholar 

  5. Smeyers, A., Schepers, B., Braunschweig, W., Bürger, A., Vieregge, K., Khosla, S., Wise, A.: Alum. Int. Today, 2011, vol. 23, pp. 37-39.

    Google Scholar 

  6. Clark, A. F., Reed, R. P., 1983. Materials at low temperatures. American Society for Metals, Metals Park, Ohio.

    Google Scholar 

  7. F.R. Schwartzberg and M. Knight: Cryogenic Materials Data Handbook. Martin Marietta Corporation and Air Force Materials Laboratory (U.S.), 1970, AFML-TDR-64-280.

  8. R.J. Selines and J.S. Van den Sype: Cryogenic Forming, 1979. USA Patent 4,159,217.

  9. Schneider, R., Heine, B., Grant, R. J., Zouaui, Z.: Mater. Des. Appl., 2013, vol. 229, pp. 126-136.

    Google Scholar 

  10. Park, D. H., Choi, S. W., Kim, J. H., Lee, J. M.: Cryog., 2015, vol. 68, pp. 44-58.

    Article  CAS  Google Scholar 

  11. Takuda H., Mori K., Masuda I., Abe Y., Matsuo M.: J. Mat. Proc. Tec., 2002, vol. 120, pp. 412-418

    Article  CAS  Google Scholar 

  12. Oh K. S., Oh K. H., Jang J. H., Kim D. J., Han K. S.: J. Mat. Proc. Tec., 2011, vol. 211, pp. 695-707

    Article  Google Scholar 

  13. Zheng K., Politis D. J., Lin J., Dean T. A.: Int. J. Mat. Form, 2017, vol. 10, pp. 241-254

    Article  Google Scholar 

  14. Schneider, R., Grant, R. J., Heine, B., Börret, R., Zouaoui, Z., Burger, S.: Mater. Des., 2014, vol. 64, pp. 750-754.

    Article  CAS  Google Scholar 

  15. Swift, H. W.: Inst. Aut. Eng., 1939, vol. 34, p. 361.

    Google Scholar 

  16. Siebel, E., Beisswänger, H., W., 1955. Tiefziehen. Forschungsarbeiten auf dem Gebiet des Tiefziehens im Auftrag der Forschungsgesellschaft Blechverarbeitung. Karl-Hanser, München

    Google Scholar 

  17. Geleji, A., 1960. Bildsame Formgebung der Metalle in Rechnung und Versuch. Akademie, Berlin.

    Google Scholar 

  18. Siebel, E., Pankin, W., 1956. Ziehverfahren der Blechumformung. Zeitschrift für Metallkunde 47 (4), 207-212.

    Google Scholar 

  19. Pankin, W., 1961. Die Grundlagen des Tiefziehens im Anschlag unter besonderer Berücksichtigung der Tiefziehprüfung. Bänder Bleche Rohre I-III, Heft 6

    Google Scholar 

  20. Doege, E. D., Behrens B. A., 2007. Handbuch Umformtechnik, second ed. Springer, Heidelberg, pp. 270-272

    Google Scholar 

  21. Barlat, F., Lian, K.: Int. J. Plast. Part I, 1989, vol. 5, pp. 51-66.

    Article  Google Scholar 

  22. Logan, R. W., Hosford, W. F.: Int. J. Mech. Sci., 1980, vol. 22, pp. 419-430.

    Article  Google Scholar 

  23. Schneider, R., Grant, R. J., Sotirov, N., Falkinger, G., Grabner, F., Reichl, Ch., Scheerer, M., Heine, B., Zouaoui, Z.: Mater. Des., 2015, vol. 88, pp. 659-666.

    Article  CAS  Google Scholar 

  24. Sotirov, N., Falkner, G., Grabner, F., Schmid, G., Schneider, R., Grant, R. J., Kelsch, R., Radlmayr, K., Scheerer, M., Reichl, C., Sehrschön, H., Loipetsberger, M.: Proc. Mater. Today, 2, 113–118 (2002)

    Article  Google Scholar 

  25. Kumar, M., Sotirov, N., Grabner, F., Schneider R., Mozdzen, G.: Nonf. Met. Soc. China, 2017, vol. 27, pp. 1257-1263

    Article  CAS  Google Scholar 

  26. Wigley, D. A.: Mechanical Properties Of Materials At Low Temperatures. Plenum Press, New York-London, 1971

    Book  Google Scholar 

  27. Chen Y., Li Y., He L., Lu C., Hua D., Li Q.: Mat. Let., 2008, vol. 62, pp. 2821-2824

    Article  CAS  Google Scholar 

  28. Smallmen, R. E., Bishop, R. J.: Modern Physical Metallurgy & Materials Engineering. Butterworth-Heinemann, Oxford, 1999

    Google Scholar 

  29. Park D. Y., Niewczas M.: Mater. Sci. Eng.: A., 2008, vol. 491, pp. 88-102

    Article  CAS  Google Scholar 

  30. Grabner F., Österreicher J. A., Gruber B., Papenberg N., Gerstner F., Kirnstötter S., Schlögl C. M.: Adv. Eng. Mater., 2019, vol. 21, art. no. 1900089, https://doi.org/10.1002/adem.201900089

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. N. Sotirov and Dipl.-Ing. G. Falkinger (former employees of LKR) for their support with the FEM simulations and for consultations concerning this project. Further, we wish to thank Dr. P. Oberhauser (AMAG rolling GmbH) for providing the material for experimental work.

Funding

We wish to express our gratitude to the Austrian Research Promotion Agency (FFG) for funding this work (Grant No. 838893).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schneider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, R., Grant, R.J., Schlosser, J.M. et al. An Investigation of the Deep Drawing Behavior of Automotive Aluminum Alloys at Very Low Temperatures. Metall Mater Trans A 51, 1123–1133 (2020). https://doi.org/10.1007/s11661-019-05584-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05584-4

Navigation